WILLIAM M. KANTOR

THE EXISTENCE
OF TRANSLATION COMPLEMENTS*

1. INTRODUCTION

Let 2 be a (possibly infinite) projective plane, and G a collineation group
of #. Suppose temporarily that £ is a translation plane with respect to 7.,
and @ is the group of collineations fixing L. Then G=TG,, where T is the
translation group with respect to L, and x is an affine point. If, moreover,
the characteristic of # is not 2, then G.=Cg(#) and G=TC,(¥), where ¢ is
an involutory homology with center x.

In this note we will consider a sort of converse of these facts. Take a finite
collineation group G generated by involutory homologies, where # is apain
any projective plane. We will assume that & has an involutory homology ¢
whose behavior resembles that of the ¢ in the preceding paragraph, and then
deduce the existence of a factorization G=TC;(7) as above.

The precise statement is as follows. Let 0(G) denoie the largest normal
subgroup of G of odd order. Define Z¥(G)=MG) by: Z*(G)/0{G) is the
center of G/O(G).

THEOREM. Let G be a finite collineation group of a projective plane which
is generated by OG) and involutory hemologies. Suppose G has a Kiein sub-
group generated by homologies having different axes, but that GIOG) is not
dihedral of order 4 or 8, Assume further that Z*(G) coniains an involurory
homology t. Then G=TC;(t), where T<1 G is a (possibly trivial) group of
elations, all having the same center as t or the same axis as 1.

In particular, G fixes a point or a line. This is not at all obvious — and,
in fact, easily implies the theorem. Another way of looking at the theorem
is that Cg(r) must contain most of G.

This result is similar in statement and proof to [4], Theorem A(iv). That
result considered the situation where the hypothesis 1& Z*(G) is replaced by:
Z*(G) contains no involutory homology. However, neither result implies
the other.

The proof is relatively elementary. For example, it does not involve the
solvability of groups of odd order: the only deep group-theoretic fact
required is Glaoberman’s Z*-theorem [2].

The proof is somewhat simplified if ¢ contains no Baer involution and is
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solvable. The solvable case is, however, a very interesting and unexpected
case, as can be seen from the second corollary.

COROLLARY 1. Let H be a collineation group of a projective plane. Suppose
that the involutory homologies in H generate a finite group G satisfying the
conditions of the theorem. Then H=TC; (f).

COROLLARY 2. Let S be a (finite) 2-group of collineations of a projective
Dplane containing two involutory homologies generating a group of order at
least 16. If S normalizes a collineation group X of odd ovder, then SX fixes a
point or ¢ line (both, if X contains no nontrivial elations).

2. BACKGROUND

Let 2 be a projective plane. If g#1 is a perspectivity, ¢, and A, will denote
its center and axis. Let G be a finite collineation group of #. If ¢ is a point,
and A4 is a line, then G(c) (or G(A)) is the group of perspectivities in G with
center ¢ (or axis 4); also, G{c, A=G(c) N G(A4).

We will need the following facts,

(o} (See [4], (3.1), (3.2)) Let {t,u><G be a Klein group with 7 and u
homologies having different axes. Then tu is a homology; ¢ is the only
involutory homology in G{c,, A,); each collineation fixing ¢, and A, central-
izes ¢; G has no elementary abelian subgroup of order 8 generated by
homologies; and & has no Klein group {¢', #'> with 4, =A4,..

#) ([41, (3.3).) If S<G is a 2-group, and § contains an involutory homo-
logy, then so does Z(8).

(y) If a perspectivity fixes a subplane, then its center and axis are in that
subplane.

(&) ([11, p. 120.) Let ¢ and u be involutory homologies in G(L) with ¢,#¢,.
Then tue G(Lneey, L)

() Let f and 2 be involutory homologies with ¢,%¢, and 4,7 4,. Then
all fixed points of tu are on ¢,c,, with the possible exception of 4,1 4,.

(X) ([4], (3.5).) Let p be an odd prime, and let M be an elementary abelian
p-subgroup of G inverted by the involutory homology 1. Write N=Ng(M).
Then one of the following holds.

1. All centers of involutions in {t)M coincide, and & fixes ¢, (or dually).

2. There are two involutions in {¢>M having different centers and axes,
and all centers of involutions in {f>M lic on a line fixed by N.

3. p=3, and each meM—{1} fixes exactly three points, which are non-
collinear and are permuted transitively by M,
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4, M fixes exactly three points x, y, z, which are non-collinear; x'=x,
¥ =2z, and N induces §; on {x, y, z}.

() (Frattini argument.) If 74 G and P is a Sylow subgroup of H, then
G=HN;(P).

(9) ([3], p. 180.) If P is a p-group (where p>2) and ¢ is an involution
normalizing P, then P=Cu)[P, t]=[2, t]1Cp(¥). Here, Cp(f) and [P, 1]
={[g, 11| ge P> are N5(P) Cg(f)-invariant.

() (31, p. 240.) If P is a Sylow subgroup of G, and if g, b Z(P) are
conjugate in G, then they are conjugate in N (P).

(x) Let t be an involution actiog on a group H of odd order. Suppose ¢
normalizes a p-subgroup P of H, Then ¢ normalizes a Sylow p-subgroup of
containing P. (Proof. Let Q= P be a p-group maximal with respect to being
normalized by ¢. Then Nyx(P)' = Nyx(P). Since Ny(P) has an odd number of
Sylow p-subgroups, ¢ normalizes one of them. The maximality of P now
implies that it is Sylow in N {P), and hence in H.)

() (Glavberman’s Z*-theorem [2].) Lel 7 be an involution in G. Then,
te Z*(G) if and only if 1###=1% and geG imply 7 =1,

3, PROOF OF THE THEOREM

Let & be as in the theorem. We will use the following notation:
{t, uy is a Klein group generated by homologics, where e Z*(G);
8= {1, uy is a Sylow 2-subgroup of ; and
c=c;, A=4,.
We begin with a general group-theoretic remark.

LEMMA 1. Suppose H< G and G=0(G) H. Let H* be the subgroup generaied
by the involutory homologies in H. Then GIO(G)= H* JO(H™).

Proof. Since GO(H*)AG, we have O0(H*)=0(G)n H*, Each clement
of H is a product of involutory homologies mod((G) and hence also
mod OCH). Thus, H=0(H)H*, so G=0(G)0(I) H*=0(G) H*. This implies
the lemma,

LEMMA 2. (i) ¢ is the unique involutory homology in Z{S).

(ii) A=A, is the unigue fixed line of S (and dually).

Proof. (i) Deny! By (&), if ##1 is another involutory homology in Z(S),
then S—<¢, u> contains no involutory homologies. Since § is Sylow and
Ng(8) fixes 1, it also fixes u and #fw by (). Then veZ*(G) by (3). Thus,
GE0(G) (¢, u>, so G=0(G) <z, u), contrary to the hypotheses of the theorem.

(ii) Suppose S fixes L# A4,. Then <¢, u} fixes L, so L= A,, or A,,. In either
case, this contradicts (i).
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LEMMA 3. Let G be as in the theovem. Suppose G fixes a line L. Then L is
the axis A of t, ond G=TCg{t) with T=[G, 1] a group of elations having
axis A.

Proof. By Lemma 2, L=4A4. Let ge0(G). Then [g, {]=1% is an elation
with axis 4 (bv («) and (3)). Thus, [(G), ?] consists of elations having
axis 4. By (), G=[0(G), t]Co, (1) C6{t) = Co(I[(G), £]. This proves the
lemma.

Let G and # yield a counterexample to the theorem with |G| minimal.
By Lemma 3, G moves all points and lines.

We will obtain a contradiction in a series of steps.

(D) G has no normal subgroup H such that uc H and t¢ H.
Proof. Suppose H exists. By (P) there is an involutory homology in
Z(S~ H). This contradicts Lemma 2(ii).

(ID) The jollowing situation cannot occur: S=<{u, vy X> X with u and v in-
volutory homelogies, |{uX, vX =4 or 8, and X planar,

Proof. Suppose S={u,v>X has these properties. We will show that
Lu, 0 0(Cu(D)] D WD) < Z*(Co(D{HO(Ce(?). Once this is known, we
will have (u, 03 0(Cg()) A1), so {u, 03 0(Co(DU(G) L Co(HNG)=G. But
G is generated by 0(G) and involutory homologies, and (as we will show)
{u, v> contains all involutory homologies in S. Thus, G=<u, v>0(G), and
this contradicts one of the hypotheses of the theorem.

By (y), all centers and axes of involutions in {u, #) are in the fixed point
subplane #, of X. By (=), {(u, v} centralizes X. Also by («}, all involutions
in {u, v> are homologies, so {u, v> N X=1 and hence |{w, v;|=4 or &
Since ¢ centralizes a Klein group in (i, v, by (o) ¢ must be in {w, v).

Suppose k€S is an involutory homology. Then % induces an involutory
homology of #,. Hence, /i agrees on &, with some involution # ey, v).
Now Al e X< Cs(h). Thus, ki is 1 or an involution. But Ah'eX, so h=H'.
Consequently, {u, v contains all involutory homologies in S.

In particular, if u¢e S with ge Cg(f), then 2y, v5>. If 19 e{s, u) whenever
weS, then uli>0(Ce))eZ*(Co(D)/{H0(Cs(M)) by (3). Thus, the only
situation left to consider is: |{w, v)| =8, and w9¢{z, #> for some geCs(t).

Since {u, v has exactly two Klein groups, {¢, uy?={t, v>. Also, {f, u)
<{u, vy, 50 Ng(Khud) and Ng({t,v)) contain S. Then Ng({f, u)?
= N,(<1, v) implies that $7=S"" for some ne N¢({t, v»). Then gne N(S)
and (¢, ud9" =<1, v}, so we may replace g by gn.

Since {w, v contains all involutory homologies in S and g normalizes S,
g also normalizes {u, vy. Now {f, v)'={, ud, so I, u>”2=<t, uy. Thus,
2 has even order. Let {g"> be the Sylow 2-subgroup of {g>. Then g’ normal-
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izes S, so g’'eS. However, {t, ud¥ ={t, v}, so this is impossible. This
proves (1),

(ITTy We may assume that P is the subplane of & generated by ¢*@.

Proof. First, suppose ¢°(® does not generate a subplane #* of #. Since
@ Is invariant under G= Cgx(2)(G), it is not contained in a line. Similarly,
¢ cannot have three or more collinear points. Thus, %% is a triangle
{e, d, e}. Note that ¢ cannot fix 4 (if it did, 7 would normalize G{d) and hence
commute with some conjugate of itself having center 4, which is impossible
since teZ*(®)). Thus, GI> G, and |G/G.|=06, where 1¢G.,,. However,
{t, uy N Goge# 1, so this contradicts (L).

This provides us with #*, Clearly G acts on #*, inducing the collineation
group G*=G/K, where K is the pointwise stabilizer of ##*, By (v), each
involutory homology in G is also an involutory homology of #*, and (by ()
centralizes K, Also, G* fixes no point or line of 2#*,

If K=1, there is nothing to prove. Thus, suppose K#1. Then |G*| <|G],
so the minimality of |G} implies that G*/0(G*) is dihedral of order 4 or 8.

Consequently, S=<{u, v)(SnK) with » and vz involutory homologies.
This contradicts (II).

(IV) G has a nonirivial normal p-subgroup for some odd prime p.

Proof. Deny! For each prime p | |0{G)], there is a Sylow p-subgroup P
of 0(G) normalized by S. (For, 0(G) has an odd number of Sylow p-sub-
groups.) By the Fratlini argument, G=0{G)Ns(P)=0(G)(Ng(P) Cl1)).
If P fixes A=A, for each p and P, then so does 0(G) and hence also
G=00G) C(1).

Thus, we can find p and P such that P moves A. Let H be the subgroup
generated by the involutory homologies of N;(P). By Lemma 1, G/0(G)
~ HIO(H). Also, H>[P, 1], where P, =[P, {] moves A since P=Cp(t)[P, 7]
does (see (). If H moves each point, then =G by the minimality of G,
so (1V) holds. Thus, H must fix a point — and hence must fix ¢ by Lemma 2(i1).
Consequently, P, <G(c) by the dual of Lemma 3.

Dually, there must a prime g and a Sylow g-subgroup @ of 0(G) normalized
by S such that @ fixes 4 and moves ¢. Then @, =[@, 1] also moves ¢, and
0, <G(4).

Since S normalizes @y, while S fixes no point of 4 (by Lemma 2(i)),
Q(x, A)#1 for at least two points xe 4, Hence, the group of elations with
axis A is an elementary abelian g-group. Dually, the group of elations with
center ¢ is an elementary Abelian p-group. In particolar, ¢ inverts both P,
and Q,.

Let E be the group of all elations in 0{(G) n G{4). By (x), E is contained
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in a Sylow p-subgroup of 0(() normalized by ¢. Hence, we may assume
that £=2,. In particalar, Cs(f) normalizes £;. Dually, we may assume
that @, consists of all elations in G{¢), and then Cg(r) normalizes O, .

Let r#p, ¢ be a prime, and R a Sylow #-subgroup of 0{G) normalized by ¢
By what has already been proved, R must fix ¢ and A, and hence centralize ¢
by (). Since each r-subgroup of 0(G) normalized by ¢ is contained in a
Sylow r-subgroup of 0(G) normalized by 7 (see (x)), it follows that # inverts
no nontrivial #-element of 0(GY.

We now wish to count the number of conjugates of ¢. Let ¢'st%— {1},
and consider #’, Since ¢ inverts #t', necessarily |¢t'| =p®¢® for some x and S.
If §=0, then # is contained in a Sylow p-subgroup of 0(G) normalized by ¢,
so #t' is an elation in 0(G) N G(c), and hence #'e P, . Similarly, if x=0 then
tf'e@, . Finally, suppose & >1 and f#>1. Then {##'>nP;#1 and {if'> nQ,
#1 so {it'>n P, fixes the axis 4 of {(#'>nQ,. Since {¢'y NP, consisis
elations with center ¢¢ 4, this is impossible.

Thus, 1S=tP, u1t0,, so |G:Ce(t)|=|P;|+]0Q,|—1. We know that Cg(5)
normalizes P,, and Cg(t)nP;=1. Thus, [Py!|=|P,Ce(r):Ce(f)] divides
|P]-+12:]1-1, so |Py] divides [@.]—1. Similarly, |Q,| divides [#,]—1. This
is absurd.

(VY G has a normal elementary Abelian subgroup not centralized by t.

Proof. By (IV), G has a normal elementary Abelian subgroup N# 1.
Here, N£Cg(r). For, if N< Cy(?) then N< Co(#9) for all ge((G), and then &N
must fix each point in the generating set ¢®@ of # (see (IIL)).

(VD) G=MCs(?), where M is a minimal normal elementory Abelian p-sub-
group of G inverted by 1.

Proof. Let M be a nontrivial elementary Abelian p-subgroup of ¢ normal-
ized by C,(?), not ceniralized by ¢, contained in a normal elementary Abelian
p-subgroup of G, and minimal with respect to these properties; by (V),
M exists. By (8), M=C, () % [M, t], whete [M, f]={meM | m'=m~'}isa
nontrivial Cg(f)-invariant subgroup. Thus, A =[M, ] is inverted by i.

Suppose M moves 4 and ¢, Then so does H=MCq(f). By Lemma 2(ii),
H moves every line. By Lemma 1, H/0(H)~ G/0(G). The minimality of |G|
now implies that A/ =G.

Suppose now that M fixes 4. Then M(t) = {t") < G(A). By (8), M consists
of elations. Let M <N <G with N Abelian. Then N fixes 4. Take any geG
such that A9# A. Then M?<NnG(4% fixes 4, so that z=4n A% is the
center of all elements of MY Similarly, M<G(z, 4). Thus, (M?|geG)
< G(z), where {M?| ge G is normal in G. It follows that G must fix z, and
this contradicts Lemma 3.
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(VIL) If t'etM —{t}, then A,# A, and ¢, #¢,..
Proof. Suppose A,=4,.. By (8), it'e M is an elation with axis 4,. Hence,
Co(tt) = M fixes 4,, so G=MCg(?) also does.

Completion of the Proof

By (D), u¢Ce(M) and tugCs(M). By (0), it follows that Cp(uw)#1 and
Ca(t)#1 (since ¢ inverts M). Let 1#meCy(u), and write m=1#" with
t'et{my, By (VI) and (&), all fixed points of m are on L=c,c,., except
possibly for x=A,n A,..

Since Ng(M)=G, Lemma 3 and (%) imply that either (a) each element of
M —{1} fixes exactly three points, which are non-collinear and are permuted
transitively by M, or (b) M fixes exactly three points x, y, z, which are non-
collinear, are not all fixed by #, but are such that G fixes {x, y, z}.

Here, (b) leads to the same contradiction as in the first part of the proof
of (TTT). Thus, (a) mast hold. In particular, m fixes just three points x, ¥, z,
and M fixes {x, y, z}. Moreover, y, zeL and x¢L.

Since u centralizes {f, m>={t, t'>, u fixes x, ¢, ¢, A, L, and A,.-nL,
Thus, L=A4, and x=c¢,. It follows from (x) that M,=C(u), where
| M M| =3.

Similarly, there is a point x* such that M, =Cy(fu) and |M: M .|=3.
But Cp(tr) N Cp (tu) =1 since ¢ inverts M. Thus, |M]=9.

It follows that G/Cg(M) is isomorphic to a subgroup of GL(2, 3), where
Co(M)=M(Cs(t) n Cx(M)). Here Ca(t) n Co(M) fixes each point of ¢ =c®
(since G'=Cy(7) M), Thus, Celt) n Co(M)=1 by (III), so Ce(M)= M. Hence,
G/M is isomorphic to a subgroup of GL(2, 3).

Since M is a minimal normal subgroup of &, G/M acts irreducibly on M.
Also, G/ M is generated by its involutions, and has order > §, so we must have
G/M=~GL(2,3). Let g=Cg(f) have order 3 and be normalized by ¢, u).
Then g"=g~ 1. We may assume that g centralizes (m) = C,, () (as otherwise,
g would centralize C,,(zu)). Then (g, ¢, u) fixes the set {x, y, z} of fixed
points of m, where x=¢, and yz=A,. Clearly, ¢ fixes x. But ¢ cannot fix y
and z, as mg¢Cq(t) (see (x)). Thus, y'=z. Also, g cannot fix x (as otherwise g
would fix ¢, and A, contrary to (). It follows that <¢, g> induces a sub-
group of S5 on {x, », z} with ¢ and g acting nontrivially and commuting.
This is ridiculous.

Proof of Coreliary I. By Lemma 2(i), <O>WGQH, so H=0(G)Cyx®)
=TCo6)(?) Cult)=TCr(?).

Proof of Corollary 2. Set H=SX, so X=0(f). If § has involutory homolo-
gies having different axes, then Corollary 1 applies.
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Suppose commuting involutory homologies always have the same center
and axis. By (§), Z(%) contains an involutory homology ¢. We will show
that X fixes ¢, and A,. Suppose geX moves ¢,, and consider S¢. By hypo-
thesis, there is an involutory homology n€.8? not conjugate to ¢4 in 89, and
hence in H. Then {z, #) has an involution » commuting with ¢ and u, Clearly,
v is a homology. Thus, ¢?=¢,=c,=¢,, which is not the case.

COROLLARY 3. Ler S be a 2-group of collineations of a projective plane.
Assume that S is dihedral of order 16, and that one of its dihedral subgroups
of order 8 is generated by two imvolutory homologies having different axes.
If S normelizes a collineation group X of odd order, then SX fixes a point or
line (both, if X contains no nontrivial elations).

Even when § contains Baer involutions, Corollary 3 can be proved in
exactly the same manner as the theorem.

4, CONCLUDING REMARKS

The proof of the theorem used all of S primarily to deal with the case where
t inverts some element of order 3, It is straight{forward to further modify
the proof in order to deal with this case when § = {¢), if one is willing to
accept weaker conclusions {such as G having an orbit of length 1, 3 or 9).
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