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T H E  E X I S T E N C E  
OF T R A N S L A T I O N  C O M P L E M E N T S *  

1. INTRODUCTION 

Let ~ be a (possibly infinite) projective plane, and G a collineation group 
of ~ .  Suppose temporarily that ~ is a translation plane with respect to L, 
and G is the group of collineations fixing L. Then G=TGx, where T is the 
translation group with respect to L, and x is an affine point. If, moreover, 
the characteristic of ~ is not 2, then Gx= CG(t) and G=  TCa(t), where t is 
an involutory homology with center x. 

In this note we will consider a sort of converse of these facts. Take afinite 
collineation group G generated by involutory homologies, where ~ is again 
any projective plane. We will assume that G has an involutory homology t 
whose behavior resembles that of the t in the preceding paragraph, and then 
deduce the existence of a factorization G = TCa (t) as above. 

The precise statement is as follows. Let 0(G) denote the largest normal 
subgroup of G of odd order. Define Z*(G)>_O(G) by: Z*(G)/O(G) is the 
center of G/O(G). 

THEOREM. Let G be a finite eollineation group of a projective plane which 
is generated by O(G) and involutory homologies. Suppose G has a Klein sub- 
group generated by homologies having different axes, but that G/O(G) is not 
dihedral of order 4 or 8. Assume further that Z*(G) contains an involutory 
homology t. Then G = TC~ (t), where T <~ G is a (possibly trivial) group of  
elations, all having the same center as t or the same axis as t. 

In particular, G fixes a point or a line. This is not at all obvious - and, 
in fact, easily implies the theorem. Another way of looking at the theorem 
is that CG(t) must contain most of G. 

This result is similar in statement and proof to [4], Theorem A(iv). That 
result considered the situation where the hypothesis t~Z*(G) is replaced by: 
Z*(G) contains no involutory homology. However, neither result implies 
the other. 

The proof is relatively elementary. For example, it does not involve the 
solvability of groups of odd order: the only deep group-theoretic fact 
required is Glanberman's Z*-theorem [2]. 

The proof is somewhat simplified if G contains no Baer involution and is 
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solvable. The solvable case is, however, a very interesting and unexpected 
case, as can be seen from the second corollary. 

C O R O L L A R Y  1. Let H be a eollineation group of a projeetive plane. Suppose 
that the involutory homologies in H generate a tinge group G satisfying the 
conditions of  the theorem. Then H=TCn(O. 

C O R O L L A R Y  2. Let S be a (finite) 2-group of collineations of a projective 
plane containing two involutory homologies generating a group of  order at 
least 16. I f  S normalizes a collineation group X of odd order, then S g  fixes a 
point or a line (both, i f  X contains no nontrivial elations). 

2. BACKGROUND 

Let ~ be a projective plane. If g ~  1 is a perspectivity, e o and A o will denote 
its center and axis. Let G be a finite collineation group of ~ .  If  e is a point, 
and A is a line, then G(e) (or G(A)) is the group of  perspectivities in G with 
center c (or axis A); also, G(e, A)= G(e)c~ G(A). 

We will need the following facts. 
(0~) (See [4], (3.1), (3.2.) Let (t, u )<G be a Klein group with t and u 

homologies having different axes. Then tu is a homology; t is the only 
involutory homology in G(et, At); each collineation fixing et and At central- 
izes t; G has no elementary abelian subgroup of  order 8 generated by 
homologies; and G has no Klein group (t ' ,  u ' )  with At ,=Au, .  

(~) ([4], (3.3).) If  S <  G is a 2-group, and S contains an involutory homo- 
logy, then so does Z(S). 

(~) If  a perspectivity fixes a subplane, then its center and axis are in that 
subplane. 

(b) ([1], p. 120.) Let t and u be involutory homologies in G(L) with etv~eu. 
Then rue G (L n ctcu, L). 

(z) Let t and u be involutory homologies with ct#cu and A t ~ A u .  Then 
all fixed points of tu are on cte,, with the possible exception of  A t ~ Au. 

(~) ([4], (3.5).) Le tp  be an odd prime, and let M be an elementary abelian 
p-subgroup of G inverted by the involutory homology ~t. Write N =  N~(M). 
Then one of the following holds. 

1. All centers of  involutions in ( t ) M  coincide, and N fixes ct (or dually). 
2. There are two involutions in ( t ) M  having different centers and axes, 

and all centers of  involutions in ( t ) M  lie on a line fixed by N. 
3. p = 3 ,  and each mEM--{1} fixes exactly three points, which are non- 

collinear and are permuted transitively by M. 
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4. M fixes exactly three points x, y, z, which are non-collinear; xt=x, 
y = z ,  and Ninduces Sa on {x, y, z}. 

(-c~) (Frattini argument.) If H~G and P is a Sylow subgroup of H, then 
G=HNG(P). 

(0) ([3], p. 180.) If P is a p-group (where p>2)  and t is an involution 
normalizing P, then P =  Cp(t) [P, t] = [P, t] Cp(t). Here, Cp(t) and [P, t] 
= ([g, t ] lgsP)  are No(P)c~ CG(t)-invariant. 

(0 ([3], p. 240.) If P is a Sylow subgroup of G, and if a, b~Z(P) are 
conjugate in G, then they are conjugate in No(P). 

(×) Let t be an involution acting on a group H of odd order. Suppose t 
normalizes ap-subgroup P of H. Then t normalizes a Sylow p-subgroup of H 
containing P. (Proof Let Q_> P be a p-group maximal with respect to being 
normalized by t. Then Nn(P)t= Nn(P). Since Ntt(P) has an odd number of 
Sylow p-subgroups, t normalizes one of them. The maximality of P now 
implies that it is Sylow in NH(P), and hence in H.) 

(X) (Glauberman's Z*-theorem [2].) Let t be an involution in G. Then, 
t~Z*(G) if and only if ttg=tgt and g~G imply t°=t. 

3. P R O O F  OF THE THEOREM 

Let G be as in the theorem. We will use the following notation: 
(t, u) is a Klein group generated by homologies, where t~Z*(G); 
S>>_(t, u) is a Sylow 2-subgroup of G; and 
e=et, A=At.  
We begin with a general group-theoretic remark. 

LEMMA 1. Suppose H< G and G = O(G) H. Let H* be the subgroup generated 
by the invohttory homologies in H. Then G/O(G)~ H*/O(H*). 

Proof Since 0(G)0(H*)~G, we have O(H*)=O(G)nH*. Each element 
of H is a product of involutory homologies mod0(G) and hence also 
mod 0(H). Thus, H =  0(H) H*, so G = 0(G) 0(H) H* = 0(G) H*. This implies 
the lemma. 

LEMMA 2. (i) t is the unique involutory homology in Z(S). 
(ii) A =At is the unique fixed line of S (and dually). 
Proof (i) Deny ! By (~), if u ¢ t is another involutory homology in Z(S), 

then S - ( t ,  u) contains no involutory homologies. Since S is Sylow and 
No(S) fixes t, it also fixes u and tu by (0. Then u~Z*(G) by (;~). Thus, 
G~O(G) (t, u), so G = 0(G)(t, u), contrary to the hypotheses of the theorem. 

(ii) Suppose S fixes L~At .  Then (t, u) fixes L, so L=A,  or At,. In either 
case, this contradicts (i). 
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LEMMA 3. Let G be as in the theorem. Suppose G fixes a line L. Then L is 
the axis A of t, and G=TCa(t) with T=[G, t] a group of elations having 
axis A. 

Proof. By Lemma 2, L=A.  Let g~0(63. Then [g, t]=t°t is an elation 
with axis A (by (e) and (~)). Thus, [0(63, t] consists of elations having 
axis A. By (0), G = [0(63, t] Co(a)(t)" Ca(t) = Ca(t) [0(63, t]. This proves the 
lemma. 

Let G and ~ yield a counterexample to the theorem with [G[ minimal. 
By Lemma 3, G moves all points and lines. 

We will obtain a contradiction in a series of steps. 

(I) G has no normal subgroup H such that u~H and t~H. 
Proof. Suppose H exists. By (~) there is an involutory homology in 

Z(Sc~ H). This contradicts Lemma 2(ii). 

(II) The following situation cannot occur: S=<u, v> X~> X with u and v in- 
volutory homologies, I(uX, vX>l =4 or 8, and X planar. 

Proof. Suppose S = ( u , v > X  has these properties. We will show that 
<u, v> 0 (CG(t))/(t> 0 (Ca(t)) < Z* (Ca(O/Q> 0 (Ca(t))). Once this is known, we 
will have (u, v> 0 (Ca(t)) ~_ Ca(t), so (u, v> 0 (Ca(t)) 0(63~ Ca(t) 0(63 = G. But 
G is generated by 0(G) and involutory homologies, and (as we will show) 
<u, v> contains all involutory homologies in S. Thus, G=<u, v>0(G), and 
this contradicts one of the hypotheses of tile theorem. 

By (y), all centers and axes of involutions in (u, v> are in the fixed point 
subplane ~o of X. By (~), (u, v> centralizes X. Also by (cz), all involutions 
in (u,v> are homologies, so ( u , v > n X = l  and hence I<u,v>]=4 or 8. 
Since t centralizes a Klein group in (u, v>, by (~) t must be in <u, v>. 

Suppose h z S  is an involutory homology. Then h induces an involutory 
homology of ~o.  Hence, h agrees on ~o with some involution h'~ (u, v>. 
Now hh'~X<Cs(h'). Thus, hh' is 1 or an involution. But hh'~X, so h=h'. 
Consequently, (u, v> contains all involutory homologies in S. 

In particular, if u ° ~ S with g~ Ca(t), then u ° ~ (u, v). If u g ~ <t, u) whenever 
ugeS, then u(t)O(Ca(t))eZ*(Ca(t)/(t)O(Ca(t))) by 0-). Thus, the only 
situation left to consider is: I(u, v)l = 8, and u ° ¢(r, u) for some gs  Ca(t). 

Since (u, v) has exactly two Klein groups, (t, u)°= (t, v). Also, (t, u) 
<l(u,v), so Na(( t ,u ) )  and Na(( t , v ) )  contain S. Then Na( ( t , u )  ~ 
=Na((t ,  v)) implies that S°=S  "-1 for some nENa((t,  v)). Then gneNa(S) 
and (t, u) g"= (t, v), so we may replace g by gn. 

Since (u, v) contains all involutory homologies in S and g normalizes S, 
g also normalizes (u, v). Now (t, v)g=(t ,  u), so (t, u)~2=(t, u). Thus, 
g has even order. Let (g ' )  be the Sylow 2-subgroup of (g).  Then g' normal- 
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izes S, so g'6S. However, (t,  u)°'=(t,v),  so this is impossible. This 
proves (II). 

(III) We may assume that ~ is the subplane of ~ generated by c °c°). 
Proof First, suppose e °(~) does not generate a subplane ~* of ~ .  Since 

e °~) is invariant under G=  CG(t)O(G), it is not contained in a line. Similarly, 
c °(e) cannot have three or more collinear points. Thus, c °(c) is a triangle 
{e, d, e}. Note that t cannot fix d (if it did, t would normalize G(d) and hence 
commute with some conjugate of itself having center d, which is impossible 
since t~Z*(G)). Thus, G~>Gcae and IG/Gcae[=6, where t~Gea~. However, 
(t, u )n  G~a~ 1, so this contradicts (I). 

This provides us with ~*.  Clearly G acts on ~*,  inducing the collineation 
group G*= G/K, where K is the pointwise stabilizer of ~*.  By (y), each 
involutory homology in G is also an involutory homology of ~*,  and (by (u.)) 
centralizes K. Also, G* fixes no point or line of ~*.  

If  K =  1, there is nothing to prove. Thus, suppose K S  1. Then IG*[ < IG[, 
so the minimality of [GI implies that G*/O(G*) is dihedral of order 4 or 8. 

Consequently, S=(u, v ) (SnK)  with u and v involutory homologies. 
This contradicts (II). 

(IV) G has a nontrivial normal p-subgroup for some odd prime p. 
Proof. Deny! For each prime p I [0(G)[, there is a Sylow p-subgroup P 

of 0(G) normalized by S. (For, 0(G) has an odd number of Sylow p-sub- 
groups.) By the Frattini argument, G=O(G)NG(P)=O(G)(N~(P)c~CG(t)). 
If  P fixes A=A~ for each p and P, then so does 0(G) and hence also 
a = 0(a) C~(t). 

Thus, we can find p and P such that P moves A. Let H be the subgroup 
generated by the involutory homologies of NG(P). By Lemma 1, G/O(G) 
~H/O(H). Also, H >  [P, t], where P1 = [P, t] moves A since P =  Ce(t)[P, t] 
does (see (0)). If  H moves each point, then H =  G by the minimality of G, 
so (IV) holds. Thus, Hmus t  fix a point - and hence must fix c by Lemma 2(ii). 
Consequently, P1 <-G(c) by the dual of Lemma 3. 

Dually, there must a prime q and a Sylow q-subgroup Q of 0(G) normalized 
by S such that Q fixes A and moves c. Then Q1 = [Q, t] also moves e, and 

Q1 - a ( A ) .  
Since S normalizes Q1, while S fixes no point of A (by Lemma 2(ii)), 

Q1 (x, A)¢  1 for at least two points xeA. Hence, the group of elations with 
axis A is an elementary abelian q-group. Dually, the group of elations with 
center e is an elementary Abelian p-group. In particular, t inverts both P~ 
and Q1. 

Let E be the group of all elations in 0(G) n G(A). By (×), E is contained 
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in a Sylow p-subgroup of 0(G) normalized by t. Hence, we may assume 
that E=P1. In particular, Ca(t) normalizes P1. Dually, we may assume 
that Q1 consists of all elations in G(c), and then Ca(t) normafizes Q1. 

Let r #p,  q be a prime, and .R a Sylow r-subgroup of 0(G) normalized by t. 
By what has already been proved, R must fix c and A, and hence centralize t 
by (~). Since each r-subgroup of 0(G) normalized by t is contained in a 
Sylow r-subgroup of 0(G) normalized by t (see (×)), it follows that t inverts 
no nontrivial r-element of 0(69. 

We now wish to count the number of conjugates of t. Let t ' e t~- ( t} ,  
and consider tt'. Since t inverts tt', necessarily Itt'l =p~qB for some o~ and/3. 
I f /3=0,  then tt' is contained in a Sylowp-subgroup of 0(G) normalized by t, 
so tt' is an elation in 0(G)n G(c), and hence tt'eP1. Similarly, if ~ = 0  then 
tt 'eQi. Finally, suppose o~_> 1 and/3> 1. Then (tt'> n P~ ~ 1 and (tt'> n Q~ 
~1 so (tt'>c~Pi fixes the axis A of (tt '>nQ1. Since (tt'>nP~ consists 
elations with center e(~A, this is impossible. 

Thus, t ~ = tP1 u tQ1, so [ G: CG(OI = l e~ I + I Q ~ I - 1. We know that CG(t) 
normalizes P~, and C~(t) c~ P1 = 1. Thus, [Pxl= [elCa(t):Ca(t)[ divides 
I e x l + l Q d - 1 ,  so IP~I divides I Q d - 1 .  Similarly, lQal divides [P~I-1. This 
is absurd. 

(V) G has a normal elementary Abelian subgroup not centralized by t. 
Proof. By (IV), G has a normal elementary Abelian subgroup N ¢  1. 

Here, N~__CG(t). For, if N< CG(t) then N< C~(t g) for all geO(G), and then N 
must fix each point in the generating set c °(a) of N (see (III)). 

(V1) G=MC~(t), where M is a minimal normal elementary Abelian p-sub- 
group of G inverted by t. 

Proof Let M be a nontrivial elementary Abelian p-subgroup of G normal- 
ized by CG(t), not centralized by t, contained in a normal elementary Abelian 
p-subgroup of G, and minimal with respect to these properties; by (V), 
M exists. By (0), M =  C~t(t) x [M, t], where [M, t] = {m ~ M 1 mr = m-  1 } is a 
nontrivial CG(t)-invariant subgroup. Thus, M =  [M, t] is inverted by t. 

Suppose M moves A and e. Then so does H=MCo(t). By Lemma 2(ii), 
H moves every line. By Lemma 1, H/O(H)~ G/O(G). The minimality of IGI 
now implies that H =  G. 

Suppose now that Mfixes A. Then M(t> = (tM> < G(A). By (~), M consists 
of elations. Let M < N ~ G  with N Abelian. Then N fixes A. Take any geG 
such that Ag#A. Then M°<_NnG(A °) fixes A, so that z=Ac~A ~ is the 
center of all elements of M °. Similarly, M<_G(z,A). Thus, <MS[ geG> 
<_G(z), where <M ° [ geG> is normal in G. It follows that G must fix z, and 
this contradicts Lemma 3. 
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(7ID If t' ~ t M -  {t}, then At # At, and ct # ce. 
Proof. Suppose At=At,. By (~), tt '~M is an elation with axis A~. Hence, 

Co(tt')>>_M fixes At, so G=MC~(t) also does. 

Completion of the Proof 

By (I), u(~C~(M) and tu(~CG(M). By (0), it follows that CM(u)#I and 
CM(tu)#l (since t inverts M). Let l#m~CM(u), and write m=tt' with 
t'~t(m). By (VII) and (,), all fixed points of  m are on L=e~et,, except 
possibly for x =At n At,. 

Since NG(M)= G, Lemma 3 and (~) imply that either (a) each element of  
M - { 1 }  fixes exactly three points, which are non-collinear and are permuted 
transitively by M, or (b) M fixes exactly three points x, y, z, which are non- 
collinear, are not all fixed by t, but are such that G fixes {x, y, z}. 

Here, (b) leads to the same contradiction as in the first part of  the proof  
of  (III). Thus, (a) must hold. In particular, m fixes just three points x, y, z, 
and M fixes {x, y, z}. Moreover, y, z~L and x¢L. 

Since u centralizes (t, m ) = ( t ,  t ' ) ,  u fixes x, ct, ct,, A, nL, and AvnL .  
Thus, L=A,  and x=c,.  It follows from (00 that Mx=Cl~(U), where 
]M:Mxl =3. 

Similarly, there is a point x* such that Mx.=Cvz(tu) and ]M:M~.[=3.  
But CM(u) n C~t(tu) = 1 since t inverts M. Thus, [M[ =9.  

It follows that G/C~(M) is isomorphic to a subgroup of  GL(2, 3), where 
CG(M) = M(CG(t) c~ CG(M)). Here C~(t) c~ Co(M) fixes each point of  e M = e G 
(since G = CG(t) M). Thus, CG(t) c~ CG(M) = 1 by (III), so CG(M) = m. Hence, 
G/M is isomorphic to a subgroup of  GL(2, 3). 

Since M is a minimal normal subgroup of G, G/M acts irreducibly on M. 
Also, G/Mis generated by its involutions, and has order > 8, so we must have 
G/MgGL(2, 3). Let g~CG(t) have order 3 and be normalized by (t, u). 
Then g" = g -  ~. We may assume that g centralizes ( m )  = CM(u) (as otherwise, 
g would centralize CM(tu)). Then (g, t, u)  fixes the set {x, y, z} of fixed 
points of  m, where x=eu and yz=Au. Clearly, t fixes x. But t cannot fix y 
and z, as m¢CG(t) (see (~)). Thus, yt=z. Also, g cannot fix x (as otherwise g 
would fix e, and A,, contrary to (00). It follows that (t, g )  induces a sub- 
group of Sa on (x, y, z} with t and g acting nontrivially and commuting. 
This is ridiculous. 

Proof of Corollary l. By Lemma 2(0, (t)O(G)<~H, so H=O(G)CH(t) 
= TCo(c) (t) CH(t) = TCn (t). 

Proof of Corollary 2. Set H =  SX, so X =  0(H). If  S has involutory homolo- 
gies having different axes, then Corollary 1 applies. 
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Suppose commuting involutory homologies always have the same center 
and axis. By (~), Z(S) contains an involutory homology t. We will show 
that X fixes ct and At. Suppose g e X  moves G, and consider S °. By hypo- 
thesis, there is an involutory homology u~S ° not conjugate to t o in S °, and 
hence in H. Then (t ,  u)  has an involution v commuting with t and u. Clearly, 
vis  ahomology.  Thus, o_ _ _ c ~ - e , - c v - e t ,  which is not the case. 

COROLLARY 3. Let S be a 2-group of collineations of a projective plane. 
Assume that S is dihedral of  order 16, and that one of its dihedral subgroups 
of order 8 is generated by two involutory homologies having different axes. 
I f  S normalizes a eollineation group X of odd order, then SX  fixes a point or a 
line (both, i f  X contains no nontrivial elations). 

Even when S contains Baer involutions, Corollary 3 can be proved in 
exactly the same manner as the theorem. 

4. CONCLUDING REMARKS 

The proof  of  the theorem used all of S primarily to deal with the case where 
t inverts some element of  order 3. It is straightforward to further modify 
the proof  in order to deal with this case when S = ( t ) ,  if one is willing to 
accept weaker conclusions (such as G having an orbit of length 1, 3 or 9). 
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