WILLIAM M. KANTOR

THE EXISTENCE OF TRANSLATION COMPLEMENTS*

1. Introduction

Let \mathscr{P} be a (possibly infinite) projective plane, and G a collineation group of \mathscr{P} . Suppose temporarily that \mathscr{P} is a translation plane with respect to L, and G is the group of collineations fixing L. Then $G = TG_x$, where T is the translation group with respect to L, and x is an affine point. If, moreover, the characteristic of \mathscr{P} is not 2, then $G_x = C_G(t)$ and $G = TC_G(t)$, where t is an involutory homology with center x.

In this note we will consider a sort of converse of these facts. Take a *finite* collineation group G generated by involutory homologies, where \mathcal{P} is again any projective plane. We will assume that G has an involutory homology t whose behavior resembles that of the t in the preceding paragraph, and then deduce the existence of a factorization $G = TC_G(t)$ as above.

The precise statement is as follows. Let O(G) denote the largest normal subgroup of G of odd order. Define $Z^*(G) \ge O(G)$ by: $Z^*(G)/O(G)$ is the center of G/O(G).

THEOREM. Let G be a finite collineation group of a projective plane which is generated by O(G) and involutory homologies. Suppose G has a Klein subgroup generated by homologies having different axes, but that G/O(G) is not dihedral of order 4 or 8. Assume further that $Z^*(G)$ contains an involutory homology t. Then $G=TC_G(t)$, where $T \triangleleft G$ is a (possibly trivial) group of elations, all having the same center as t or the same axis as t.

In particular, G fixes a point or a line. This is not at all obvious – and, in fact, easily implies the theorem. Another way of looking at the theorem is that $C_G(t)$ must contain most of G.

This result is similar in statement and proof to [4], Theorem A(iv). That result considered the situation where the hypothesis $t \in Z^*(G)$ is replaced by: $Z^*(G)$ contains no involutory homology. However, neither result implies the other.

The proof is relatively elementary. For example, it does not involve the solvability of groups of odd order: the only deep group-theoretic fact required is Glauberman's Z^* -theorem [2].

The proof is somewhat simplified if G contains no Baer involution and is

^{*} This research was supported in part by NSF Grant GP 37982X.

solvable. The solvable case is, however, a very interesting and unexpected case, as can be seen from the second corollary.

COROLLARY 1. Let H be a collineation group of a projective plane. Suppose that the involutory homologies in H generate a finite group G satisfying the conditions of the theorem. Then $H=TC_H(t)$.

COROLLARY 2. Let S be a (finite) 2-group of collineations of a projective plane containing two involutory homologies generating a group of order at least 16. If S normalizes a collineation group X of odd order, then SX fixes a point or a line (both, if X contains no nontrivial elations).

2. BACKGROUND

Let \mathscr{P} be a projective plane. If $g \neq 1$ is a perspectivity, c_g and A_g will denote its center and axis. Let G be a finite collineation group of \mathscr{P} . If c is a point, and A is a line, then G(c) (or G(A)) is the group of perspectivities in G with center c (or axis A); also, $G(c, A) = G(c) \cap G(A)$.

We will need the following facts.

- (a) (See [4], (3.1), (3.2.) Let $\langle t, u \rangle \leq G$ be a Klein group with t and u homologies having different axes. Then tu is a homology; t is the only involutory homology in $G(c_t, A_t)$; each collineation fixing c_t and A_t centralizes t; G has no elementary abelian subgroup of order 8 generated by homologies; and G has no Klein group $\langle t', u' \rangle$ with $A_{t'} = A_{u'}$.
- (β) ([4], (3.3).) If $S \le G$ is a 2-group, and S contains an involutory homology, then so does Z(S).
- (γ) If a perspectivity fixes a subplane, then its center and axis are in that subplane.
- (δ) ([1], p. 120.) Let t and u be involutory homologies in G(L) with $c_t \neq c_u$. Then $tu \in G(L \cap c_t c_u, L)$.
- (ϵ) Let t and u be involutory homologies with $c_t \neq c_u$ and $A_t \neq A_u$. Then all fixed points of tu are on $c_t c_u$, with the possible exception of $A_t \cap A_u$.
- (ζ) ([4], (3.5).) Let p be an odd prime, and let M be an elementary abelian p-subgroup of G inverted by the involutory homology t. Write $N=N_G(M)$. Then one of the following holds.
 - 1. All centers of involutions in $\langle t \rangle M$ coincide, and N fixes c_t (or dually).
- 2. There are two involutions in $\langle t \rangle M$ having different centers and axes, and all centers of involutions in $\langle t \rangle M$ lie on a line fixed by N.
- 3. p=3, and each $m \in M \{1\}$ fixes exactly three points, which are non-collinear and are permuted transitively by M.

- 4. M fixes exactly three points x, y, z, which are non-collinear; $x^t = x$, $y^t = z$, and N induces S_3 on $\{x, y, z\}$.
- (η) (Frattini argument.) If $H \subseteq G$ and P is a Sylow subgroup of H, then $G = HN_G(P)$.
- (0) ([3], p. 180.) If P is a p-group (where p > 2) and t is an involution normalizing P, then $P = C_P(t)[P, t] = [P, t]C_P(t)$. Here, $C_P(t)$ and $[P, t] = \langle [g, t] | g \in P \rangle$ are $N_G(P) \cap C_G(t)$ -invariant.
- (i) ([3], p. 240.) If P is a Sylow subgroup of G, and if $a, b \in Z(P)$ are conjugate in G, then they are conjugate in $N_G(P)$.
- (x) Let t be an involution acting on a group H of odd order. Suppose t normalizes a p-subgroup P of H. Then t normalizes a Sylow p-subgroup of H containing P. (Proof. Let $Q \ge P$ be a p-group maximal with respect to being normalized by t. Then $N_H(P)^t = N_H(P)$. Since $N_H(P)$ has an odd number of Sylow p-subgroups, t normalizes one of them. The maximality of P now implies that it is Sylow in $N_H(P)$, and hence in H.)
- (λ) (Glauberman's Z^* -theorem [2].) Let t be an involution in G. Then, $t \in Z^*(G)$ if and only if $tt^g = t^g t$ and $g \in G$ imply $t^g = t$.

3. Proof of the theorem

Let G be as in the theorem. We will use the following notation:

 $\langle t, u \rangle$ is a Klein group generated by homologies, where $t \in \mathbb{Z}^*(G)$;

 $S \ge \langle t, u \rangle$ is a Sylow 2-subgroup of G; and

 $c=c_t, A=A_t$

We begin with a general group-theoretic remark.

LEMMA 1. Suppose $H \le G$ and G = O(G)H. Let H^* be the subgroup generated by the involutory homologies in H. Then $G/O(G) \approx H^*/O(H^*)$.

Proof. Since $0(G)0(H^*) \underline{\triangleleft} G$, we have $0(H^*) = 0(G) \cap H^*$. Each element of H is a product of involutory homologies mod 0(G) and hence also mod 0(H). Thus, $H = 0(H)H^*$, so $G = 0(G)0(H)H^* = 0(G)H^*$. This implies the lemma.

- LEMMA 2. (i) t is the unique involutory homology in Z(S).
 - (ii) $A = A_t$ is the unique fixed line of S (and dually).
- *Proof.* (i) Deny! By (α) , if $u \neq t$ is another involutory homology in Z(S), then $S \langle t, u \rangle$ contains no involutory homologies. Since S is Sylow and $N_G(S)$ fixes t, it also fixes u and tu by (ι) . Then $u \in Z^*(G)$ by (λ) . Thus, $G \succeq O(G) \langle t, u \rangle$, so $G = O(G) \langle t, u \rangle$, contrary to the hypotheses of the theorem.
- (ii) Suppose S fixes $L \neq A_t$. Then $\langle t, u \rangle$ fixes L, so $L = A_u$ or A_{tu} . In either case, this contradicts (i).

LEMMA 3. Let G be as in the theorem. Suppose G fixes a line L. Then L is the axis A of t, and $G=TC_G(t)$ with T=[G,t] a group of elations having axis A.

Proof. By Lemma 2, L=A. Let $g \in O(G)$. Then $[g, t]=t^g t$ is an elation with axis A (by (α) and (δ)). Thus, [O(G), t] consists of elations having axis A. By (θ) , $G = [O(G), t] C_{O(G)}(t) \cdot C_G(t) = C_G(t) [O(G), t]$. This proves the lemma.

Let G and \mathcal{P} yield a counterexample to the theorem with |G| minimal. By Lemma 3, G moves all points and lines.

We will obtain a contradiction in a series of steps.

(I) G has no normal subgroup H such that $u \in H$ and $t \notin H$.

Proof. Suppose H exists. By (β) there is an involutory homology in $Z(S \cap H)$. This contradicts Lemma 2(ii).

(II) The following situation cannot occur: $S = \langle u, v \rangle X \triangleright X$ with u and v involutory homologies, $|\langle uX, vX \rangle| = 4$ or 8, and X planar.

Proof. Suppose $S = \langle u, v \rangle X$ has these properties. We will show that $\langle u, v \rangle 0(C_G(t))/\langle t \rangle 0(C_G(t)) \leq Z^*(C_G(t)/\langle t \rangle 0(C_G(t)))$. Once this is known, we will have $\langle u, v \rangle 0(C_G(t)) \leq C_G(t)$, so $\langle u, v \rangle 0(C_G(t)) 0(G) \leq C_G(t) 0(G) = G$. But G is generated by O(G) and involutory homologies, and (as we will show) $\langle u, v \rangle$ contains all involutory homologies in S. Thus, $G = \langle u, v \rangle O(G)$, and this contradicts one of the hypotheses of the theorem.

By (γ) , all centers and axes of involutions in $\langle u, v \rangle$ are in the fixed point subplane \mathscr{P}_0 of X. By (α) , $\langle u, v \rangle$ centralizes X. Also by (α) , all involutions in $\langle u, v \rangle$ are homologies, so $\langle u, v \rangle \cap X = 1$ and hence $|\langle u, v \rangle| = 4$ or 8. Since t centralizes a Klein group in $\langle u, v \rangle$, by (α) t must be in $\langle u, v \rangle$.

Suppose $h \in S$ is an involutory homology. Then h induces an involutory homology of \mathscr{P}_0 . Hence, h agrees on \mathscr{P}_0 with some involution $h' \in \langle u, v \rangle$. Now $hh' \in X \leq C_S(h')$. Thus, hh' is 1 or an involution. But $hh' \in X$, so h = h'. Consequently, $\langle u, v \rangle$ contains all involutory homologies in S.

In particular, if $u^g \in S$ with $g \in C_G(t)$, then $u^g \in \langle u, v \rangle$. If $u^g \in \langle t, u \rangle$ whenever $u^g \in S$, then $u \langle t \rangle 0(C_G(t)) \in Z^*(C_G(t)/\langle t \rangle 0(C_G(t)))$ by (λ). Thus, the only situation left to consider is: $|\langle u, v \rangle| = 8$, and $u^g \notin \langle t, u \rangle$ for some $g \in C_G(t)$.

Since $\langle u, v \rangle$ has exactly two Klein groups, $\langle t, u \rangle^g = \langle t, v \rangle$. Also, $\langle t, u \rangle = \langle u, v \rangle$, so $N_G(\langle t, u \rangle)$ and $N_G(\langle t, v \rangle)$ contain S. Then $N_G(\langle t, u \rangle)^g = N_G(\langle t, v \rangle)$ implies that $S^g = S^{n-1}$ for some $n \in N_G(\langle t, v \rangle)$. Then $gn \in N_G(S)$ and $\langle t, u \rangle^g = \langle t, v \rangle$, so we may replace g by gn.

Since $\langle u, v \rangle$ contains all involutory homologies in S and g normalizes S, g also normalizes $\langle u, v \rangle$. Now $\langle t, v \rangle^g = \langle t, u \rangle$, so $\langle t, u \rangle^{g^2} = \langle t, u \rangle$. Thus, g has even order. Let $\langle g' \rangle$ be the Sylow 2-subgroup of $\langle g \rangle$. Then g' normal-

izes S, so $g' \in S$. However, $\langle t, u \rangle^{g'} = \langle t, v \rangle$, so this is impossible. This proves (II).

(III) We may assume that \mathscr{P} is the subplane of \mathscr{P} generated by $c^{0(G)}$.

Proof. First, suppose $c^{0(G)}$ does not generate a subplane \mathscr{P}^* of \mathscr{P} . Since $c^{0(G)}$ is invariant under $G = C_G(t)O(G)$, it is not contained in a line. Similarly, $c^{0(G)}$ cannot have three or more collinear points. Thus, $c^{0(G)}$ is a triangle $\{c, d, e\}$. Note that t cannot fix d (if it did, t would normalize G(d) and hence commute with some conjugate of itself having center d, which is impossible since $t \in Z^*(G)$). Thus, $G \triangleright G_{cde}$ and $|G/G_{cde}| = 6$, where $t \notin G_{cde}$. However, $\langle t, u \rangle \cap G_{cde} \neq 1$, so this contradicts (I).

This provides us with \mathscr{P}^* . Clearly G acts on \mathscr{P}^* , inducing the collineation group $G^* = G/K$, where K is the pointwise stabilizer of \mathscr{P}^* . By (γ) , each involutory homology in G is also an involutory homology of \mathscr{P}^* , and $(by (\alpha))$ centralizes K. Also, G^* fixes no point or line of \mathscr{P}^* .

If K=1, there is nothing to prove. Thus, suppose $K\neq 1$. Then $|G^*|<|G|$, so the minimality of |G| implies that $G^*/0(G^*)$ is dihedral of order 4 or 8. Consequently, $S=\langle u,v\rangle(S\cap K)$ with u and v involutory homologies. This contradicts (II).

(IV) G has a nontrivial normal p-subgroup for some odd prime p.

Proof. Deny! For each prime $p \mid |0(G)|$, there is a Sylow p-subgroup P of 0(G) normalized by S. (For, 0(G) has an odd number of Sylow p-subgroups.) By the Frattini argument, $G=0(G)N_G(P)=0(G)(N_G(P)\cap C_G(t))$. If P fixes $A=A_t$ for each p and P, then so does 0(G) and hence also $G=0(G)C_G(t)$.

Thus, we can find P and P such that P moves A. Let H be the subgroup generated by the involutory homologies of $N_G(P)$. By Lemma 1, $G/O(G) \approx H/O(H)$. Also, $H \ge [P, t]$, where $P_1 = [P, t]$ moves A since $P = C_P(t)[P, t]$ does (see (0)). If H moves each point, then H = G by the minimality of G, so (IV) holds. Thus, H must fix a point – and hence must fix C by Lemma 2(ii). Consequently, $P_1 \le G(C)$ by the dual of Lemma 3.

Dually, there must a prime q and a Sylow q-subgroup Q of O(G) normalized by S such that Q fixes A and moves c. Then $Q_1 = [Q, t]$ also moves c, and $Q_1 \le G(A)$.

Since S normalizes Q_1 , while S fixes no point of A (by Lemma 2(ii)), $Q_1(x, A) \neq 1$ for at least two points $x \in A$. Hence, the group of elations with axis A is an elementary abelian q-group. Dually, the group of elations with center c is an elementary Abelian p-group. In particular, t inverts both P_1 and Q_1 .

Let E be the group of all elations in $O(G) \cap G(A)$. By (x), E is contained

in a Sylow p-subgroup of O(G) normalized by t. Hence, we may assume that $E=P_1$. In particular, $C_G(t)$ normalizes P_1 . Dually, we may assume that Q_1 consists of all elations in G(c), and then $C_G(t)$ normalizes Q_1 .

Let $r \neq p$, q be a prime, and R a Sylow r-subgroup of O(G) normalized by t. By what has already been proved, R must fix c and A, and hence centralize t by (α) . Since each r-subgroup of O(G) normalized by t is contained in a Sylow r-subgroup of O(G) normalized by t (see (α)), it follows that t inverts no nontrivial r-element of O(G).

We now wish to count the number of conjugates of t. Let $t' \in t^G - \{t\}$, and consider tt'. Since t inverts tt', necessarily $|tt'| = p^{\alpha}q^{\beta}$ for some α and β . If $\beta = 0$, then tt' is contained in a Sylow p-subgroup of O(G) normalized by t, so tt' is an elation in $O(G) \cap G(c)$, and hence $tt' \in P_1$. Similarly, if $\alpha = 0$ then $tt' \in Q_1$. Finally, suppose $\alpha \ge 1$ and $\beta \ge 1$. Then $\langle tt' \rangle \cap P_1 \ne 1$ and $\langle tt' \rangle \cap Q_1 \ne 1$ so $\langle tt' \rangle \cap P_1$ fixes the axis A of $\langle tt' \rangle \cap Q_1$. Since $\langle tt' \rangle \cap P_1$ consists elations with center $c \notin A$, this is impossible.

Thus, $t^G = tP_1 \cup tQ_1$, so $|G:C_G(t)| = |P_1| + |Q_1| - 1$. We know that $C_G(t)$ normalizes P_1 , and $C_G(t) \cap P_1 = 1$. Thus, $|P_1| = |P_1C_G(t):C_G(t)|$ divides $|P_1| + |Q_1| - 1$, so $|P_1|$ divides $|Q_1| - 1$. Similarly, $|Q_1|$ divides $|P_1| - 1$. This is absurd.

(V) G has a normal elementary Abelian subgroup not centralized by t.

Proof. By (IV), G has a normal elementary Abelian subgroup $N \neq 1$. Here, $N \leq C_G(t)$. For, if $N \leq C_G(t)$ then $N \leq C_G(t^g)$ for all $g \in O(G)$, and then N must fix each point in the generating set $c^{O(G)}$ of \mathscr{P} (see (III)).

(VI) $G = MC_G(t)$, where M is a minimal normal elementary Abelian p-subgroup of G inverted by t.

Proof. Let M be a nontrivial elementary Abelian p-subgroup of G normalized by $C_G(t)$, not centralized by t, contained in a normal elementary Abelian p-subgroup of G, and minimal with respect to these properties; by (V), M exists. By (θ) , $M = C_M(t) \times [M, t]$, where $[M, t] = \{m \in M \mid m^t = m^{-1}\}$ is a nontrivial $C_G(t)$ -invariant subgroup. Thus, M = [M, t] is inverted by t.

Suppose M moves A and C. Then so does $H=MC_G(t)$. By Lemma 2(ii), H moves every line. By Lemma 1, $H/O(H) \approx G/O(G)$. The minimality of |G| now implies that H=G.

Suppose now that M fixes A. Then $M\langle t \rangle = \langle t^M \rangle \leq G(A)$. By (δ), M consists of elations. Let $M \leq N \leq G$ with N Abelian. Then N fixes A. Take any $g \in G$ such that $A^g \neq A$. Then $M^g \leq N \cap G(A^g)$ fixes A, so that $z = A \cap A^g$ is the center of all elements of M^g . Similarly, $M \leq G(z, A)$. Thus, $\langle M^g \mid g \in G \rangle \leq G(z)$, where $\langle M^g \mid g \in G \rangle$ is normal in G. It follows that G must fix z, and this contradicts Lemma 3.

(VII) If $t' \in tM - \{t\}$, then $A_t \neq A_{t'}$ and $c_t \neq c_{t'}$.

Proof. Suppose $A_t = A_{t'}$. By (δ), $tt' \in M$ is an elation with axis A_t . Hence, $C_G(tt') \ge M$ fixes A_t , so $G = MC_G(t)$ also does.

Completion of the Proof

By (I), $u \notin C_G(M)$ and $tu \notin C_G(M)$. By (θ), it follows that $C_M(u) \neq 1$ and $C_M(tu) \neq 1$ (since t inverts M). Let $1 \neq m \in C_M(u)$, and write m = tt' with $t' \in t\langle m \rangle$. By (VII) and (ε), all fixed points of m are on $L = c_t c_{t'}$, except possibly for $x = A_t \cap A_{t'}$.

Since $N_G(M) = G$, Lemma 3 and (ζ) imply that either (a) each element of $M - \{1\}$ fixes exactly three points, which are non-collinear and are permuted transitively by M, or (b) M fixes exactly three points x, y, z, which are non-collinear, are not all fixed by t, but are such that G fixes $\{x, y, z\}$.

Here, (b) leads to the same contradiction as in the first part of the proof of (III). Thus, (a) must hold. In particular, m fixes just three points x, y, z, and M fixes $\{x, y, z\}$. Moreover, y, $z \in L$ and $x \notin L$.

Since u centralizes $\langle t, m \rangle = \langle t, t' \rangle$, u fixes $x, c_t, c_{t'}, A_t \cap L$, and $A_{t'} \cap L$. Thus, $L = A_u$ and $x = c_u$. It follows from (a) that $M_x = C_M(u)$, where $|M: M_x| = 3$.

Similarly, there is a point x^* such that $M_{x*} = C_M(tu)$ and $|M:M_{x*}| = 3$. But $C_M(u) \cap C_M(tu) = 1$ since t inverts M. Thus, |M| = 9.

It follows that $G/C_G(M)$ is isomorphic to a subgroup of GL(2, 3), where $C_G(M) = M(C_G(t) \cap C_G(M))$. Here $C_G(t) \cap C_G(M)$ fixes each point of $c^M = c^G$ (since $G = C_G(t)M$). Thus, $C_G(t) \cap C_G(M) = 1$ by (III), so $C_G(M) = M$. Hence, G/M is isomorphic to a subgroup of GL(2, 3).

Since M is a minimal normal subgroup of G, G/M acts irreducibly on M. Also, G/M is generated by its involutions, and has order > 8, so we must have $G/M \approx GL(2, 3)$. Let $g \in C_G(t)$ have order 3 and be normalized by $\langle t, u \rangle$. Then $g^u = g^{-1}$. We may assume that g centralizes $\langle m \rangle = C_M(u)$ (as otherwise, g would centralize $C_M(tu)$). Then $\langle g, t, u \rangle$ fixes the set $\{x, y, z\}$ of fixed points of m, where $x = c_u$ and $yz = A_u$. Clearly, t fixes x. But t cannot fix y and z, as $m \notin C_G(t)$ (see (α)). Thus, $y^t = z$. Also, g cannot fix x (as otherwise g would fix c_u and A_u , contrary to (α)). It follows that $\langle t, g \rangle$ induces a subgroup of S_3 on $\{x, y, z\}$ with t and g acting nontrivially and commuting. This is ridiculous.

Proof of Corollary 1. By Lemma 2(i), $\langle t \rangle 0(G) \triangleleft H$, so $H = 0(G) C_H(t) = TC_{0(G)}(t) C_H(t) = TC_H(t)$.

Proof of Corollary 2. Set H=SX, so X=0(H). If S has involutory homologies having different axes, then Corollary 1 applies.

Suppose commuting involutory homologies always have the same center and axis. By (β) , Z(S) contains an involutory homology t. We will show that X fixes c_t and A_t . Suppose $g \in X$ moves c_t , and consider S^g . By hypothesis, there is an involutory homology $u \in S^g$ not conjugate to t^g in S^g , and hence in H. Then $\langle t, u \rangle$ has an involution v commuting with t and u. Clearly, v is a homology. Thus, $c_t^g = c_u = c_v = c_t$, which is not the case.

COROLLARY 3. Let S be a 2-group of collineations of a projective plane. Assume that S is dihedral of order 16, and that one of its dihedral subgroups of order 8 is generated by two involutory homologies having different axes. If S normalizes a collineation group X of odd order, then SX fixes a point or a line (both, if X contains no nontrivial elations).

Even when S contains Baer involutions, Corollary 3 can be proved in exactly the same manner as the theorem.

4. CONCLUDING REMARKS

The proof of the theorem used all of S primarily to deal with the case where t inverts some element of order 3. It is straightforward to further modify the proof in order to deal with this case when $S = \langle t \rangle$, if one is willing to accept weaker conclusions (such as G having an orbit of length 1, 3 or 9).

BIBLIOGRAPHY

- 1. Dembowski, P., Finite Geometries, Springer, Berlin-Heidelberg-New York, 1968.
- 2. Glauberman, G., 'Central Elements in Core-Free Groups', J. Algebra 4 (1966), 403-420.
- 3. Gorenstein, D., Finite Groups, Harper, New York 1968.
- 4. Kantor W.M., 'On the Structure of Collineation Groups of Finite Projective Planes' (to appear).

Author's address:

William M. Kantor, University of Oregon, Eugene, Ore. U.S.A.

(Received January 8, 1974)