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Alperin [1] has recently introduced a fundamental method for conjugating
from one p-Sylow subgroup Q of a finite group G to a second p-Sylow sub-
group P in a series of steps. The importance of this is that it provides informa-
tion concerning the conjugacy in G of subsets of P, that is, fusion of subsets of
P. In certain situations it is possible to extend these results to the case of
conjugate p-subgroups Q and P of G which are not p-Sylow subgroups of G.

The situation of prime importance is that of a p-Sylow subgroup P of a
subgroup of G. That is, P is a p-Sylow subgroup of the stabilizer of a point in
transitive permutation representation of G. For example, our results apply to
the case of a p-Sylow subgroup of the stabilizer of a point in a 2-transitive
permutation group. In general, we are able to handle groups having a
sufficiently tight structure, such as groups having a split (B, N)-pair [4].
Moreover, solvable groups can be constructed in which the type of step-by-
step conjugation we consider need not apply to p-subgroups other than
p-Sylow subgroups. .

When P is a p-Sylow subgroup of G, Alperin [1] has indicated many
applications of his results to transfer. As we are concerned with p-subgroups
that arc not necessarily p-Sylow subgroups, our results seem most applicable
to fusion. In fact, the significance of our results on conjugation is that they
lead in a natural way to new results on fusion. We were thus led in §3 to
possibly unexpected results on fusion; most of these can, however, be easily
proved by direct methods.

Our notation is all standard. A C B denotes that A is a subset of B, while
A < B denotes that 4 is a subgroup of the group B. 4 < Bwillmean 4 < B
but A 54 B. If 4 is a subset of a group G, Ng(A) is the normalizer of 4 in G
and Cg(4) is the centralizer of 4 in G.

All groups considered will be finite.

We are grateful to I. M. Isaacs for making several helpful suggestions and
for providing Lemma 3.8.
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CONJUGATION OF p-SUBGROUPS 299
I. 'T'yE RELATION ~

Let G be a group and P a fixed p-subgroup of G.

Drerinrrion 1.1, LetQ be conjugate to I in G. The intersectionQ N P is
said to be tame provided that P N Ng(Q N P) and QO N Ng(O N P) are cach
maximal intersections of conjugates of P with Ng(Q N P). That is, if
PrOaNGONP)Z=PNNGONP)and PPN NG (O N P) =0 N Ng(Q NP),
then P'ANGONP)=|PANgQNP) and P:NNgQNP) -~
O N NGO N P).

When QNP =1 or Q = P, the conditions of Definition 1.1 are auto-
matically satisfied. If O N P is maximal among intersections of distinct
conjugates of P, then Q N P is easily seen to be tame. It should be noted that
the definition is dependent of the particular groups Q and P, not just the
group QO N P.

Lemya 1.2, If Q N P is a tame intersection and H, K are subgroups of G
with P p-Sylow in H and Q p-Sylow in K, then Np(Q N P) is p-Sylow in
Ny(O N P)and No(Q N P)is p-Sylow in N {Q N P).

Proof. By symmetry we need only show that Np(Q N P) is p-Sylow in
Ng{O N P). 1f this is not the case, let Ry > Np(Q N P) be p-Sylow in
Ng(O N PYand let Rbe p-Sylowin Hwith R = R, . Then RN\ NgG(Q N P) >
R, > P N Ng(Q N P), which contradicts the fact that Q N P is tame.

If P is a p-Sylow subgroup of G, thenQ N P is tame according to Definition
1.1 if and only if Np(Q N P)and N,(Q N P)arc cach p-Sylow in Ng(Q N P).
This agrees with Alperin [1].

Derixrrion 1.3, Let O, R be conjugates of P. We write ) ~ R provided
that there exist conjugates O, ,..., 0, , U ..., U, of P and elements ¥, ,..., X,
of G such that

(a) Q:;N P is tame intersection, 7 - = 1,..., 7.
by O.nP<<U,;,i =1,.,mn

(¢) xelU;NNgO;NP),i=1,.,n

(d) ©O° = R, where x := x| ,..., %, -

(¢) ONP<LO NPand

@nPyH <Oy 0P, i La,n—1

IfQ ~ R and x is as in Definition 1.2, we say that O ~ R via x. Condition
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(e) says that we conjugate from Q to R in a sequence of steps, each of which
keeps track of the intersection Q N P. Moreover, by condition (c) each
conjugation is performed by an element in some conjugate of P.

The relation ~ is reflexive but not necessarily symmetric. If Q ~ R is false
we write O 4 R

For completeness we state and prove three lemmas of Alperin [1].

Levva 1.4. IfQ, R, S are conjugates of P such that Q ~ R and R ~ S,
then Q ~ S.

Proof. Suppose Q;,U;,x;, i = l,..,m and R, V,,y;, t =1,.,n
yield Q ~ R and R ~ S as in Definition 1.1. Set I = m - n and

S; = % ) W, = 3[Jl:_m, and gz = e

i—m

We claim that S;, W, , 2;,7 = 1,..., [ yield QO ~ S.

Clearly S; N P is a tame intersection for 7 == 1,..., [; thus (a) holds. Also (b)
and (c) hold. If 2 = 2, -** 2, , then Q% = (Q-Fm)¥1--¥n = RV1--¥» = S50
that (d) holds.

By definition, Q " P <O NP =S NP Ifi-=1,.,m— 1, then

@O Py = QNP <0 NP = S0 P
Also
(Q N Pyn = ((Q N P < (O 0 PP AR
=0, "NPNRLRNPLRNP=S,,0nP

Finally, fori =m - 1,..., 1 — 1,
(Q a) P)zl..-lg — ((Q N P)xl"'xm)yl"'yi—m < (R N P)y.l’"'”i—m
KR mnNP=S;.

This proves the claim.

Levna 1.5. Let Q, R be conjugates of P such that RNP =0QnN P,
R ~ P uvia x, and O* ~ P. Then Q ~ P.

Proof. By Lemma 1.4 it suffices to show that O ~ Q= Let Q;, U;, x;,
i =1,..,n, yield R~ P, with x = x, - &, . We claim that Q ~ O via x.
For, NP < RN Pimpliesthat NPT RNP <LO, N Pand

(Q N P)xlm’- < (R a) P):cl.-.'.r,- g Qi+1 Ia) I),

fori =1,.,n—1.
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Lemma 1.6, Let Q, R be conjugates of P such that QN R >0 NP and
R ~ P. Suppose further that S ~ P for each conjugate S of Pwith| SN\ P >
'ONP|. ThenQ ~ P,

Proof. Let R~ P via x, so that R = P, Then O* NP =N R* =
{Q N R)*. By hypothesis we then have |O* NP | =|0NRI>|Q0NP|
sothat 0F ~P. AsROAPZ(QNRYNP =0 N Pand R ~ P, the result
follows from Lemma 1.5.

Lemva 1.7, Let Q be a conjugate of P such that Q O P is a tame inter-
section, ) &~ P, but S ~ P wherever S is a conjugate of P with | SN P | >
1O P, Let xc{Py,Qp>, where Py,Q, are subgroups of Ng{Q N P)
containing QO N P and conjugate in G to subgroups of P.

() If R is a conjugate of P such that RONP = Q N P, then R ~ R=,
(B) O°AP,O°NP =0nP, and O° N\ P is a tame intersection.

Proof. Letx =z, - x,,x;€Pyor x;€Qfori == 1,..,n Let P, <V,
Oy < W where V, W are conjugates of P. Set Q; =@, ¢ = 1,...,n. Set
U=V if x;ePyand U; = W if ;¢ P;. Then x,€ U N Ng(Q N P),
fe=l o, ROP =0, " Pand (RN Py =0, NP i=1,.,n—1
This yields R ~ R=, via x, proving (i).

Now set R =@. Since O ~0° and O+ P, we have Q%+ P. Since
xeNLONP),FNP2(ONPFEFNP=0NP. Thus |0°NP|>
O P|. As % + P, by hypothesis we must have |Q*NP| = {0 NP,
sothat O* NP =0NP.

It remains to show that 0% N Pis a tame intersection. Since Ny(Q¥ N P) =
Ng(Q N P) and since QM P is a tame intersection, PN Ng(Q* N P) is a
maximal intersection of a conjugate of P with N (O N P). Suppose that
S N NG(Q* N P) > Q=N Ng(Q* N P), where S is a conjugate of P.
Then

SO NQ N P) > 0%\ Ne@ ( P) = 0% 1\ No(Q N P,
so that

S5 N(Q N P) >0 N N«Q N P).

This contradicts the fact that Q N P is a tame intersection, proving (ii).

Tueorem 1.8. Let P be a subgroup of a finite group G. Suppose that there
is a confugate T of P for which T ~ P. Then there is a conjugate Q of P such that

(1) Q P, whereas S~ P whenever S is a conjugate of P with
I SNP|>|0NP|

481/16/2-10
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(ii) QN P is a tame intersection and Q # P.

(i) <Np(Q N P), No(Q N P)> is a p-group.

(iv) Let R be a conjugate of P containing Q N P and H, K, L subgroups of
G such that P, Q, R are p-Sylow in I, K, L, respectively. If Q N P is not
p-Sylow in KWL, then R+ P.

(v) Let R be a conjugate of P containing Q N\ P and H, K, L subgroups
of G such that P, Q, R are p-Sylow in H, K, L, respectively. If Q N P is not
p-Sylow in KL, then RN P = Q N P and this intersection is p-Sylow in
LnH.

(vi) Let P be p-Sylow in a subgroup H of G and Q) be p-Sylow in a sub-
group K of G. Then Q N P is p-Sylow tin KN H.

Proof. Let T be a conjugate of P such that T P and [ TN P| is
maximal for such groups 7. Then T 7 P, and S ~ P for every conjugate of
Psuchthat | SNP|> | TnNnP|

Let S be a conjugate of P containing PN Ng(T N P) such that
S N Ng(T N P) is a maximal intersection of Ng(T N P) with a conjugate of
P, Then SNP>PNNg(TNP)>TNP implies that S~ P. Let
S ~ P via x. By Lemma 1.5, T= « P. Moreover, P = §* > (T N P)?, so
that T*NP=2(TNPFENP=(TnPP. If T*NP > (TN P}, then
T*~P as |T*NnP|>|TnNnP| a contradiction. Thus, 7*°NP =
(TN P)®. We claim that PN Ng(T* N P) is a maximal intersection of
Ng(T= N P) with a conjugate of P. For, if V' is a conjugate of P such that
V N Ng(T2n\ P) > PN Ng(T% N P), then

V A Ny(T NPy = VN NgT=N P) > PN Ng(T N P,

so that V' N N(T N P) > P=" N Ng(T N P) = SN Ng(T N P), contra-
dicting the choice of S.

Let U be a conjugate of P containg 7% N Ng(T* N P) such that
U N Ng(T=% N P) is a maximal intersection of Ng(T* N P) with a conjugate
of P. We first note that U £ P. For otherwise,

*NUZT*NNg{(T*NP)>T*NnP

and Lemma 1.6 implies that T*~ P, a contradiction. Clearly,
UNP=2T*NP and |UNP|Z|T*°NP|=[(TNPF|=|TNP|
Then UN P = T=N P, as otherwise the maximality of | TN P| would
imply that U ~ P. As U N Ng(T* 0 P) = U N Ng(U N P) s, by definition,
a maximal intersection of Ng(T* N P) = N (U N P) with a conjugate of P,
and PN Ng(T=*N P) = PN NyzU N P) is known to be a maximal inter-
section of Ng(U N P) with a conjugate of P, U N P is a tame intersection.
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Let P be a p-Sylow subgroup of (Np(U N P), Ny(U N P)) containing
NxUN P). Let Nyj(U 0 Py < P, v e (Np(U N P), Ny(U "\ P)>. Tf we set
QO = U*, then Lemma 1.7 implies that U~Q, Q4 P, UNP=0NP
and O N P is a tame intersection.

We now verify (i)—(vi).

(i) We have already observed that Q ~ P. Moreover, IQN P! =
{UNP, =1 TN P, so that § ~ P whenever S is a conjugate of P for
which | SNP|>10NP|

(ii) Q M P is known to be a tame intersection.

(i) This follows from

NJQNP)=Ny(UnPyr <P and NHQNP)=NyUnP)<P.

(iv) Let R, be a p-Sylow subgroup of L such that Ng(Q N P) is
p-Sylow in Ni(Q N P) and N (Q N P) > Ng(Q N P). Let Q, be a p-Sylow
subgroup of K NL N NLQO N P), so that O, > Q0 N P. By Lemma 1.2,
Oy < No(Q N P for some y € {Qy, No(Q N P)>.ByLemmal.7,Q ~ Q¥ 24 P,
QNP =0n Pand Q" N Pis a tame intersection. Also Oy << N (Q N P)
for some ze€{Qy, Ng(Q N P). By Lemma 17, Q¥ ~Q¥ £ P and
QNP =0QNP =0nP. Since

0" MR >0F (R =0F >(@NPF=0NP=0%nP

and Q"* »4 P, by Lemma 1.6 Ry ¢ P. Then Ry NP > Q N P implies that
R,NP =0NP. Finally, RAR=NgQNP)>0AP =R NP, so
that another application of Lemma 1.6 yields R ~ P.

(v) Assume that O N P is not p-Sylow in K N L. Let R, be as in the
proof of (iv). By(iv), R4 P. As RN P = Q n P it follows that RN P =
onP.

Suppose thatQ N Pis not p-Sylow in L. N H. Let P, be a p-Sylow subgroup
of LN H N NGQ N P). Then P,>Q N P. As N (Q N P) is p-Sylow in
NAONP), there is an element te(P,,Ng(Q N P)) such that
Py < Ng (Q N P)'. By Lemma 1.2, there is an element w € (Py, Np(Q N P))
such that P < Np(Q N P). Then R, ~ R,' by Lemma 1.7, so that R,' «* P.
As RN P = Q0 N P we have Ry N P = Q N P. By another application of
Lemma 1.7, R;t ~ R, so that RI® ~* P, However,

IREAP|Z|PPNP|=|P"|>(QNPP*|=|0NP|
implies that R¥* ~ P, a contradiction.
(vi) Set R =QandL = Kin (v).

This completes the proof of Theorem 1.8.
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We note that, in Theorem 1.8 (iv), (v) and (vi), we may very well be
considering several permutation representations simultaneously.

As a consequence of the above theorem, we have the following result of
Alperin ([1], Lemma 5)

CoroLLARY 1.9. (Alperin). If Pisa p-Sylow in G and if Q is any conjugate
of P, then Q ~ P.

Proof. In Theorem 1.8 (vi)set H = K = G.
The situation considered in the following theorem is one of the simplest to
which Theorem 1.8 applies. As the proof illustrates, a fusion theorem can be

obtained whenever P is a p-subgroup of G such that Q ~ P for all conjugates
Q of P.

THeOREM 1.10. Let G be a finite group, H a subgroup of G, and P a
p-Sylow subgroup of H. Suppose that each intersection of the form H' N H
contains a p-Sylow subgroup of H. Let A and A* be subsets of P conjugate in G.
Then there exist conjugates Q, ,...,Q,, , Uy ..., U, of P and elements x, ,..., x,, , y
of G such that

(@) 5 =m
(b) Q; N Pis a tame intersection, i = 1,..., n.

(c) xisin U;NNg(Q; N P), i = 1,..,m, and y is in Ng(P).
d) O,NnPLU;,i=1,..,n

() ACO NPand A% CQ;, NP i=1..,n—1

We remark that, in Theorem 1.10, we have 4%1"**%:, 4%1**%i+1 contained in
Q.1 N Pand conjugate by the element x;,; of Ne(Q;;, N P), ¢ = 1,...,n — 1.

Proof. We first note that, by Theorem 1.8 (vi), we have P#" ~ P. Let
P7™" ~ Pvia xand choose conjugates Q, ,..., Q. , Uy ..., U, of Pand elements
%y 5o, %, in G in accordance with Definition 1.3. P7™'* = P, so setting
y = &'z we have y in Ng(P) and 2 = xy = x; -** x,y. This gives (a), (b),
(¢), (d) of Theorem 1.10. Since AC P NP <Q; N P and

A EHC (P AP L Qi AP, i=l.,n—1

(e) also holds.

This completes the proof.

As a particular case, if P is p-Sylow in G, Theorem 1.10, yields Alperin’s
Main Theorem [1].
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2. EXaMPLES

In this section we list some examples of situations in which Theorem 1.8
is applicable. In each case, our conclusion will be thatQ ~ P for all conjugates
Q of P. Hence, in each case there is a fusion Theorem as in Theorem 1.10 and
the remark preceding its proof.

ExampLE 1. Let G be a transitive permutation group on a finite set 2
such that each orbit of G, , a € £, has length relatively prime to p. Let Pbe a
p-Sylow subgroup of H = G,,.

Exampre 1. Let G be a finite group such that G = BN4(P)B, where B
is a subgroup of G and P is a p-Sylow subgroup of B.

Example 1 is precisely the situation already considered in Theorem 1.10.
Examples 1 and 1 are easily seen to describe the same situation,

ExampLE 2. Let G be a finite group having a normal subgroup M such
that G/M has a split (B, N)-pair (see [4] for definitions). Let G/M =
B/M - N|M - B{M in accordance with the (B, N) structure of G/M, and let
H|M be an abelian Hall subgroup of B/M with N/M < Ng,u(HIM).
Suppose that p | | H/M |, and let P be p-Sylow in H.

Since H <IN, N < HNg(P) by the Frattini argument. Therefore
G = BNB = BHN(P)B = BN¢(P)B.

We now appeal to Example 1'.
As a special case of Example 2 we have

ExampLe 3. G isafinite group having a split (B, N)-pair and P is p-Sylow
in the abelian Hall subgroup H of B.

ExampLE 4. Let G = GL(V), V an n-dimensional vector space over a
finite field of characteristic p. Let H be the pointwise stabilizer of a subspace
S of ¥V and P a p-Sylow subgroup of H.

Suppose that 0 = P? is as in Theorem 1.8. Let P be a p-Sylow subgroup
of G containing Np(Q N P) and Ny(Q N P). P fixes a nest (or composition
series) of subspaces V,CV,C - CV, =V, dmV, =1{,i = 1,.., n. Also,
P fixes a chain of subspaces S = S, CS,,;C--CS, =V, dmS; =1,
i == s,..., n, and thesc are the only subspaces fixed by P of dimension >:s.

Set t = dim(S -+ Sg); t may be n. As P9 P is p-Sylow in H* N H by
Theorem 1.8 (vi), P? N P fixes a chain of subspaces S + Sg = T, C---C T,
dim T; == {, ¢ == s,..., n, and these are the only subspaces fixed by P? N\ P of
dimension =t. As P9 " P < P, it follows that T; = S, ,1 == t,..., n. Similarly,
T; == S;g,i=1t,..,n As P and P9 stabilize the chain 7, C ---C T, , and
Py P is the only p-Sylow subgroup of H? N H stabilizing this chain, it
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follows that P and P? normalize P? N P. Then also P, P¢ < P, so that these
groups stabilize the nest V,C ---CV, . It follows that S; =V, = S;g,
1 =5,...,n. In particular, S = Sg. Then both P and P?¢ are the pointwise
stabilizer of S = Sg in P. Thus, P = P9, a contradiction.

It is clear that the above argument is equally valid for SL(¥'), PGL(V) and
PSL(V).

ExampLE 5. Let G be a 2-transitive permutation group on a finite set £,
and let P be a p-Sylow subgroup of G, , a € 2.

Setn = | 2 . If p + nthen Pis p-Sylow in G and Alperin’s result (Corollary
1.9) applies. If p | n then p  (» — 1) and Example 1 applies.

We now consider the case of a 2-transitive group in which the stabilizer of a
point is one of the groups described in Example 1. Theorem 1.8 (v) is needed
here.

ExamprLE 6. Let G be a 2-transitive permutation group on a finite set £
such that each orbit of G5, o, B € 2, « 7 B, has length relatively prime to p.
Let P be a p-Sylow subgroup of G,5.

Let O be a conjugate of P as in Theorem 1.8. By hypothesis, P < G4, for
some y 5~ o, B, and Q < G,,, 8 = €. As 8 5 « or B, we may assume that
8+ a Set H=G,;, K=0G, and L == G,;. Then QNP <G, =
K N L and, by hypothesis, K N\ L contains a p-Sylow subgroup R of L
containing O N P. By Theorem 1.8 (v) it follows that RNP =0 NP is
p-Sylow in L N H = G4, . As G g5 contains a p-Sylow subgroup of G, , we
must have Q = P, a contradiction.

As in Example 5, we now obtain

Exavpie 7. Let G be a finite 3-transitive permutation group and P a
p-Sylow subgroup of the stabilizer of two points.

3. ArpLicATIONS TO FuUsioNn.

Let P be a p-subgroup of a group G.

DeriniTION 3.1, A subgroup N of G is said to control fusion in P provided
that two subsets of P conjugate in G are already conjugate in N.

Levma 3.2. Let P << G be a non-abelian Hamiltonian 2-group and let
O, U be conjugates of P with Q NP <L U. If g€ U, then there is an element
h € P such that gh™' € Co(Q N P).

Proof. LetQ N P = CxD, where D is elementary abelian and C is either
quaternion of order 8 or cyclic of order <(4. Then D is centralized by P and U.
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If C is quaternion then U = (Q N P) - Cy,(Q N P), which implies the result,
If C is cyclic of order <(4 then g either centralizes or inverts Q N P, and either
action can be obtained by the use of an element of P.There is thus an element
kin P with gh-1 e C4(Q N P).

TaeOREM 3.3. Let G be a finite group, H a subgroup of G, and P a p-Sylow
subgroup of H. Suppose that P is Hamiltonian and that each intersection of the
form P9\ P <P is not a p-Sylow subgroup of H* N\ H. Then N {P) controls
Jusion in P.

Proof. By Theorem 1.8 (vi) we have Q ~ P for each conjugate Q of P;
and by the remark preceding Theorem 1.10 it follows that the conclusions of
Theorem 1.10 hold if 4, A® are subsets of P conjugate in G. Thus, there are
conjugates O, ,..., 0, , U, ..., U, of P and elements x, ,..., x, , ¥ of G satis-
fying (a)-(e) of Theorem 1.10. If P is abelian then x; centralizes O, N P,
i = 1,..., n, so that 4% = A=12v = 4¥; since y € Ng(P) the result follows.
If P is non-abelian then Lemma 3.2 applies, and for each ¢ = 1,..., n there is
an element A; € P such that A% % = A% @i-ik, Then A% = A% %Y =
Arvhav and ky - b,y € Ng(P). This completes the proof of the theorem.

The above theorem generalizes a classical result of Burnside [3], p. 327. We
note that the hypotheses of Theorem 3.3 imply that H¢ N H always contains a
p-Sylow subgroup of H (see Lemma 3.8). Using this fact and Burnside’s
method, it is possible to give a direct proof of Theorem 3.3 (see the proof of
Theorem 3.7). However, we note that the proofs of Theorems 1.10 and 3.3
show that Ng(P) controls fusion in P whenever P is a Hamiltonian p-subgroup
of G and Q ~ P for each conjugate Q of P.

If P is assumed to be a nilpotent Hall subgroup of a subgroup H of G, then
much of §1 holds with little change. This is due to theorems of Wielandt [5].
In particular, Theorem 1.8 can be generalized with the exception that part (iii)
must be removed. As a result, Theorem 3.3 holds in the more general setting.
We mention one special case (see §2, Example 3).

CoroLLARY 3.4. Let G be a group with a split (B, N)-pair and let H be a
g-complement in B, where q is the characteristic of the group. Then N;(H) controls
fusion in H.

This corollary can also be proved directly using the uniqueness of the
Bruhat decomposition, although our proof indicates that the only fact needed
is G == BNg(H)B.

As in Theorem 3.3, by examining the step-by-step conjugation we obtain
the following

TueorREM 3.5. Let G be a finite group, H a subgroup of G, and P a p-Sylow
subgroup of H. Suppose that each intersection of the form P? N\ P < P is not a
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p-Sylow subgroup of H* N H. Then Ng(P) controls the fusion of maximal
subgroups of P. That is, two maximal subgroups of P conjugate in G are already
conjugate in Ng(P).

More generally, the conclusion of Theorem 3.5 holds whenever it is known
that Q ~ P for all conjugates Q of P. An interesting spccial case of this
gencralization is provided by the situation described in §2, Example 4.

We remark that, in Theorem 3.5, if we had assumed that P is a p-group
having a cyclic maximal subgroup of order p*, then we would conclude that
Ng(P) controls the fusion of elements of order p* in P.

DeriNiTiON 3.6. If P is a subgroup of G, let Z*(P) consist of those
elements x of P with the property that each conjugate of x lying in P is actually
in Z(P).

We were led to the proof of the following theorem by the step-by-step
conjugation approach. However, we shall first give a proof by direct methods.

TreEOREM 3.7. Let P be p-Sylow in a subgroup H of G such that each
tntersection of the form P? N P < P is not a p-Sylow subgroup of HY N H. Then
Z*(P) is a group and Ng(Z*(P)) controls fusion in P.

Lemma 3.8. (I. M. Isaacs). Suppose P, H, G satisfy the hypotheses of
Theorem 3.7. Then each intersection H* N H contains a p-Sylow subgroup of H.

Proof. Letge GandsetQ = P9 K = H". Let R be p-Sylowin K N H.
There are elements k€ H, k € K such that R <{ P* and R < Q. If P* = QF,
then P*» << K N H as required. Suppose that P* = Q%. By hypothesis, there
is a p-Sylow subgroup S of K* " N H properly containing Q*** N P. Then
RSOFNPr=(Q* ' NPy < S (K ' NnH = KNnH As R is
p-Sylow in K N H, this is a contradiction.

Proof of Theorem 3.7. Let A and A" be subsets of P conjugate in G.
Then ACP?NP. Let R be a p-Sylow subgroup of H? N H containing
PrN P. By Lemma 3.8, R is p-Sylow in H and H?. By definition, Cg(4)
contains Z*(P), Z*(R) and Z*(P?9). As Z*(P) and Z*(R) are in Cy(A4), there is
an element ¢ € Cgx(A4) such that (Z*(P)°, Z*(R)) is contained in a p-Sylow
subgroup P, of H. Since Z*(P;) is weakly closed in P, with respect to G, it
follows that Z*(P)* = Z*(P,) = Z*(R). Similarly, Z*(R)? = Z*(P?) with
de Cy(A). Thus, Z¥P)® = Z*(P). Set n =cdg™l. Then A9 =
Ae7'n — A Tt follows that Ng(Z*(P)) controls fusion in P.

To show that Z*(P) is a group we need only prove that, if a, b € Z*(P),
then ab € Z*(P). Let (ab)? € P. Since Ng(Z*(P)) controls fusion in P we may
assume that g € Ng(Z*(P)). Then a?, b9 arc in Z*(P) < Z(P), so that (ab)? =
a’h? € Z(P).
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CororLarY 3.9. Let P be a p-Sylow subgroup of a subgroup H of G such that
each intersection of the form P? " P < P is not a p~-Sylow subgroup of H? N H.
If the subgroup £2,(P) of P generated by all elements of order dividing p is a
subgroup of Z(P), then Ng(Q2,(P)) controls fusion in P.

In order to give an alternative proof of Theorem 3.7, we first introduce a
conjugation family, in the sense of Alperin [1]. Let P be a p-subgroup of
group G. Let # be the set of pairs (0 N P, T) where O N P is a tame inter-
section and T = NGO N P) if ZXP)CONP, while T = Cx(O N P) if
ZHPYLON P

For conjugates O, R of P we define Q &~ R in case there exist elements
(O, NP, T)),....(Q. P, T)) of &, conjugates U, ,..., U, of P, and elements
Xy yeery X, In G such that

() QnPLlU;,i=1,.,n
b) xeU,NT;i=1l.,n

(c) Q== = R.
(d) ONP<LO,NPand(QN Py 5 <Q, AP, i=1,,n—1.

Tueorem 3.10. Let P be p-Sylow in a subgroup H of G such that, for each
g€ G, H* N H contains a p-Svylow subgroup of H. If Q is any conjugate of P, then
O~ P.

Theorem 3.10 can be proved by using the same methods as in Theorem 1.8
{compare Alperin [1], Theorem 5.1).

Alternative proof of Theorem 3.71. Theorem 3.7 leads to a fusion theorem
as in Theorem 1.10. If 4, A* are subsets of P conjugate in G then there are
elements (Q, " P, TY),...,(Q, N P, T,) of #, conjugates U, ,..., U, of P, and
elements x,,.,%,,y of G such that A% == A% %v  ye N(P), and
x;elU;nT;, for { = 1,.,n Suppose that Z¥P)CQ,;N P and hence
T; = Ng(Q; N P). Then Z¥(Py CQ,n P < P, so that Z¥Py = Z*P)
and x; € Ng(Z*(P)). If Z¥(P)L Q; N P, then x; € Co(Q; N P) and 45 % =
Azcozi-i Since y € Ng(P) < Ng(Z%(P)), we have A* = A* for some
he Ng(Z*(P)). This proves that Ng(Z*(P)) controls fusion in P. The
remaining assertion of Theorem 3.7 is proved as before.

4, CONCLUDING REMARKS

Results such as those proved in Alperin and Gorenstein [2] seem to rely
strongly on having a p-Sylow subgroup P of G. However, it seems likely that
further fusion results along the lincs of Theorems 1.10, 3.3, 3.5, and 3.7 can
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be obtained. It would also be of interest to have more examples of situations
in which Q ~ P for all conjugates O of P. In the situation of Theorem 1.8,
additional information can be obtained concerning the conjugates of P
containing O N P. For example, we mention without proof the following
generalization of Theorem 1.8 (iv) and (v):

LetQ = R,,..., R, be conjugates of P containingQ N PandL,,..,.L,, H
subgroups of G such that R; is p-Sylow in L, , i = 1,..., n, and P is p-Sylow
in H. Suppose that O N Pis not p-SylowinL, "L, ,i = 1,...,n — 1. Then
R,£P,RRNP==QNPandQN Pisp-SylowinL,N H, 7 = 1,..., n.
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