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1. ENUMERATION 
There is nothing unusual about asymptotics in fmite group theory: there are a num­
ber of known (or even well-known) asymptotic results. While these are not really 
the subject of this paper, it seems appropriate to begin with some especially in­
triguing examples (the fIrst and last of which will be need later). 

1.1. If P is prime then the number of isomorphism classes of groups of order pk 
.l. k3 _ 6k .l.f3 + 0(k8/3) 

is at least pZ7 (Higman [HiD, and asymptotically::: p2 (Sims [SiD. 

1.2 (Neumann [Ne, MN]). 1 ~ 
The number of isomorphism classes of groups of order n is less than n1<logn . 

Here, and throughout this paper, logarithms will be to the base 2. The preceding 
result, as well as the next three, depend on the classification of fmite simple 
groups. 

1.3 (Holt [HoD. 
# isomorphism classes of perfect groups of order < n 0 

. . - asn-oo. # IsomorphIsm classes of groups of order ~ n 

1.4 (Cameron-Neumann-Teague [CaNT). 
For almost all n (in the sense of density), the only primitive permutation groups of 
degree n are Sn and An. 

1.5 (Cameron [CaV. If G is a primitive subgroup of Sn, then either 
(i) n ::: (~) and G is a subgroup of Sm wreath SR with Sm acting on the 

k-sets of an m-set and the wreathed product having the product action, or 
(ii) IGI ~ nC log n for some constant C. 
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Here 1.1-1.4 are, in some sense, in a classical enumerative vein: estimate the 
number of groups of a certain sort. The remainder of this paper is concerned with 
rather different types of asymptotic questions, involving lengths of presentations 
or of words given in terms of generators, or the proportion of pairs of elements of 
a simple group that generate the group. These questions (or at least those in 
§§2,4) are motivated, to some extent, by questions that aros~ in .Theoretical 
Computer Science. Sketches of some proofs will be given, espeCIally ill the cases 
of some results not in print. For a survey of related results see [BHKLS]. 

2. SHORT PRESENTATIONS 
The length of a presentation ( X I R ) is the sum of IXI toget~~ with ~he su~ of the 
lengths of all of the members of R as words in XUX-l. ThlS IS motivated, ill part, 

by thinking of inputting ( X I R) into a computer. 

Stupid-looking Example: The usual presentation for a cyclic group of order n 
has length 1 + n. A shorter presentation is (X I R) with X = {xo,···,xm } ~~ 
R = { Xi+lXi2, X~X~l ... X~ I i = O, ... ,m}, where m = [1 + log2n] and n = ~21 m 
base 2. Its length is at most (m + 1) + 3m + (m + 1) S; Slog n + 7. In fact, how­
ever stupid-looking this may seem to be as a way to represent a cyclic group, this 

method has, indeed, been used in practise. 

2.1 Conjecture: Every finite group G has a presentation of length 0(logIGI)3). 

Note that the constant 3 is best possible here. For, using Higman's bound 1.1, 

for all E > 0 and all C > 0 it is ef.">y to check that 
# p-groups of order pk --+ 00 as k --+ 00 

# presentations of length S; C(logpk)3-E 

since the denominator is straightforward to calculate. 

2.2 Theorem (Babai-Kantor-Luks-Palfy [BKLP]). The Conjecture is true ex­
cept, perhaps, if some composition factor ofG is isomorphic to 2A2(q), 2B2(q) or 

2G2(q)· 

The remainder of this section is devoted to an indication of the ideas involved in 
the proof of this theorem, along with comments on the difficulties encountered 
with the groups 2A2(q), 2B2(q) and 2G2(q). The proof falls into two main steps: 

I. Simple Groups, and II. Glueing. 

STEP I. Simple Groups. . 2 
2.3 Proposition. Every simple group has a presentatIon of length O((loglGI) ), 

except perhaps for the groups 2A2(q), 2B2(q) and 2G2(q)· 
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Sporadic groups can be ignored here. The usual presentation for An has length 
< n2. Therefore, it remains only to consider a group G of Lie type over IF, of 
characteristic p and rank Q, say, in which case the order of magnitude of loghl is 
Q210g q. We presuppose various parts of [Car] here and in later portions of this 
paper. 

Groups of Rank Q ~ 2. Here the obvious approach is to try to use the Curtis­
Steinberg-Tits presentation [Cu], but this is much too long (its length involves q 
instead of log q). Nevertheless, it is not at all surprising that this presentation can 
be modified so as to behave as desired. The details are as follows. 

Assume, for the moment, that G is untwisted. Then the Curtis-Steinberg-Tits pre­
sentation for some perfect central extension G of G uses generators Xu(t) for cer­
tain roots a., where tElFq• (Specifically, a. belongs to the union of the rank 2 sub­
systems determined by pairs of fundamental roots, so the number of these roots a. 
has order of magnitude Q2.) The relations are 

xa(t)xa(u) = xa(t + u) 

[xa(t), x~(u)] =. n Xia+j~(Cija~tV) 
1,]>0 

for all relevant a. and ~ with ~::F- ±a., and all t, uElFq, where i, j and Cija~ are inte­
gers (and ICa~i) S; 3). In order to shorten this presentation, let 9t. ... ,ge be a basis 
of IFq over IFp. Then use only the generators xa(90, together with the relations of 
the form 

Xa(Ok)P = 1, [Xa(Ok), xa(Om>] = 1 

[xa(9k), x~(9m>] = . n Xia+j~(Cija~9~9/n), 
I,] >0 

which are interpreted as follows. For any skElFp and any root y, expand 
xiLkSk90 as TIkxIOk)\ where expressions such as Xu(9k)P and XIOk)\ are them­
selves expanded as in the Stupid-looking Example by adjoining up to 710g p addi­
tional generators and relations for each such term. The length of this presentation 
is dominated by that of the commutator relations, which is O(Q2Q2·ee.elog p). 
Thus, this is a presentation for G of length 0(logIGI)3). 

In order to shorten this presentation somewhat, and at the same time kill the center 
of G, choose each Ok as Ok for a generator 0 of 1F~. In addition to the generators 
xa(9k), introduce generators wa(1), wa(9) and ha , together with the following re­
lations for all a. and ~ ::F- ±a. restricted as above: 

wa(1) = xa(1)x_a(1)-lxa(1) 

ha = wa(9)wa(l)-1 
xa(ek)ha = xa(02ek) 

wa(O) = xa(O)x_a(-9-1)xa(O) 

[ha,h~] = 1 
x~(9k)hp = x_(e2(a.~)/(~.~)Ak) 

... 
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(where x_u(-8-1), xu(828k) and xu(82(u.~)/(~.~>9k) are computed by expansion as 

above, and (n, ~) denotes the usual inner product of roots). Then our earlier rela­
tions can be shortened to 

Xu(8k)P = 1, 

[Xu(8k), x~(8m)] 

[Xu(9k), Xu(9m)] = 1 

= IT xiu+j~(Qju~8ik+jm», 
i.j>O 

with 0 ~ k, m ~ 1. For, these and conjugation by the various elements hu imply 
the remaining ones given earlier. Now there are O(.Qe +.Q + .Q)log p) generators 
and the relations have total length O(.Q + .Q-elogp + .Q + e.Q + .Qlogp +.Qe ~ 
.Q2·elog p) = O(logIGI). The center of G is killed using products of the elements 
hu' where the required relations are explicitly written down on a case by case ba-
sis. 

All of this involves an unfortunate loss of the beauty of the original CUrtis­
Steinberg-Tits presentation in order to achieve efficiency. 

Twisted Groups of Rank: .Q ~ 2. While there are straightforward modifica­
tions of the above presentations valid for twisted groups, an annoying snag does 
occur. Namely, we used the fact that xu(t)ha. = Xa(82t) in order to see that (ha.) had 
very few orbits on Xu' Such a situation does not occur for odd-dimensional uni­
tary groups, in which one type of root group is nonabelian. Nevertheless, in this 
case a presentation of length O«(logIGI)2) can still be obtained. 

Very briefly, G = PSU(2.Q + 1, q), .Q ~ 2, is best viewed as having a "root system" 
of type BC.Q., namely, the union of a B.Q. and a C.Q. system However, [Gr] provides 
a presentation suitable for our purposes using a C.Q. system <D. His generators are 
xu(t) with (l short, tEIF 2, as well as xu(t,u) with n long, t, uEIF 2 and u + ii = 
euri, where eu = ±1 and

q 
the involutory field automorphism of IF ~ is t --+ t. The 

obvious sorts of commutator relations then suffice for a presenfation (cf. [Gr]). 
These can be shortened by using generators xu(8k) for short roots n, as well as 
suitable generators xu(O, 8m) and xu(8k, 8m) for long roots (l, where q2 = pe and 8 
is a generator of 1F~2; and then introducing further generators hu for all (l as well 
as additional generators required in order to take various powers of generators. 
Relatively little care is needed to obtain a presentation of length O((logIGI)2). It is 
presently not known how to obtain a presentation for G of length O(logIGI). This 
is the only "bad" twisted case of rank .Q > 2: in all other cases all root groups are 
abelian, and the usual group H has at most 3 orbits on each root group. Similar 
considerations reappear as we examine rank 1 groups, but there they produce a 
much more serious obstacle. 
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Groups of Rank .Q = 1. The standard presentations in this case involve all of the 
elements of a field F'q, but this time it is not at all clear how to cut the presentations 
down to the desired siu -- assuming, of course, that these groups do, indeed, 
have ~resentations of the desired lengths! The easiest way to explain the problem 
is to gIVe a suitably short presentation for the group PSL(2, q) (similar to [To]). 

A Presentation for PSL(2, q). 
Let q = pe with p odd, and 1C:= (q - 1)/2. 
Generators: 
h, r, Xi, i = O, ... ,e - 1. 
Relations: 
h"= 1, r2= 1, hr=h-1, 

-1 

[Xo, ~J ~ [Xl' Xi] .= 1, x\) = ~f = 1, r = XoxOxo, h-Ir b XIX~ rxl, 
Xi+2 - Xi for 0 ~ 1 ~ e - 2, Xe_2 = I1kx~, X!l = I1kxkk, 
with the ~k' ~ElFp dictated by a single irreducible polynomial over Fp used to de­
fme F'q (1. e., h corresponds to multiplication by the square of a generator 8 of IF* 
and 8e = Lkak8k, 8e+l = Lk~8k), where powers x~, X~k are viewed as being ex~ 
panded as in the Stupid-looking Example (i.e., by adjoining O(log p) additional 
generators and relators for each such term). The length of the resulting presenta­
tion for PSL(2,q) is O(log q). 

In order to understand more clearly the preceding presentation, consider any rank 1 
group G = PSL(2, q), 2A2(q), 2B2(q) and 2G2(q). There is a standard presentation 
for G. Namely, let B = UH be a Borel subgroup, where H = (h) is (isomorphic 
to) a subgroup of index 1, 2 or 3 in IF~ (IF *2 in the unitary case) and hence 11: = IHI 
is exp~citly known. Moreover, N = H(r)qis dihedral except in the unitary case, 
where It has the presentation (h, r I h" = 1, r2 = 1, hr = M). Then a presentation 
for G is obtained by starting with ones for U and N, by giving the action of h on 
U, and fmally by giving all the relations of the form w = uvu' with wE(h)r, 
U,U'EU, and VEur [St2]. 

Wh~n G.= PSL(2,q) we greatly decreased the number of generators by building in 
~onJugatIon by h: there are at most 2 orbits of (h) on U-{ I}, and we gave the ac­
tIon of h on a representative of each such orbit. Then all q of the relations 
w = uvu' could be deduced from at most two of them, simply by conjugating by 
h. For each of the remaining rank 1 groups (h) has at least q orbits on U - {1 } . 
The problem in those cases is to fmd some way to deduce most of these relations 
from a bounded number of them. Until some way is found to deal with this prob­
lem (~r somehow circumvent it by using a different type of presentation for G), 
2.1 will remain open: the existence of short presentations of these rank 1 groups 
is the only obstacle to 2.1. 

l 
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STEP II. Glueing. 
Now consider any fmite group G, and let N be a maximal normal subgroup of 
We may assume that N"# 1. Then, by induction, there are presentations 

GIN = ( X I R ) and N = ( Y IS) 

each of which is suitably short (i.e., of respective lengths O((logIGINI)2) and 
0((logINI)3). The problem is to glue these together to form a new presentation that 
is itself sufficiently short. Glueing together the two presentations is standard, SO 

once again it is necessary to fmd a way to proceed efficiently. This is less obvious 
and more interesting than Step I. 

By abuse of language, view X as a subset of G and Y as a subset of N. Then R 
consists of elements of N, so each reR is a word in yuy-l. However, the presen­
tations (X I R ) and ( Y IS) have nothing to do with one another, so there is no 
reason to expect that r will be a "nice" word in YUy-l. In particular, it may have 
very large length as a word in yuy-l, which would be unacceptable for our pur­
poses. Fortunately, there is a way around this difficulty using the following sur­
prising result: 

2.4 Proposition [BS]. Let N be a finite group and Ya set of generators DEN. 
Let rENo Then there is a sequence wl, ... ,wk = r of elements of N such that 

each Wi is either in Y 
or is the product of two previous wj's 
or is the inverse oE a previous Wj, 

and k < 2(loglNI + 1)2. 

Proof (based on remarks by E. M. Luks). We may assume that N"# 1. We will 
construct a sequence A of elements of N and a subsequence B ~ A such that the 
following all hold: each term in A is either in Y or is the product or inverse of 
terms occurring earlier in the sequence, IAI < 2(log INI)2, IBI ~ 10g1NI, and 
N = II(B)-lII(B). Here, for any sequence B = (bl, ... ,~) of elements of N we 
write 

II(B):= (b~(1) ... b~k) I each e(i) = 0 or 1 }. 

The construction of the sequences A and B will be accomplished by successive 
increasing approximations. 

Start with A = B consisting of one element "# 1 of Y (so initially III(B)I = 2). If, 
after several increases, we still have N"# II(B)-lII(B), then II(B)-lII(B)Y t; 
II(B)-lII(B), so there exist u,veII(B) and yeY such that z:= u-lvy~II(B)-lII(B). 
Then extend A and B to the following sequences by appending the indicated tenns 
or sequences: 
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A': A,I viaB ~ u, I viaB Lv, u-1, u-1v, Z 

B': B,z. 

409 

Here I viaB I refers to the fact that a product such as bl'''~ (with bl , ... ,~ in B, in 
order) can be embedded in a sequence bl\n, blln·b:3, ... ,bl···~-l·~ of k - 1 
tenns, each of which is a product of terms either in B or occurring earlier in this 
appended sequence. 

Now observe that III(B')1 = 2III(B)1 since II(B)nII(B)z = 0, so that at most 
loglNI - 1 increases can take place: IBI ~ 10giNI. Also, IA'I ~ IAI + 2(IBI - 1) + 3, 
where A is increased at most 10giNI - 1 times, so at the end of all the increases we 
have IAI ~ 1 + (loglNI - 1)(210gINI + 1). This completes the construction of the 
desired sequences A and B. 

Finally, each element of B (in fact, of A) occurs in a sequence of the sort required 
in 2.4, of length ~ IAI; and we saw that each element of II(B) occurs in such a se­
quence of length ~ IAI + (IBI - 1). For the same reason, each element of 
N == II(B)-lII(B) occurs in such a sequence of length ~ IAI + IBI + (IBI - 1) ~ 
2(logINI)2 + 10giNI - 1. 0 

Note that this proof is short and ingenious while not looking at all like standard 
group theory. For somewhat sharper bounds and an effective version of 2.4, see 
[BCFS]. 

Returning to the situation preceding the Proposition, adjoin a sequence using 2.4 
in order to obtain additional generators for each reR, together with the relations 
implicit in the sequence. Similarly, adjoin further generators and relations in order 
to express the fact that N <J G. This readily produces a presentation of length 
0((logIGI)5). Much more careful bookkeeping turns the exponent 5 into a 3 
[BKLP]. 

3. THE PROBABILITY OF GENERATING 
If G is a finite group generated by 2 elements, what proportion of the pairs of ele­
ments of G generate G? In other words, what is the probability that two randomly 
chosen elements of G generate G? This section will consider this question in the 
case of nearly simple groups. The most lovely result along these lines is due to 
Dixon: 

3 
3.1 Theorem [Di]. Pr( x, yeSn generate Sn) -+ 4 as n -+ 00, 

t 
Pr( x, yeSn generate An) -+ 4 as n -+ 00. 

-
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In other words, x and y "almost always" generate An or Sn, depending upon the 
parity of x and y. In order to show that 

Pr( x, YESn do not generate An or Sn) --+ 0 as n --+ 00, 

Dixon used two ingredients: 

1. Number Theory ([Di], based on [ETl): 
pj XESn has a cycle of length a prime S n - 3 while ) 1 
~ ~\ all other cycles have length relatively prime to this one --+ as n -+ 00. 

2. 1873 Group Theory [Jo]: 
If G S Sn is a primitive permutation group containing a p-cycle for some prime 
p S n - 3, then G is An or Sn. 

(Historical comment The preceding result appears to be the fIrst published appli­
cation of Sylow's Theorem, which had been published only a year earlier. It is, of 
course, only the conjugacy part required here -- in the case of Sylow subgroups 
of prime order.) 

In Dixon's situation, 

Pr( x, y do not genemte An or Sn ) 
S Pr( x, y generate a primitive group :I; An, Sn ) + ~IU2/1G12 

summed over all subgroups L of Sn maximal with respect to being intmnsitive or 
imprimitive. (This is a very crude estimate: equality would require that the various 
subgroups be pairwise disjoint sets!) By 1, if x and y are randomly chosen in Sn 
then each of them probably has a power that is a p-cycle for some prime p S n - 3, 
and then 2 implies that Pr( x, y generate a primitive group :I; An, Sn ) is negligible. 
The terms in ~IL12/1G12 involve the orders of obvious subgroups SkXSn-k and 
Sk wreath SQ of Sn. Estimating this sum is made slightly simpler by noting that an 
upper bound is ~(ILl2/IGI2)·(lGI/ING(L)I) S ~(IU2/IGI2)·(IGI/ILI) = ~IU/IGI where L 
ranges over one representative SkXSn-k or Sk wreath SQ from each conjugacy class 
of such subgroups. Thus, it was only necessary for Dixon to check that this latter 
sum --+ 0 as n --+ 00. 

Almost 20 years after Dixon's paper, Babai [Ba] showed that 

Pr( x, y do not generate An or Sn) = lIn + 0(1/n2), 

where the leading term 1/n corresponds to the fact that 2 elements not genemting 
An or Sn "probably" have a common fIxed point! However, in this case the proof 
no longer used 1 and 2 above: Babai used the classillcation of fInite simple 
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groups. Dixon had shown that ~IU/IGI, summed over one representative SkXSn_k 
or Sk wreath SQ from each conjugacy class, is lIn + 0(1/n2). Consequently, it 
was only necessary to obtain a bound on Pr( x, y generate a primitive group 
oj; An, Sn) signillcantly better than one obtained in [Di]. (Better bounds had been 
known [Bo; BoW], obtained using number theory and generating functions; but 
they are not quite good enough to produce the desired result.) 

Babai's argument runs as follows. It is only necessary to estimate ~ILI/IGI 
summed over one representative of each subgroup L :I; An, Sn of Sn maximal with 
respect to being primitive. The possibility 1.5(i) occurs with miniscule probability 
and hence can be ignored. Then ILl S m:= nClog n by 1.5. Let K be a minimal 
normal subgroup of L, so that L = Na(K). By the classifIcation, there are at most 
m chamcteristically simple groups of order m. Any such group K has at most 
m10g m subgroups (since any group of order at most m is generated by at most 
log m elements, by Lagmnge's Theorem), and hence has at most mI°g m transitive 
permutation representations. Consequently, there are at most m·mlog m transitive 
characteristically simple subgroups K of Sn, and hence the desired sum ~IU/IGI is 
at most m-m·m1og mIn! = 0( 1/n2) (the upper bound n.fn/n! is obtained in [Ba]). 

At the same time that Babai was making Dixon's theorem more precise, a result for 
classical groups corresponding to Dixon's was being proved: 

3.2 Theorem [KaLu]. Let Go denote a finite simple classical group, and let 
Go S G S Aut(Go). If P(G) is the probability that two randomly chosen elements 
of G do not generate a group containing Go, then P(G) --+ 0 as IGI --+ 00. 

The methods used in the proof were similar to those of Dixon and Babai. A theo­
rem of Aschbacher [As] asserts that each maximal subgroup L of G falls into one 
of nine families of subgroups of G. Eight of the families are defmed very explic­
itly in terms of the vector space V over IFq used to defme Go (the stabilizer of a 
subspace; the stabilizer of a direct sum or a tensor decomposition; the stabilizer of a 
fIeld extension or the centmlizer of a fIeld automorphism; a classical group embed­
ded as usual; the normalizer of a symplectic-type r-group for a prime r other than 
the chamcteristic p of Fq). In the ninth family, L = NG(S) with S a nonabelian 
simple subgroup of PSL(V) such that S S L S Aut(S), and the projective represen­
tation of S on V is absolutely irreducible and is defmed over no proper subfIeld of 
IFq. 

The number of conjugacy classes within each of the eight explicit families is dis­
cussed in [As] (and in greater detail in [KlLi]), which makes it easy to obtain a 
suitable upper bound on :ElLl/IGI restricted to each such family. By [Li], ILl S q3n 
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for L in the ninth family, so that it is only necessary to show that there are not too 
many summands ILI/IGI arising from this family -- exactly the same sort of ques­
tion we saw Babai had to deal with. For this purpose, once again we will see that 
ridiculously crude estimates suffice. 

Namely, as above, there are:S; q3n simple groups of order:S; q3n. Fix such a simple 
group S. The number of (equivalence classes of) absolutely irreducible projective 
representations of S in characteristic p is at most the order of the universal cover of 
S. For each such representation, maximality forces L to be the normalizer of (the 
image of) S; and L is isomorphic to a subgroup of Aut(S) containing S, so that 
ILl :s; ISlloglSI. These crude estimates are enough to yield a proof of 3.2 when 
n ~ 21. Slightly more care is needed for the remaining small values of n. 

An examination of the argument in [KaLu] gives slightly more information than in 
3.2. For purposes of the next result we assume, temporarily, that PSp(2.Q,2e) 
with .Q ~ 2, PQ(3, q), PQ+(6, q) and PQ-(6, q) are replaced by the respective 
isomorphic groups PQ(2Q + 1, 2e), PSL(2, q), PSL(4, q) and PSU(4, q). As 
above let V be the underlying vector space. 

3.3 Theorem. In the situation of 3.2, P(G) = EIGo:MI-1 + O(q-7(n-I)/6), where 
M ranges over a representative of each Go-conjugacy class of maximal subgroups 
of Go of each of the following types: 

(i) The stabilizer of a point or hyperplane of V; 
(ii) The image of a group (i) under a triality automorphism of Go = 

PQ+(8, q); 

(iii) The stabilizer of a totally isotropic 2-space when Go = PSp(4, q) or 
PSU(5, q), or of a totally singular 3-space when Go = PQ(7, q). 

For example, if Go = PSL(n, q) then, in the unlikely event that (g, h) does not 
contain Go, (g, h) "probably" ftxes a point or hyperplane. It should be noted that 
the constant 7/6 best possible in 3.3, as is seen when Go = PQ(7, q) and M is ei­
ther the stabilizer of a totally singular line or G2(q) (but for no infmite collection of 
pairs Go, M disjoint from this one). 

There is no doubt that, for any simple group Go and any group G such that 
Go:S; G :s; Aut(Go), the probability that two randomly chosen elements of G do not 
generate a group containing Go approaches 0 as IGI --+ 00. There is sufftcient pub­
lished information to prove this conjecture for various choices of G (2B2(q), 
2G2(q), G2(q), 3D4(q) or E6(q». Recent work [LS] reported in Seitz's lectures at 
this Symposium probably handles all the exceptional groups Go for characteristic p 
not too small (namely, p > 113). 
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4. WORD LENGTH. 
While the preceding results say something about how often two elements generate 
a given group, they say nothing about how this generation takes place. In order to 
explain the difference, consider the following standard 

Example. Sn = «(1, ... ,n), (1,2». Write S = {(I, ... ,n), (1,2)}. Then every 
element Sn has length :s; n2 in SUS-I; but some elements have length ~ n2/6 (e.g., 
the involution z --+ n + 1 - z). (N.B. -- The length of each element of Sn does not 
seem to be known -- which is rather surprising in view of the standard nature of 
this pair S of generators.) 

This leads to the consideration of the diameter of a group G with respect to a set S 
of generators of G. Temporarily write T = SUS-I, and enumerate the elements of 
G as follows: 

T ITI elements 
IT :s; ITI2 elements (actually, :s; ITI(ITI - 1) elements::F- 1) 

IT···T :s; ITldelements. 
The diameter is the smallest d such that these sets cover G, and in that case 

d . . d· 10giGI - 1 
IGI :s; 1 + LIITII (or, more precIsely, IGI :s; 1 + LI ITI(ITI - 1)1», so that d ~ log21S1 . 

Note that d is the same as the diameter ofthe (undirected) Cayley graph determined 
by the pair G, T; and the preceding inequality is essentially the "Moore bound" for 
this graph. 

log nl - 1 
For example, when G = Sn and lSI = 2 we have d ~ :i ,which suggests that 
one might be able to do better than in the above Example. That this is, indeed, the 
case, is seen both in the next result and in 4.4. 

4.1 Theorem [BKL]. If G is a nonabelian finite simple group then there is a set 
S of at most 7 generators ofG such that the corresponding diameter is O(loglGI) 
(better: the diameter is :s; 101010gIGI). 

Note that this result is false for cyclic groups. Namely, if G is cyclic and G = (S) 
then the diameter is easily seen to be greater than Hn l / ISI - 1) -- in fact, this holds 
for any abelian group. Thus, this is a particularly useless way to distinguish be­
tween nonabelian and abelian simple groups. 

The theorem is constructive: a set S is more or less explicitly constructed; and, 
implicit in the proof, there is an algorithm which, given geG, will compute an ex­
pression for g as a word in S using O(loglGI) group operations. However, this is 
not the same question as determining an expression for g of shortest length in the 
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generators (the S-length of g) -- nor even the exact length of g as a word in the 
generators. 

Two generators. Of course, in 4.1 one naturally expects that there is a set S of 
2 generators producing diameter O(logIGI). This has been verified in "most" cases 
(a few of these are discussed are in [Ka2]): 

4.2 Theorem (i) If G is an alternating group, or a group of Lie type and rank 
> l, then there is a set S of 2 generators of G such that the corresponding diame­
ter is O(logIGI). 

(ii) If G is an alternating group, or a group of Lie type and rank ~ 20, then 
there is a set S of 2 generators of G, one having order 2, such that the COlre­

sponding diameter is O(logIGI). 

In (ii), the corresponding undirected graph is trivalent The rank assumption is 
unfortunate, and in many instances the arguments sketched below can be modified 
so as to work in somewhat lower ranks (much lower when the characteristic is 2); 
see [Ka2] for examples of this. However, despite the more tractable appearance of 
the smaller rank cases, the general version of (ii) remains open and seems to re­
quire a less naive approach than will be presented below. In both (i) and (ii) there 
is an associated algorithm in the sense indicated previously. 

Question 1: Clearly (i) is aimed at extending Steinberg's result [Stl] that groups 
of Lie type have 2-element generating sets. Do Steinberg's 2 generators produce 
diameter O(logIGI)? The proof in [St1] uses roughly .Q = rank G commutations, 
therefore producing words of length> 2J!, which is too large. Note, however, that 
if .Q is bounded and > 1, then Steinberg's proof shows that his generators do, in­
deed, produce diameter O(logIGI). 

Question 2: Is 4.2(ii) true for all .Q ~ 2? Presumably it is in all such cases, and 
also when .Q = 1. However, the latter is open even for 4.2(i) even in the most 
familiar rank 1 instance: 

Question 3: If G = PSL(2, q) with q not a prime, fmd a set S of 2 generators 
producing diameter O(log q). (For a set S of 3 generators producing this diameter 
see 4.3.) 

Question 4: Give a constructive proof that, when p is prime, PSL(2, p) has di­

ameter O(log p) with respect to { ( : : ), (: -; ) }. The fact that the di­

ameter is O(log p) -- in fact, :s; 500log p -- is due to Lubotzky and Sarnak (see 
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[BKL, 8.1]). However, their proof is nonconstructive, using [We]. In order to 
see the difficulty inherent in this question, consider the much more restricted -- but 

also open -- question: 

(
I l(P-I») 

Write 0 I as a word of length O(log p) in the above generators. 

Question 5: Prove that "most" S produce small diaineter. For example, prove 

h Pr( x,y,zeSn, (x,y) = Sn ) -+ 1 as n -+ 00 

t at z has length O(log n!) in {x,y,x-I,y-I} . 
On the other hand, all S ought to come close to working. For example, there is the 
following conjecture: if Sn = (x,y), then the corresponding diameter is O(n2). 

Sketch of the parts of the proof of 4.2. 
See 4.4 for the case of alternating groups. When G is classical we will replace it 
by the corresponding linear group, which will then also be called G. We will 
generally assume that q is odd, the even case being similar but simpler. 

Example I. G = SL(2, q), q odd. 

. (I t) (b-I 0) * (0 Wnte x(t):= 0 I for telFq, h(b):= 0 b for bell?q, and r:= I -; )- Then 

x(t + u) = x(t)x(u) and x(t)h(b) = x(tb2) for all b ":# 0, t, uelFq• 

4.3 Proposition: (i) Ifq is an odd prime then G has diameter O(log IGI) with 
respect to S:= (x(1), r'}, where r': = h(Dr. 

(ii) If q is odd, and if e generates IF ~, then G has diameter O(log IGI) with 
respect to S:= (x(l), r', h(O)}. 

Proof. If ad - bc = 1 then a straightforward calculation yields that, for c ":# 0, 

g = ( : : ) = x(-c- I + ac-l)x(-cyx(-c-1 + dC-I). 

In case c = ° use rg instead of g. This reduces the proof to showing that the 
S-length of each x(a), aelFq, is O(log q) with respect to the given set S. 

If q = p is an odd prime write 0 = 2; if q > p let 0 be as in (ii). In either case, 

IFq ::: IFp(02). Every element telFq can be written in the form 

t = 1:~~02i::: ( .. ·(am02 + am_I)02 + ... )82) + ao 

where either 
q = p, m + 1 :s; !logq, and aie{0,l,2,3} (base 4 representation of t), or 

q > p, m + 1 :s; logpq, and aielFp. 
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~uppose that q = p. Each x(t) is a word x(t) = ( ... (x(anJh(2)x(a
m

_I»h(2) ... )h(2>X(ao) 
m m + 1 elem~nts x(~) and 2m elements h(9)±1. Here, each x(~) = x(1)8; has 
length ~ 3, whlle (by matrix multiplication) h(2r l = x(1)-2(x(1)2)r'x(1)(x(1)-4)r' 
has length ~ 13. Thus, x(t) has length O(log p), as required. 

SUPJ?Ose that q > p. As above, x(t) = ( ... (x(am)h(9)x(am_I»h(9) ... )h(9>X(ao), where 
we Just saw that each x(a), aEF'p, has S-length O(log p). Thus, each x(t) has 
length m·O(log p) = O(log q). 0 

Remark. By ~dely counting the lengths in the above arguments, it is easy to 
check th.at the diameters are ~ 4510giGI in (i) and ~ 13510giGI in (ii). Namita 
Sara~agi has ob~erved that h(2) = x(1)r'x(1)4r'x(1)r'-1 has length ~ 9, thereby im­
provmg these estImates. 

Example lIa. SL(n, q), q odd. 

Let s:= rn-l···rl: so sH is an n-cycle within W. Let dl denote an involutory diago­
nal automorphIsm of G cen~g a hyperplane, normalizing H and L d 
. . v.· s' Ill' an mvertmg "''«I' wnte di+l:= dl . 

If g:= rldl·hIl3(2)r3d3·hlls(29)r5d5·d7"~(1)d9 then S:= {s, g} behaves as required 
~cf. [K~]). The point here, and in the other examples of 4.2(ii) sketched below, 
IS that g IS chosen S? that its eigenspaces and those of suitable shifts (conjugates by 
powers of s) will have very well-behaved overlaps: if g':= ggs2 then 
[ '4s-1 '4]S-7g' (). h * 
g ,g . = Xaz a WIt aEF'p. Then ~(a) has length 0(1), while xIl3(a)g' = 

xIl3(4a). As m 4.3 we can use conjugation by g' in order to see first that all ele­
ments of XIl3(F'p) have length O(log p) and then that all elements of XIl5 have 
length O(log q); then so do all elements of Xal and X-Ill = (Xal)g. As in 4.3 it 
follows that all elements of Lal have length O(log q), and then so do z:= srI and all 
elements of Hal. Note that U C yys ... ysn-l where y.= v v z ... XZ"·2 and th 

. .. . ~l~l Ill' ere 
are cancellatIons occurnng m these products since sk(sk+l)-l = s-l and zk(zk+l)-l = 
z-l. It follows that each element of Y has length O(n·log q), so that each element 
of U has length O(n·nlog q). Each element of H = Halmxi".~;2 also has length 
O(nlog q). On the other hand, each element ofW = NIH has (rl> s}-length O(n2). 
Then each element of N has S-length O(n210g q) = O(1ogIGI), and hence so does 
each element of G = UNU. 

The proof is always easier when q is even because root elements have order p = 2 
and hence are more readily accessible: 

Example lib. SL(n, q), q even: 

This time let g:= rl·~(9)r4·~(1) and S:= {s, g}; again write g':= ggs. Then 
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(g'6)s-6g=xaz(I), so that gXIl-](1)=rl·hll/9)r4 has length 0(1), as does u:= 
gXlli1)(gxlli!»S3 = rl·hai9)·hlli9)r7. Since xll.$(b)U = ~(b92) for all b, as 
above we fmd that all elements of Xa4 and X-1l4 = (XIl4)g have length O(log q). 
Now proceed as before. 

Example IIc. Sp(2Q, q), q odd. 
This time s:= r.Q···rl induces a 2Q-cycle. The support V III of Lal is a nonsingular 
4-space of V. Let dol denote an involution in, G that normalizes Lal, induces the 
identity on V~ and inverts XIlI; write di+l:= dr. If 0':= a~~l then a.Q = (0' + a.Q_I)s. 

1 2 s2 
Recall that Q ~ 16 and write a:= crsl4 and ~:= as; defme do and dl!:= ~ in the ob-
vious manner. Note that V Il = Va13. 

If g:= rldl·hIl3(2)r3d3·has(2e)r5d5·d7·X~(1)d9·rado then S:= {s, g} behaves as re­
quired. Once again g':= ggS2 satisfies [g'4s·1, g'4]S-7g' = xaz(a) with aEIF;. As before 
we can use conjugation by sand g' in order to see that all elements of Xas and X-IlS 
have length O(log q); and then (as in in 4.3) so do z:= srI and all elements of Has. 
Moreover, so do all elements of (XaI2)gr12S·12 = X-Il. and (XaI4)grI4S·14 = Xa.; and 
then so do r.Q and all elements of Ha. After suitably ordering the positive roots we 

~ ,r.;21-1 s· s21·1 ·th y X XZ Xz21-3 AI H d fmd that U C I I ••• I XaR,Xai··Xa• WI := al Ill··· al. so, an 
NIH are easily handled exactly as in the previous Examples. 

Example IId. Q-(2Q + 2, q), q odd. 
Define s as in Example IIc, as well as the support Vy for every root "(of the B.Q 
root system for G. Let Vo be the anisotropic 2-space (Vy 1"( is 10ng).L, and letj de­
note an involution in G th,at interchanges Vo with a subspace of V lli-3 while induc­
ing the identity on (Vo, vd )1.; note that IjjS21 = 3. Let dol be an involution in G that 
normalizes Lal , induces the identity on V ~l and inverts Xal . Defme 0', a, ~, d j , 

da and d~ as in Example IIc; once again Va = Va!3. Since Q ~ 20, a and ~ are 
perpendicular to a.Q-3 and a.Q-I. 

If g:= rldl·ha3(2)r3d3·has(9)r5d5·d7·~(1)d9·rado·j then S:={s, g) behaves as re­
quired. This time g':= ggs2 satisfies [g'6s-1, g'6] = xllg~(36), so if p :# 3 then we 
can proceed as in 4.3 in order to see that all elements of Xas and X-as have length 
O(log q). Then so do all elements of (Xa12)g and (XaI4)g. Conjugating by s-l we 
fmd that, if y == Q+(8, q) denotes the orthogonal group on Val.l Va3' then all the 
long root groups Xylying in Y have length O(log q). Using the usual method we 
see that all elements of Y have length O(log q); the same is then true for the or­
thogonal group ys-4 on VaHi Val_I. However, ys-4g = ys-4j contains La.! Then r.Q 
and all elements of Ha. and Xal have length O(log q), and hence we can proceed 
exactly as before (cf. [BKL]). 
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If P = 3 < q write u:= g'2s4 and v:= [g'2, u] = ~(-92 + 1), note that Vu :::: 

~«_92 + 1)92), and obtain all of ~ as in 4.3. If q = 3 then [g'4, g'3s-2
] :::: 

~(1). Now proceed as before. 0 

We conclude with a purely combinatorial argument. 

4.4 Proposition. There are trivalent Cayley graphs for An and Sn having di­
ameter O(nlog n). 

The following proof is motivated by an idea due to Quisquater ([Qu]; cf. 
[BHKLS]). My original approach was slightly more complicated, very similar in 
spirit to the partitioning method of [BKL] but using [Ka2]. The two generators 
construc;ted below have the added property that their orders are bounded -- 2 and 
15 -- whereas one of those obtained as in [BKL] has order roughly Clog n. 

Proof. Let m ~ 4, and consider the m-set X = {0,1,2, ... ,m - I}; expressions 
such as x, 2x+l, etc., are always assumed to refer to elements of X. Write 

bo:= 11 (x,2x,2x+ 1) 
zj:s;x<zj+l 

jeven 

and bI:= 11 (x,2x,2x+l) 
zj:s; x < zj+l 

jodd 

if m is even, 

bl:= 11 (x-l,2x-l,2x) and bo:= 11 (x-l,2x-l,2x) ifmisodd. 
2i:s; x <zj+l zj:s; X <zj+l 

j > 0 even j odd 

Note that each product consists of pairwise commuting 3-cycles. In each case 
±1 ' 

(bo, bI) flxes 0 and bi flxes 1. If xeX and x > 1 then bi moves x to a smaller 
member of X (in fact, to a member :s; !x) for some i. Thus, 1 = xW for a word w 
in {bo, bd of length :s; log m. It follows that {(O, 1), bo, btl generates Sm with di­
ameter O(mlog m) [Qu]. Namely, each transposition (O,x) = (O,l)w-I has length 
:s; 210g m + 1; and it is easy to see that each element of Sm has length :s; m in these 
m - 1 transpositions. 

Now consider an n-set, n ~ 11, which we may assume has the form 
{ 00, 00', p } UXUX' where X' = {x' I xeX}, 00 and 00' are new symbols, and so is p 
if n = 2m + 3 is odd while p = 0' if n = 2m + 2 is even. Let 

t:= TI(x,x') or (oo,oo')TI(x,x') depending on the parity desired, and 
x x 

g:= (oo',p,oo,O,I')bohi, 

where, for example, hi = bI denotes the permutation of X' behaving as bi does on 
X. (In particular, bo flxes 0 while hi flxes 0' and 1'.) We will show that S:= {t, g} 
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generates Sn with diameter O(nlog n). 

Clearly g3 = (oo,oo',O,p,I'), g-5 = bobi and (g-5)t= bObl. As seen above, for each 
xeX-{O) there is a word w of length :s; log m in (g2, (g2)t) flxing 00,00',0, p and 
sending l' to x'. Thus, (oo,oo',O,p,x') has S-length O(log n). Since 
(OO,OO',0,p,I')-2(00,00',0,p,x')(00,00',0,p,I') = (oo,oo',x') for x> 1, it follows that 
(OO,OO',u) has length O(log n) for each ue{O,p}U(X'-{O'}). Now conjugate by tin 
order to see that (oo,oo',u) also has length O(log n) for each ue{O'}U(X-{O}). 
Each element of An has length :s; 2n in these 3-cycles, while parity can be adjusted 

if needed by using t. 0 

Postscript (January 31, 1991): There are certainly many further directions one can 
go in asymptotic group theory. The following very recent resul~, co~cerning ~e 
number k(G) of conjugacy classes of a group G, uses the classiflcanon of flOlte 
simple groups in order to greatly improve estimates (essentially k(G»Cloglog IGI) 
obtained by Landau and Brauer [Br] using only the class equation of G: 

(Pyber [Py]) k(G) > clog IGI/(loglog IGI)8 for some constant c. 

References 

[As] M. Aschbacher, On the maximal subgroups of the flnite classical groups. 
Invent. Math. 76 (1984) 469-514. 

[Ba] L. Babai, The probability of generating the symmetric group. J. Comb. 
Theory(A) 52 (1989) 148-153. 

[BCFS] L. Babai, G. Cooperman, L. Finkelstein and A Seress, Nearly linear 
time algorithms for permutation groups with a small base, pp. 200-
209 in Proc. 1991 Int. Symp. Symbolic and Algebraic Computation. 

[BHKLS] L. Babai, G. Hetyei, W. M. Kantor, A. Lubotzky and A Seress, On 
the diameter of flnite groups, pp. 857-865 in Proc. 31st IEEE 
Symposium on Foundations o/Computer Science (1990). 

[BKL] L. Babai, W. M. Kantor and A. Lubotzky, Small diameter Cayley graphs 
for flnite simple groups. European J. Combinatorics 10 (1989) 

507-522. 
[BKLP] L. Babai, W. M. Kantor, E. M. Luks and P. P. Palfy, Short presenta-

tions for simple groups (in preparation). 
[BS] L. Babai and E. Szemer&ii, On the complexity of matrix group prob-

lems, I, pp. 229-240 in Proc. 25th IEEE Symposium on 
Foundations o/Computer Science (1984). 

[Bo] J. D. Bovey, The probability that some power of a permutation has small 
degree. BLMS 12 (1980) 47-51. 



420 Kantor: Some topics in asymptotic group theory 

[BoW] J. D. Bovey and A. Williamson, The probability of generating the sym­
metric group. BLMS 10 (1978) 91-96. 

[Br] R. Brauer, Representation theory of finite groups, pp. 133-175 in 
Lectures on Modern Mathematics (ed. T. L. Saaty). Wiley, New 
York 1963. 

[Cal P. J. Cameron, Finite pennutation groups and finite simple groups. 
BLMS 13 (1981) 1-22. 

[CaNT] P. J. Cameron, P. M. Neumann and D. N. Teague, On the degrees of 
primitive pennutation groups. Math. Z. 180 (1982) 141-149. 

[Car] R. Carter, Simple groups of Lie type. Wiley, London-New York-
Sydney-Toronto 1972. 

[Cu] C. W. Curtis, Central extensions of groups of Lie type. J. reine angew. 
Math. 220 (1965) 174-185. 

[Oi] J. D. Dixon, The probability of generating the symmetric group. Math. 
Z. 110 (1969) 199-205. 

[ET] P. Erdos and P. Turan, On some problems of a statistical group theory 
II. Acta Math. Acad. Sci. Hung. 18 (1967) 151-163. 

[Gr] R. L. Griess, Schur multipliers of finite simple groups of Lie type. 
TAMS 183 (1973) 355-421. 

[Hi] G. Higman, Enumerating p-groups, I: Inequalities. PLMS 10 (1960) 
24-30. 

[Ho] D. F. Holt, Enumerating perfect groups. JLMS 39 (1989) 67-78. 
[Jo] C. Jordan, Sur la limite du degre des groupes primitifs non alternees. 

Bull. Soc. Math. France 1 (1873) 40-71. 
[Kal] W. M. Kantor, Some Cayley graphs for simple groups. Proc. Conf. 

Combinatorics and Complexity, Chicago 1987 = Discrete Applied 
Math. 254 (1989) 99-104. 

[Ka2] W. M. Kantor, Some large trivalent graphs having small diameters (to 
appear). 

[KaLu] W. M. Kantor and A. Lubotzky, The probability of generating a finite 
classical group. Geom. Ded. 36 (1990) 67-87. 

[KlLi] P. B. Kleidman and M. W. Liebeck, The subgroup structure of the finite 
classical groups. LMS Lecture Note Series 129, Cambridge 
University Press 1990. 

[Li] M. W. Liebeck, On the orders of maximal subgroups of the fmite classi-
cal groups. PLMS 50 (1985) 426-446. 

[LS] M. W. Liebeck and G. M. Seitz, Maximal subgroups of exceptional 
groups of Lie type, finite and algebraic. Geom. Ded. 35 (1990) 353-
387. 

[MN] A. McIver and P. M. Neumann, Enumerating finite groups. Quart. J. 
Math. 38 (1987) 473-488. 

[Ne] 

[Py] 

[Qu] 

[Si] 
[Stl] 

[St2] 

[To] 

[We] 

Kantor: Some topics in asymptotic group theory 421 

P. M. Neumann, An enumeration theorem for finite groups. Quart. J. 

Math. 20 (1969) 395-401. 
L. Pyber, Every finite group has many conjugacy classes, preprint, 

Math. Inst. Hung. Acad. Sci. (1990). 
J-J. Quisquater, Structures d'interconnexion: Constructions et applica­

tions, Ph. D. Thesis, Universite de Paris - Sud (Orsay), July 1987. 
C. C. Sims, Enumerating p-groups. PLMS 15 (1965) 15.1-166. 
R. Steinberg, Generators for simple groups. Can. J. Math. 14 (1962) 

277-283. 
R. Steinberg, Generators, relations and coverings of algebraic groups, 

II. J. Algebra 71 (1981) 527-543. 
J. A. Todd, A second note on the linear fractional group. JLMS 11 

(1936) 103-107. 
A. Weil, Sur les courbes algebriques et les varietes que s'en deduisent. 

Act. Sci. Ind. 1041 (1948). 




