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1. Introduction
The study of a collineation group F of a finite projective plane SP splits
into two parts: the determination first of the abstract structure of F, and
then of the manner in which F acts on 3P. If F contains no perspectivities,
almost nothing general is known about it. We shall study both questions
in the case where F is generated by involutory perspectivities. To avoid
unstructured situations, F will be assumed to contain at least two such
perspectivities having different centres or axes. The determination of the
structure of F is then not difficult if the order n of 2P is even (see § 8,
Remark 1). Consequently, we shall concentrate on the case of odd n. The
main reason for the difficulties occurring for odd n is that the permutation
representation of F on the set of centres (or axes) of involutory perspectivi-
ties has no nice group-theoretic properties; this is the exact opposite of
the situation occurring for even n.

As usual, Z(T) and O(F) will denote the centre and largest normal
subgroup of odd order of F; av denotes the conjugacy class of a in F;
and Cr(A) and <A> are the centralizer of, and subgroup generated by,
the subset A.

THEOREM A. Let ^ be a finite projective plane of odd order n, and F a
collineation group of & generated by involutory homologies and 0(T).
Assume that F contains commuting involutory homologies having different
axes, and that there is no involutory homology a for which oO{T) e Z(F/O{T)).
Then the following hold.

(i) There is an involutory homology a central in a Sylow 2-subgroup T of F.
(ii) There exist a Klein group 2 containing a, and a S-element <p e F

normalizing 2, such that <^> acts transitively on 2\{1} by conjugation.
(iii) Let F* be the group generated by the involutory homologies in F, so

F = F*0(F). Then either (a) 0{V) ^ Cr(T*) and O(T*) ^ Z(T*), or (b)
2 o F, F induces S3 on the set {x, y, z) of centres of the involutions in 2,
F t> Yxyz ^ O(F), and Yxyz centralizes 2 .

(iv) / / (b) does not Iwld in (iii), then Cr(F*) is planar, and F/Cr(F*) acts
faithfully on its fixed subplane.

f This research was supported in part by NSF Grant GP-37982X.
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COROLLARY. If 2 is not a normal subgroup of F and F = F* is generated
by involutory homologies, then 0{T) ^ Z(T), Z(T) is planar, and F/Z(F) acts
faithfully on the fixed-point subplane ofZ(T) as a collineation group satisfying
the hypotheses of the theorem.

Here, the hypothesis concerning involutions with different axes is not
severe—see § 8, Remark 2. The assumed non-existence of an involutory
homology inducing a central involution of F/0(F) is essential (this is seen,
for example, by considering the group of all collineations of PG(2, q)
fixing a line). The hardest of the conclusions of the theorem is that, in
general, 0(F) centralizes all involutory homologies in F. Statements (i)
and (ii) represent a first step towards the determination of the possible
groups F/O(F); statement (iv) and the corollary indicate that, for such a
determination, without loss of generality O(F) may be assumed to be
trivial. More can be said about F in this theorem (cf. § 7), and it seems
likely that all possible groups F will be determined in the near future. In
one case, the required group-theoretic classification theorems are available,
namely, when no Baer involutions are present.

THEOREM B. Let 0> and F be as in Theorem A. Assume that F is generated
by its involutory homologies, and contains no Baer involution. Then one
of the following holds.

(a) F is isomorphic to PSL(2,gr), PGL(2,g), PSIT(2,9), PSL(3,g),
SL(3,£), PSU(3,g), SU(3,g), A7, A7, or PSU(3,4); here, q is an odd prime
power.

(b) F has a 2-subgroup (<pi)x(<P2) with I99J = |9?2| ^ 2, such tJiat
F t> O(r)(<p1} 9?2> and T/O{Y)(<px, <p2)> x S3; moreover F induces S3 on the set
{x, y, z} of centres of the involutions in the Klein group E of (<plt <p2y, and

(Here, PSL/V(2, 9) and A7 are non-split extensions of PSL(2,9) and A7

by groups of order 3.) Thus the structure of F is completely known in this
setting, and, in particular, when n is not a square. Which of the above
groups can actually occur for a given n is, however, not known. Note
that PSU(3,5) has a subgroup isomorphic to A7; on the other hand
PSU(3,4) probably cannot occur.

THEOREM C. Let SP and F be as in Theorems A and B.
(i) / / F is isomorphic to PSL(3, q) or SL(3, q), then 3P has a T-invariant

desarguesian subplane of order q on which F induces PSL(3,g), and all
elations of the subplane are induced by elations of &. Moreover, q\n,
(q-l)\(n-l), and (q+l)\(n*-l).
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(ii) / / F is isomorphic to PGL(2, q) with (q, n) > 1 and q > 3, then £P has
a T-invariant desarguesian subplane of order q having an orthogonal polarity
preserved by V. Moreover, q\n, (q—l)\(n—l), and (q+l)\(n2—l).

(iii) If F is isomorphic to ~PSU{3,q) or BV(S,q) with (q,n) > 1, then &
has a desarguesian T-invariant subplane of order q2 having a unitary
polarity preserved by T. Moreover, q\n2, (q — 1) | {n — 1), and (q + 1) | {n2 — 1).

Only fragmentary results are known for the remaining cases of
Theorem B(a), or when (q, n) = 1 (see §8, Remark 3). In particular, the
case in which F « PSL(2, g) with q = 3 mod 4 seems especially difficult:
none of our techniques provide information here.

Weaker versions of parts of Theorems A, B, and C were described in
[19]. A special case of Theorem B first appeared in [17, (2.5) ]. (However,
none of the main results of [17 and 18] are consequences of the results of
the present paper.) Special cases of Theorem C were proved in [6, 16, 21,
24, 27, and 28]. No part of Theorem C is known in general without the
assumption that involutions are perspectivities; however, if n is equal to
q or q2, results exist asserting that 3P is a desarguesian or Hughes plane—
see the aforementioned references. Results such as Theorem C are
discussed for even n in § 8, Remark 1.

The organisation of the paper is as follows. In § 2 some known group-
theoretic facts are stated for reference. Section 3 contains known or
elementary geometric facts. In §4 we prove a result concerning a very
special type of solvable collineation group, from which Theorem A(iii)
follows easily. In § 5 Theorems A and B are proved, and in § 6 Theorem
C is. Variations and extensions of our results are discussed in § 8. In
particular, infinite versions of Theorems A and B are discussed in § 8,
Remark 5.

I am indebted to the referee for numerous helpful suggestions.

2. Group-theoretic preliminaries
If G is a group, then Z(G) is its centre, G' is its commutator subgroup,

and 0(G) is its largest normal subgroup of odd order. If X is a subset of G,
then NO(X) and C0(X) are its normalizer and centralizer. xv = x~h/x,
[%> y] = x~xy~xxy> and if X and Y are non-empty subsets of G, <Z> is the
subgroup generated by X, X° is the set of conjugates of X, and
lX,Y] = <lx,y-]\xeX,yeT>.

(2.1) Let A,B ^ G with B ^ N0(A), A elementary abelian, and
(| ̂ 4 |, | JB |) = 1. Then A = CA(B)x[A,B], where both factors are normalized
byNG(A)nNG(B).



388 WILLIAM M. KANTOR

Proof. See [12, p. 177].

(2.2) Let X:< Y ^ G. Let A ^ B be a p-group centralizing X,
normalizing Y, and centralizing Y/X. If p)(\ Y\, then A centralizes Y.

Proof. See [12, p. 224].

(2.3) (Glauberman's Z*-theorem.) Suppose G > O(G) and

Z(G/O(G)) = 1.

Then, for each involution t G G and each Sylow 2-group SofG containing t}

Cs(t)\{t} contains a conjugate oft.

Proof. See [10].

(2.4) (Burnside's fusion lemma.) Let P be a Sylow p-subgroup of G, and
let X and Y be non-empty unions ofconjugacy classes of P. If X and Y are
conjugate in G, then they are conjugate in N0(P).

Proof. See [5, p. 155].

(2.5) Let P be a Sylow p-subgroup of G, z e Z(P) with \z\ = p, and
g e P\Z(P) (g £ z°). Then there is an elementary abelian p-group E
containing z such that N0(E) has an element xfor which zx ±z andp Jf | x \.

Proof. See [5, p. 156].

(2.6) (Thompson's transfer lemma.) Let S be a Sylow 2-subgroup of G,
U < S, and S = (tyU for an involution t. Assume that t is conjugate in G to
no element of U. Then there exists H < G with G = H(t}.

Proof. See [12, p. 265, Ex. 3(i)].

(2.7) Let G be a group of even order, generated by its involutions, such that
O(G) = Z(G) = 1. If G has no elementary abelian subgroup of order 8, then
one of the following holds:

(i) G is isomorphic to PSL(2,g), PGL(2,g), PSL(3,g), PSU(3,g), A7, Mu,
or PSU(3,4), where q is an odd prime power;

(ii) G o Cx x C2, with Cx and C2 cyclic, \ Cx \ = | C21 > 2, and

Proof. Let H be a minimal normal subgroup of G. Then H is an
elementary abelian 2-group or a direct product of non-abelian simple
groups.

In the latter case, by [1], H is isomorphic to PSL(2,<7), PSL(3,g),
PSU(3, q), Mn, A7, or PSU(3,4) for some odd q. Since C0(H) contains no
involutions and is normal in G, G0(H) < O(G) = 1. Thus G ^ AutH. But
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0 is generated by its involutions. Hence (i) holds as 0 has no elementary
abelian subgroup of order 8.

Thus we may suppose that H is a Klein group. Clearly, O(CG(H)) = 1
and 10 : CO(H) | = 3 or 6. In particular, if X = (g e 0 \ g has odd order),
then H < X' and \X: CX{H)\ = 3. Clearly, 0{X) = 1 and X has no
subgroup of index 2. Since H < X, we also have Z(X) = 1.

Since \X: GX(H)| = 3, GX{H) contains a Sylow 2-subgroup 8 of X. By
the remark at the end of [1] (compare [3]), S = C1xC2 with Cx and C2

cyclic of the same order. By the Frattini argument, | Nx{8): Cx(8) | = 3.
We now use induction to show that 8 is normal in X of index 3. This

is obvious if 8 = H, so suppose 8 > H. Then 8/H is Sylow in X/H. Also
X/H has no subgroup of index 2 and no central involution, and
O(X/H) = 1. For, let Y/H = 0{X/H). By the Frattini argument,
X = HNX(O{Y)). Since 8 > H, NX{O(Y)) contains a Klein group of X,
which must be H. Thus [O(Y),H] < 0{Y)nH = 1, and hence

0(F) < OCX)-1,

so 7 = H. Consequently 0{X/H) = 1.
There are now two possibilities: (a) X/H has a normal Klein subgroup

K/H; or (b) X/H has a normal subgroup K/H x PSL(2,#) for some odd
q> 3 and \8/H\ = 4.

Assume (a) holds. Then, by induction, 8/H is normal in X/H of index 3.
Then 8 is normal in X of index 3. Since 0{Co(H)) = 1, it follows that (ii)
holds here.

Now assume (b) holds. We know that H < X'. Also, since K/H is
simple, H ^ Z(K). However, no such central extension of PSL(2,<7)
exists, by [26]. Thus (b) cannot occur.

(2.8) Let L be a group such that \Z(L)\ is odd and L/Z(L) is one of the
non-solvable groups in (2.7)(i). / / L is generated by its involutions, then
L is isomorphic to PSL(2,g), PGL(2,g), PSL(3,g), SL(3,g), PSU(3,g),
SU(3,g), A7, M u , PSU(3,4), or unique (up to isomorphism) groups
PSL^(2,9) and A7 having centres of order 3 with quotient groups PSL(2,9)
and A7.

Proof. Let H be the last term of the commutator series of L. Clearly
\Z(H)\ is odd and H/Z(H) is one of the groups in (2.7)(i) other than
PGL(2,g). Then H is isomorphic to PSL(2,g), PSL^(2,9), PSL(3,£),
SL(3,g), PSU(3,gr), SU(3,g), A7, A7, Mn, or PSU(3,4) (see [13]). If
L/Z(L) is not isomorphic to PGL(2,g), all its involutions are conjugate.
Since each coset of Z(L) in L has at most one involution, L has a single
class of involutions, all of which are in H. Thus H = L here.
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If L/Z{L) « PGL(2,q), there is an involution t e L\H such that
H(t}/Z{H) s PGL(2,0) and L = (H(t))Z(L). Thus H(t} is normal in L,
hence it contains all involutions in L, and thus H(t} is L.

I t remains only to show that we cannot have L = H(ty and
H = PSL^(2,9). Suppose this can occur. A Sylow 3-subgroup T of L
is extraspecial of order 27. By the Frattini argument, NL(T) has an
element of order 8, centralizing Z(T) = Z{L), and faithful on T/Z{T).
However, an extraspecial group of order 27 has no such automorphism.

3. Geometric preliminaries
Let & be a finite projective plane of order n. I t will be convenient to

write pp = p and LnL = L for each point p and line L. If a is a non-
trivial perspectivity, cff and Aa will denote its centre and axis. If A is any
set of collineations of 0* fixing a quadrangle pointwise, 8Ph denotes its
fixed point subplane. If F is any collineation group and S any set
consisting of more than one point, T(S) is the pointwise stabilizer of S.
T(L) and T(x) are the groups of perspectivities with axis L and centre x,

Throughout this section, we shall assume n is odd.

(3.1) Let a and r be commuting involutory homologies having different
axes. Then

(i) or is an involutory (A^n AT, cao7)-homology,
(ii) a is the only involutory (ca, Aff)-homology, and

(iii) any collineation fixing ca and Aa centralizes a.

Proof. See [23 and 20] (or [8, p. 120]) for proofs of (i) and (ii). Clearly
(ii) implies (iii).

(3.2) Let T be a collineation group of & containing a and T as in (3.1).
Then

(i) if a' and r are distinct commuting involutory homologies in F,
Af ^ AT.; and

(ii) F contains no elementary abelian subgroup of order 8 generated by
three homologies.

Proof, (i) Suppose A^ = AT>. Then a and a' are not conjugate, so
|<CT, ary\ must be divisible by 4. Let <a, CT"> be a Sylow 2-subgroup
of <CT, a'>, with a" conjugate to a'. Let p be the involution in <CTCT">. Then
p is the product of involutory homologies, and hence is one by (3.1)(i).
p commutes with a and a". By (3.1)(ii) applied to a and T, Aa # Ap so
(3.1)(ii) applies to a and p. Then (3.1)(ii) must also apply to p and a".
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But a' is conjugate to a", so (3.1)(ii) must apply to a' and T', which is not
the case.

(ii) See [17, (2.2)] for a proof of (ii).

(3.3) PROPOSITION. Let T be a collineation group of &>, where £P has odd
order n. If T contains an involutory homology, then so does the centre of a
Sylow 2-subgroup of T.

Proof. Deny this, and let a be an involutory homology such that a
Sylow 2-subgroup £ of Cr(a) has the largest possible order. Since 2 is not
Sylow in T, S < II ^ T with | I I : S| = 2. If -n e I I \ 2 , then -n interchanges
a and a' = an, and hence normalizes <(CT, CT'). Then II centralizes T = ad'.
The maximality of 2 shows that T cannot be a homology. However, if
Aa = Aa., then T is certainly a homology, while if Aa # A&, then T is
a homology by (3.1).

(3.4) Let a and r be distinct involutory homologies such that \OT\ is a
power of a prime p.

(i) Each fixed point of or is in AanAT or in cacT, unless ca = cT and or
is a (ca,ca{Avc\AT))-elation.

(ii) | or | divides n(n2 — 1).
(iii) / / ca = cT, then either Aa = AT and p\ (n— 1), or else Aa # AT, p\n,

and or is a (ca, co.(J.o.n AT))-elation.
(iv) / / ca^cTi A^^Ar, and AanAT$ c^, then |aT| | (?i- l) or

|or | | (n + l).

Proof. Anything proved for or will clearly hold for each of its powers.
Suppose CTT fixes a point x, where # is in neither cacr nor Aa.nAT. Then
ca, x, x* and cT, x, xT are collinear triples. Since x* = xT, it follows that
cai cT, x are collinear. Since x $ cacT, we must have ca = cT, so CTT has
centre ca. Thus either Aa = AT, in which case x ^ A(TnAT is impossible,
or Aa # AT and CTT is a (ca,ca(Aan AT))-elation (see [8, p. 120]). Moreover,
p | n here.

Suppose ca 7̂  cT and Aa ^ AT. If A(rnAr s cacr, then CTT fixes no point
off cacT, so p|n2. If AanAr $ cacT and CTT fixes some x e cacT, then CTT fixes
no point of (A^nA^x^A^nA^x) and |CTT||(?I— 1) (so p\(n— 1)); if,
however, CTT fixes no point of cacT, then £>|(?i + l), so <CTT) is semiregular
on cacr and | CTT 11 (n + 1).

If Aff = Ar and ca = cT, then CTT is clearly a (c^, ^J-homology, so
| o r | | ( n - l ) .

It is not difficult to see that (3.1), (3.2), (3.3), and (3.4)(i) also hold for
finite collineation groups of infinite protective planes. The same is true



392 WILLIAM M. KANTOR

of the next result, although slightly more care is needed (and, of course,
the assertion that 3 | (n-1) must be deleted in (3.5)(iii)).

(3.5) THEOREM. Let p be an odd prime, and U a non-trivial p-subgroup
of a collineation group P. Suppose II is inverted by an involutory homology
a e F. Then precisely one of the following holds:

- (i) all centres of involutions of. n<<7> coincide and Nr{U) fixes ca, or
dually;

(ii) there are two involutions of U<cr> having different centres and axes, all
centres of involutions in n<a> lie on a line fixed by Nr(U), and all
axes of involutions in II<(cr) lie on a point fixed by JV^(II);

(iii) p = 3 divides n—l, and each TT E II\{1} fixes exactly three points
which are non-collinear and are permuted transitively by II;

(iv) II fixes exactly three points x, y, z, which are non-collinear, x? = y,
z° = z, and iV^(II) induces S3 on {x,y,z}.

Proof. Since II is abelian, II acts on the sets of fixed points and lines
of each of its elements. Let n e n \ { l } . Then r = air is an involution
conjugate to a, and -n = ar.

Case 1. Aff # AT and ca ^ cT. By (3.4), the set of fixed points of it
consists of x = Aa n AT and some points on L = cacT; we do not know
whether x e L or x $ L. Let n and II fix/w and / n points of L, respectively.

We first claim that, if iV^(II) fixes x, then (ii) holds. For, since x e Aa

and all involutions in II<cr> are conjugate, the axes of all these involutions
pass through x. Thus if iV^(II) also fixes L, then (ii) holds. Suppose
9? e iVr(II) moves L. Then either cj or c / is not on L. Suppose, say,
cj $ L, and write p = a*. Then caj= cp$L and cp^ x e Ap. Consider
a p. Since a and p invert II, ap centralizes II. Also, ap fixes x and
M = cvcp. Note that II moves M (as otherwise II would fix ca = L n M,
and then r e a*1 would yield cc = cT). On the other hand, Cr(ap) ^ II
permutes the fixed points and lines of a p. Let fap denote the number of
fixed points of ap on M. If x e M, then x $ cpcr and ap centralizes
pr = {ap)~xar, so ap fixes cpcTnM # x,fap $s 2, and M is the unique fixed
line of ap having at least two fixed points. Thus Mu ^ M implies that
x $ M. Certainly x is the only fixed point of ap off M. If fap — 0, then M
is the unique fixed line of ap having no fixed points. If fvp = 1, then M is
the unique fixed line of ap having just one point (since all other fixed lines
must pass through x). If fap ^ 3, then M is the unique fixed line of ap
having more than two fixed points. Since II must move M, it follows that
fap = 2. But II fixes x, and hence permutes the pair {y, z} of fixed points
( # x) of ap, so II fixes yz = M. This contradiction proves our claim.

Dually, if i^r(II) fixes L, then (ii) holds.
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We now consider the various possibilities for/ff and / n .
If fn = 0, then L is the unique fixed line of TT, and hence of II, so

Nr(li) fixes L. Thus (ii) holds.
If /„ = 1 and x $ L, then L is the unique fixed line of TT (and II) having

one fixed point (since all fixed lines not equal to L pass through x, by (3.4)).
Thus .i^(II) again fixes L, so (ii) holds.

Suppose fv = 1 and x e L. Then TT fixes just one point, so ^(11) fixes
x and (ii) holds.

Suppose fn = 2 and x e L. Since | II | is odd, II must fix both fixed
points of rr. Thus Nr(U) fixes L.

Suppose fn ^ 3. Then clearly II fixes L. If also / n = 0, or / n = 1 and
x $ L, o r / n ^ 3 and x e L, then as before, ^(11) fixes L. Also, if/n = 1
and x 6 L, then ^.(11) fixes x. Thus we may assume that fn = 2 and
x $ L. Then II fixes exactly three points. The two fixed points in L are
fixed by TT, and hence are not fixed by a. Thus either ^t(II) fixes L, and
(ii) holds, or (iv) holds.

Finally, suppose fn = 2 and x $ L. Then TT fixes exactly three points
#, y, z, where L = yz, x" = x, and if — z. Suppose II fixes x. Then II
fixes exactly three points, and as before (ii) or (iv) holds.

Thus if (ii) and (iv) do not hold, then each n e II\{1} must fix exactly
three points. Moreover, II acts non-trivially on these points. That is,
(iii) holds.

Case 2. Aa = AT or cff = cT. Suppose ca = cT, so TT = or G T(ca). Since II
is abelian, it fixes c = ca.

Take any involution peII<a>\<(7)T). We claim that cp = c. For
suppose cp 7̂  c. If also Ap # Aa or Ap ± AT, we are back in Case 1. Thus
Aff = Ap = AT. Now or e Y{cv,Aa)} and ap e U commutes with or e II.
Thus ap fixes ca, which is absurd.

Consequently II<a> ^ F(c), so iVr(II) fixes c. Thus (i) holds.

(3.6) Suppose Aj x A2 is a collineation group, where Ax and A2 are dihedral
groups of order 2p with p an odd prime. Assume that all involutions in Ax

and A2 are homologies. Then, all elements of Ax are perspectivities having the
same centre or axis.

Proof. Deny this, and write Ax = <cr, T> and A2 = </LI, V> with a, r, p,,
and v involutory homologies. Clearly p. fixes cff, cT, Aa, AT, cac7r\Aa, and
CaCTnAT.

Suppose A(TnAT ^ c^. Then we must have cM = A(rnAT and
Ap =• cacT. Similarly, cv = ĉ  and A^ = -4P. However, a/n = p,a and
4̂ ^ Aa, so that JM = v by (3.1)(ii).
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Thus AanAT e cac^ so //, fixes the concurrent lines Aff, AT, cac7 and the

collinear points ca, cT, AanAT. This is impossible.

4. Some solvable collineation groups
The proof of Theorem A requires Theorem 4.1, which concerns very

specific types of solvable collineation groups.

(4.1) THEOREM. Let 8P be a protective plane of odd order, and let Abe a
collineation group of 0*. Assume that A/0(A)« A4, and that a Sylow
2-subgroup E of A contains involutory homologies having different axes.
Then E centralizes 0(A).

Proof. Let 0* and A produce a counter-example to (4.1) with minimal
|A|. By the Frattini argument, A = NA(£)0(A). By the Feit-Thompson
theorem [9], 0(A) is solvable. Let A be a minimal normal subgroup of A
contained in 0(A). Then A is an elementary abelian jp-group for some
prime p ^ 2.

Suppose that S centralizes A. Then A fixes the centres a, b, c of the
three involutions in 2 . Assume first that these are the only fixed points
of A. By (3.1), E centralizes Aa6c. A 3-element in NA(L) not in 0(F) must
move these points (as A = NA(Z)O(&)). Thus Aa6c = S x 0(Aa6c) has
index 3 in A, so that 0(Aa6c) = 0(A). However, we are assuming that
(4.1) is false.

Thus if E centralizes A, then A fixes a point not fixed by S. Since
NA(Z) is transitive on the fixed points of S, even if this point is on a side
of the fixed triangle of S, A is planar. A induces a collineation group A of
&A, having a Sylow 2-subgroup £ (the image of S) containing involutory
homologies with different axes. Moreover, iV^(£) is transitive on these
axes, so A/0(A) « A4. By the minimality of |A|, E centralizes 0(A).
Clearly, 0(A) ^ O(A).A(^A)/A(^A), so E centralizes 0(A)/0(A)n A(^). By
(3.1), S centralizes A ( ^ ) , and hence, by (2.2), also centralizes 0(A).

Consequently, S cannot centralize A. Write E = (o,ry. Since NA(L)
acts transitively on E\{1}, |CA(a)| = \CA(T)\ = \CA(ar)\ ^ |A|. Moreover,
since A is abelian A = CA(O)CA(T)CA(OT).

By (3.1), A does not fix any of the points ca, cr, caT, and hence neither
can CA(a). On the other hand, CA(a) fixes Aa and each point of ( c ^ (as
A is abelian). Here, (ca)

A contains both {ca)
CA{T) £ AT and (ca)°^tOT) £ AVT.

Since the lines Ar, AaT cannot both be fixed by CA(a), we may assume that
CA(r) fixes ca. However A = CA{O)CA{T)CA{OT) now implies that (cff)

A £ Aar.
Thus A fixes either ca or AaT, which is not the case. (I am grateful to R.
Liebler for providing the simplifications of my original proof contained in
the present paragraph.)
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The preceding proof shows that (4.1) also holds for finite collineation
groups of infinite planes.

5. Theorems A and B
Proof of Theorem A. (i) See (3.3) for this result.
(ii) By (2.3), there is a conjugate T of a such that <CT, T> is a Klein

group. Let T be a Sylow 2-subgroup of F containing <cr, T> with a e Z(T).
If <or, T> ^ Z(T), then (2.4) shows that N(T) moves a to T. In this case

N(T) must normalize <CT,T> by (3.2)(ii). Since N(T) must induce a group
of odd order on <<X,T> (as T is Sylow in F), (ii) follows.

If <(<r, T) ^ Z(T), then (2.5) yields an elementary abelian group II
containing a, and an element <p of N(TL) of odd order moving a. By (3.2),
<cr* | 8 G (cpy> must have order 4, and once again (ii) follows.

(iii) Take 2 as in (ii), and take a 3-element <p e iV(2)\C(2). Write
A = <yj>SO(F). By (4.1), 2 centralizes O(F). Thus all conjugates of a
centralize O(T).

Now O(F) fixes the centre and axis of each involution in 2 . Suppose
0(F) fixes only these three points x,y,z. Then F acts on {x,y,z}. Here
F x>Yxyz, where Txyz centralizes 2 by (3.1)(iii), and Y/Txyz is A3 or S3.
Thus, Yxys > 0(F).

Next, suppose 0{Y) fixes a point other than the centre of an involution
in 2. Then the transitivity of NT(Z) on these centres shows that O(T) is
planar. Clearly F acts on ^o(r)> an(^ each involutory homology p of F
induces an involutory homology on ^o<n- -"-11 particular, the centre and
axis of p are in ^o(r)- C3-1)^) shows that p centralizes T{&0{T)). Since
F* is generated by all such homologies p, F* centralizes F(^>

0(r)), so
O(F) ^ F(^0( r )) ^ Cr(F*). This proves (iii) and (iv).

Proof of Theorem B. By (3.2)(ii) and (2.7), either (a) F/O(F) is iso-
morphic to PSL(2,g), PGL(2,g), PSL(3,g), PSU(3,g), A7, PSU(3,4), or
Mu, where q is odd, or (b) F/O(F) has a normal subgroup (jp^) x <9?2>, with
19i I = 19% I = 2e ^ 2, having quotient group S3. By Theorem A,
O(T) ^ Z(F) in (a), while O(T) centralizes the Klein group of <9?x> x (<p2y
in (b).

It suffices to consider (a). By (2.8), we need to eliminate only the
possibility F a Mn. Thus, assume F is Mn, and regard it as represented
as usual on a set 8 of size 11. The stabilizer of an unordered pair from 8
has a subgroup isomorphic to S3xS3. By (3.6), we may assume that F
has a subgroup <(or, a') a S3 of perspectivities with centre x. Then
C(cr) < Tx, so Tx is precisely the stabilizer of an unordered pair from 8.
(Note that F cannot fix x, as otherwise we would have F ^ F(#).) Since
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a fixes exactly three elements of S, it fixes exactly 3 + 4 pairs from 8;
moreover, C{a) has orbits of lengths 3 and 4 on these seven pairs.

Consequently a fixes exactly seven points in xr, and C(a) permutes
these points in orbits of lengths 3 and 4. Then ca $ xT, and the seven
points are on Aa. Let <or, T> be a Klein group in F. As permutations of S,
a and r must interchange two fixed points of T and <r, respectively. Thus,
a and T fix at least two common pairs. This means that | Aff n AT n xr \ ^ 2.
Then A9 = AT> which is ridiculous.

6. Proof of Theorem C
Let ^ , F, and n be as in Theorem C. Let p be the prime dividing q.
Our approach will be to use the method described in [8, pp. 12-16].

More precisely, the points and lines of the desired subplane will be identi-
fied in terms of subgroups of F, with incidence defined by group
containment.

Case 1. F = PSL(3,g) or SL(3, q). By considering the action of F on
PG(2, q), we can find a subgroup Ax x A2 with Ax and A2 dihedral groups
of order 2p. By (3.6) and duality, we may assume that Ax < F(a;) for some
point x. If a G Ax is an involution, it follows that Cr(cr) < F^. Clearly
F ^ Tx as F ^ T{x). Thus \F :TX\ = q2 + q+l, and Fx is the stabilizer of a
point or line of PG(2,<jr).

Now a fixes q + 2 points of xr, which are permuted by C(a) in orbits of
lengths 1 and q+1. Consequently A^nx11 consists of q + 1 points, which
are also a line of PG(2, q). I t is now clear that xv, and the lines meeting it
at least twice, form a subplane ^ a PG(2, q).

Let II < T{L) induce a group of elations of ^0 of order q2. Then II is
inverted in F. Thus, by (3.4), q2\n2 and hence q\n.

Let y e F have order q— 1, fix precisely three points of ^> (which are
non-collinear), and be inverted in F. By (3.4), (q—1)| (n— 1).

Let S G F have order q + 1, fix precisely one line L of0o and one point
x $ L of ^ , and be inverted in F. By (3.4) (applied to each prime power
divisor of q+1), (q+l)\(n2-l).

Case 2. F = PGL(2,g) with (q,n) # 1. Let II be a Sylow ^-subgroup
of F. Then II has order q, and is inverted by an involution. We can apply
(3.5). As p\n and -A^(II) does not have S3 as a homomorphic image,
i^(II) fixes a point x and line X. By (3.4), x e X since p\n. Clearly xT

has q+1 points, and F acts 3-transitively on #r.
Let # and s/ be the sets of centres and axes of involutions in F. We

shall show that xTu<io and Xrujaf are the points and lines of a
desarguesian subplane of order q. Clearly each of these sets has q+l+q2

elements.
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If cff, cT e # with a and T different involutions satisfying | or | # p, the
structure of F ensures the existence of a unique involution p # a,r
centralizing <CT,T>, and then cv,cTeAp. Similarly, if or e II, then
a,r E iV^II) = F x , so ca,cT e X (since Aa ^ X).

Consider a; and c .̂ If a normalizes II, then ca 6 X. Suppose
a $£ -^(11) = Tx. Then o- centralizes the unique involution r in r ^ , so
cff e -4T. Also, T e iV^II) = Fx, so x e -4T (since a; ̂ = cT).

The preceding observations, and their duals, show that all incidences
between xTu<i^ and Xrus/ are the same as in a desarguesian plane of
order q. We have thus constructed the desired subplane 0>o of 2P.

As in Case 1, (q-l)\(n-l) and (q+l)\{n2 — l). U contains no non-
trivial elations of 0Q. Hence, by (3.4), II is semiregular off X, so q\n2.

Case 3. F = PSU(3,g) or SU(3,g) with {q,n) ^ 1. Let II be a Sylow
^-subgroup of F, so | IT | = q3. Since p \ n, U fixes a line X. If II fixes
X' # X, it fixes x = XnX ' , and hence (since p)( (n— 1)) a third line on x.
Each element of H\Z(n.) is inverted by an involution, so by (3.4) each
fixed line of II passes through x. Thus -iN (̂II) fixes x, so that \xT\ = q3 +1
and F is 2-transitive on z r .

Similarly, if II fixes just one line X, then -ZVĴ II) ^ Tx. Dualizing, and
proceeding as before, we again find that there is a point x such that
| xT | = qs +1 and F is 2-transitive on ar.

For any involution a, CT(a) is transitive on the fixed points of a in #r,
so Aa n xT is a line of the usual unital defined on xT. Consequently, if a
line of SP contains two points of xr it contains exactly q + 1 points.

Let a and T be any distinct involutions in F^. Then \ar\ = p\n. By
(3.4), x = AanAr e c^, so crexca. Consequently, all centres of
involutions in F^ lie on a line, which is clearly fixed by II, and hence may
be assumed to be X. In fact, even ^(11) = F^ must fix X.

Now, precisely as in Case 2, we can use xv, X r , and the centres and axes
of involutions of F, to construct a desarguesian subplane ^ of order q2.
(The existence of a unique involution commuting with two given
involutions a, r with pX\or\ is evident from the case in which

II acts on the n2 points off X. Since each element of II \Z(II) is inverted
by an involution and does not induce an elation of &0, (3.4) shows that the
stabilizer in II of a point off X must be in £(II). Thus, q2\n2. The
remainder of Case 3 is proved as in Case 1.

7. 2-groups
In this section we shall obtain some additional information concerning

the situation in Theorem A.
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(7.1) LEMMA. Let 3P be a protective plane of odd order, and T a 2-group

of collineations of 0* containing commuting involutory homologies having

different axes. Let r e T\Z(T) be an involutory homology which is a square

in T. Then there is an involutory homology a e Z(T) such that <(<r, T ) <J T.

Proof. By (3.3), Z(T) contains an involutory homology a. Suppose
<a, T> is not normal in T, and let T = y2 with y e T. Then y e NT((a, T>).
Let <p E T\NT((a,T» normalize NT((o,Ty). Then T9 and y are in
NT((o,T»\<CT,T>. Since y9 centralizes a and acts on <cr, T>, T9 = (y"')2

centralizes <cr, T>. This contradicts (3.2).

In the remainder of this section, 8P, F, and a will be as in Theorem A.

Let T b e a Sylow 2-subgroup of V such that a G Z(T) and S ^ T. Write

T+ = <oT>.

(7.2) LEMMA. / / T has no normal Klein subgroup, then T has no Baer

involutions (so Theorem B applies).

Proof. By [12, p. 199], T must be dihedral or quasidihedral. Suppose
T is dihedral. By Theorem A(ii), T\<a> contains a conjugate of a. If T
also contains a Baer involution a, T has a dihedral subgroup To of index 2
containing no Baer involution. Clearly T\TQ cannot contain a homology.
By (2.6), F has a normal subgroup Fo of index 2 such that ron!T = To.
Then F \ r o contains no involutory homology, whereas F is generated by
O(F) and by its involutory homologies.

If T is quasidihedral, it has just one class of involutions other than a,

so the lemma is clear by Theorem A(ii).

(7.3) LEMMA. If(aTn T} is a Klein group, then F has no Baer involutions
(so Theorem B applies).

Proof. By Theorem A(ii), all involutions in S = (aTnTy are conjugate.
Consequently i/ynT ^ E for all y e F. Now Goldschmidt's theorem on
strongly closed abelian subgroups [11] shows that ar is the set of all
involutions in F+ = <crr>, so Theorem B applies to F+.

If Theorem B(a) holds, then F+ is PSL(2, q) (q = 3 or 5 mod 8),
PSU(3,4), A7, or A7. We may assume F* > F+, so F * \ F + contains an
involutory homology p. Using (3.2), we find that F* is PGL(2,g), so all
involutions in F* (and hence in F = O(F)F*) are conjugate to a or p.
If Theorem B(b) holds for F+, the same argument shows that F* = F+.

(7.4) PROPOSITION. / / T has no normal Klein subgroup generated by
involutory homologies, then <CTrnT> is dihedral.
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Proof. We first claim that if r e T\{ar} is conjugate in F to a, then
CT(T) has no element with square a. For, suppose CT(r) has such an
element. By applying Sylow's theorem to Cr(a), we can find y e F such
that T^ = a and CT(T)T ^ T. Now ^ ( T ) ^ has an element whose square is
ay # T^, and this contradicts (7.1).

Let A be a dihedral subgroup of T maximal with respect to being
generated by two elements of aT. There can be no T e <jrn(T\&)
normalizing A. For, if there is such a r, consider A<T>. By (3.2) and the
preceding paragraph, CA(T) = <CT>. Then A<V> must be dihedral, and this
contradicts the maximality of A.

We can now show that A < T. For, if NT{h) < T, let <p e T\JVT(A)
normalize iV^A). Then A* normalizes A, while A9 ^ A, and this
contradicts the preceding paragraph.

Finally, the normality of A, together with its maximality, imply that A
contains ar n T. This completes the proof.

A more detailed version of the preceding argument yields information
even if T has a normal Klein subgroup generated by involutory homologies.
However, we have not been able to determine < a r n T ) in this case (it
should be dihedral of order 8, or be generated by three involutory
homologies /x, v, T, such that \)7 = a\i and vT = ov, where a e </zv> is an
involutory homology).

8. Concluding remarks
Let & be a protective plane of order n, and F a collineation group of

even order generated by involutory perspectivities.

REMARK 1. Suppose n is even and F contains involutory elations with
different centres or axes. Then, using [25, Theorem 3, and 14], it is
easy to show that the following are the only possibilities for F: F is iso-
morphic to PSL(2,2e), PSL(3,2e), SL(3,2e), PSU(3,2e), SU(3,2e), or
Sz(2e); F is a 2-group; | F | = 2 mod 4; or F has a normal elementary
abelian subgroup A, consisting of elations having the same centre or axis,
and F/A is isomorphic to PSL(2,2e), PSU(3,2e), or Sz(2e), or | F/A | = 2
mod 4.

It is also easy to show that, if F « PSL(2, 2e), PSL(3, 2C), or SL(3, 2e),
then 0* has a desarguesian F-invariant subplane of order 2e. Moreover,
2e|rc, (2e-1) | ( T I - 1 ) , and (2e+l) | ( n 2 - l ) .

However, as pointed out to me by Hering, the cases F « PSU(3,26) or
SU(3, 2e) are difficult to handle. It is easy to see that (by duality) it may
be assumed that F has a point-orbit xT of size 23e + 1. If # r is contained in
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a line, nothing is known. If xT is not contained in a line, there should be a
line-orbit of size 23e + 1 , but this seems very difficult to prove. This is one
of the rare instances where even order planes present difficulties not
found for odd order ones. Namely, if L is a line and |.Lna;r| ^ 2, then
|.Lna;r| = 2 e +l . It is now conceivable that every element of T(Lr)xT)
(which is a group of order q +1 or %(q +1)) is planar, a situation that did
not arise in Theorem C. On the other hand, if some such element is not
planar, the desired desarguesian subplane of order 22e can, indeed, be
constructed.

REMARK 2. Suppose n is odd, and suppose F contains a Klein group
with centre x, but F # T{x). This is a situation specifically excluded in
Theorems A, B, and C. In this case, F can be easily determined using
[14] (see [15] and [17, (2.5)]): F«SL(2,2e), PSU(3,2e), SU(3,2e), or
Sz(2e). However, it seems unlikely that any of these possibilities occurs.

By (2.3), if F contains an involutory homology but no Klein group
consisting of homologies, then | F | = 2 mod 4.

REMARK 3. Suppose F is as in Theorem B, and F is isomorphic to
PSL(2,g) (q = 1 mod 4), PGL(2,g), PSU(3,g), or SU(3,g). Assume that
(q, 3TI) = 1. Then F has point- and line-orbits of size q+l or qz + l.
Moreover, the incidence structure of centres and axes of involutory
perspectivities is isomorphic to that of PG(2,g) or PG(2,g2). Also, (3.4)
provides some additional numerical information, but the impossibility
of this situation remains to be proved.

We note that PSL(3,25) has a subgroup isomorphic to PSL(2,9). This
seems to make the case q = 3e particularly difficult.

REMARK 4. Case (b) of Theorems A(iii) and B actually occurs. (For
example, take PG(2, q), q = 1 mod 4, and let F be the stabilizer of a
triangle in PSL(3,g) or PFL(3,gO.) Note that, in Theorem B(b), a Sylow
2-subgroup of F is wreathed: Z^WTZ2, e ^ 2.

REMARK 5. We have already mentioned several times that many of
our results hold for finite collineation groups of infinite planes, provided
of course, that numerical information pertaining to the order of the plane
is deleted. Thus, all results of §§ 3, 4, 5, and 7, together with Theorem C(i),
have versions holding in the infinite case.

REMARK 6. The arguments used in (3.5), (4.1), and Theorem A(iii) do
not use the prime 2 in a significant way. Thus corresponding results can
be proved concerning central collineations of other orders. However, such



STRUCTURE OF COLLINEATION GROUPS 401

general results would be difficult to apply to the problem of classifying
finite collineation groups, in view of the central role of involutions in
this problem.
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