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Alperin [I] has recently introduced a fundamental method for conjugating 
from one p-Sylow subgroup Q of a finite group G to a second p-Sylow sub- 
group Pin a series of steps. The importance of this is that it provides informa- 
tion concerning the conjugacy in G of subsets of P, that is, fusion of subsets of 
P. In certain situations it is possible to extend these results to the case of 
conjugate p-subgroups Q and P of G which are not p-Sylow subgroups of G. 

The situation of prime importance is that of a p-Sylow subgroup P of a 
subgroup of G. That is, P is a p-Sylow subgroup of the stabilizer of a point in 
transitive permutation representation of G. For example, our results apply to 
the case of a p-Sylow subgroup of the stabilizer of a point in a 2-transitive 
permutation group. In general, we are able to handle groups having a 
sufficiently tight structure, such as groups having a split (B, N)-pair [4]. 
Moreover, solvable groups can be constructed in which the type of step-by- 
step conjugation we consider need not apply to p-subgroups other than 
p-Sylow subgroups. 

When P is a p-Sylow subgroup of G, Alperin [1] has indicated many 
applications of his results to transfer. As we are concerned with p-subgroups 
that arc not necessarily p-Sylow subgroups, our results seem most applicable 
to fusion. In fact, the significance of our results on conjugation is that they 
lead in a natural way to new results on fusion. We were thus led in 93 to 
possibly unexpected results on fusion; most of these can, however, be easily 
proved by direct methods. 

Our notation is all standard. A C B denotes that A is a subset of B, while 
A ,( B denotes that A is a subgroup of the group B. A < B will mean A < B 
but A -i: B. If A is a subset of a group G, N,(A) is the normalizer of A in G 
and C,(A) is the centralizer of A in G. 

All groups considered will be finite. 
WC are grateful to I. M. Isaacs for making several helpful suggestions and 

for providing Lemma 3.8. 
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Let G be a group and I’ a fixed p-subgroup of G. 

Tl~~rsrrro~ 1. I. LetQ be conjugate to P in G. The intersection Q n P is 
said to bc tame provided that P n N,(Q n P) and Q n XG(Q n 1’) are each 
maximal intersections of conjugates of I’ with N,JQ n P). That is, if 
P n XG(Q n P) 2 P n :VG(Q n P) and Pz n X,(Q n P) > Q n NG(Q nP). 
then P n :V,(Q n P) = IP n r\l;,(Q n P) and P n fV,(Q n P) ~- 
Q n i\i;(Q n P). 

\Vhcn Q n P := 1 or Q =. P, the conditions of Definition 1.1 arc auto- 
matically satisfied. If  Q n 1’ is maximal among intersections of distinct 
conjugates of P, then Q n P is easily seen to be tame. It should be noted that 
the definition is dependent of the particular groups Q and P, not just the 
group Q n P. 

LEM~IA 1.2. If Q n P is a tame intersection and H, K are subgroups of G 
with P p-Sylou: in H and Q p-Sylow in K, then N,,(Q n P) is p-S’ylou: in 

XH(Q n P) and X,(Q n P) is p-Sylozc in N&Q n P). 

Proof. By symmetry we need only show that N,(Q n P) is p-Sylow in 

XH(Q n P). If  this is not the case, let R, > Ab(Q n P) be pSylow in 
X,(Q n P) and let R bcp-Sylow in H with R > R, . Then R n :V,(Q n P) > 
R, > P n N,(Q n P), which contradicts the fact that Q n P is tame. 

If  P is a p-Sylow subgroup of G, then Q n P is tame according to Definition 

1.1 if and only if NP(Q n P) and N,(Q n P) are each p-Sylow in Nc(Q n I’). 
This agrees with Alperin [l]. 

DEFISITION 1.3. Let Q, R be conjugates of P. \Ye write Q w R provided 
that there exist conjugates Q1 ,..., Qn , U, ,..., li,8 of P and elements X, ,..., X, 

of G such that 

(a) Qi n P is tame intersection, i : I,..., n. 

(b) Qi n P < L;, , i -: l,..., n. 

(c) xi E c’; n N,(Qi n P), i =: l,..., n. 

(d) Q” = R, where x : = x1 ,..., x,~ . 

(c) Q n P <; Q, n P and 

(Q n P)rl’.+ < Q,+l n P, i-.- 1 ,...) n - I. 

IfQ N R and x is as in Definition 1.2, WC say that Q .- R via X. Condition 
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(e) says that we conjugate from Q to R in a sequence of steps, each of which 
keeps track of the intersection Q n P. Moreover, by condition (c) each 

conjugation is performed by an clement in some conjugate of P. 
The relation m is reflexive but not necessarily symmetric. I f  Q N R is false 

we write Q + R. 
For completeness we state and prove three lemmas of Alperin [I]. 

LEMMA 1.4. If Q, R, S are conjugates of P such that Q - R and R N S, 
then Q N S. 

Proof. Suppose Qi , Ui , xi , i ;= l,..., m and Ri , Vi , yi , i = I,..., n, 
yield Q N R and R N SasinDctinition1.1.Setl=m+nand 

and 
i = l,..., m 
i = m -f 1 ,**a, 1. 

We claim that Si , Wi , xi , i = I,..., 1 yield Q m S. 
Clearly Si n P is a tame intersection for i = l,..., I; thus (a) holds. Also (b) 

and (c) hold. If  x z x1 ... xL , then p = (~..+n)y1...ys = RBI...Y~ z &‘j’, so 

that (d) holds. 
By definition, Q n P < Qi n P = S, n P. I f  i -.= I,..., m - 1, then 

(Q n p)Zl”*% _ (Q n P)x,+i < QiLl n P : SiA1 n P. 

Also 

(Q n p)zl”‘zm = ((Q n p)z1”‘2~~--1~ < (Q, n p)“~~ n R 

-Q,nPnR,<RnP~RR,nP=SSn,.~lnP. 

Finally, for i = m +- I,..., 1 - 1, 

This proves the claim. 

LEMMA 1.5. Let Q, R be conjugates of P such that R n P 3 Q n P, 
RmPviax,and_0”wP. ThenQNP. 

Proof. By Lemma 1.4 it SURFACES to show that Q N p. Let Qi , Ui , xi , 
i = I,..., n, yield R m P, with x’ = x1 *.. x, . We claim that Q -p via x. 
For, Q n P < R n P implies that Q n P < R n P .< Qi n P and 

for i = l,..., n - 1. 
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LEMMA 1.6. Let Q, R be canjuga&?s of P SW% that (j CT R > Q n P and 
R N P. Suppose further that S - Pfor each conjugate S of P with j S n P ; > 
!QnPj. TheuQ-P. 

Proof. Let R - P via x, so that R” = P. Then f?” n P = p n Rz --- 
(Q n R)5. By hypothesis we then have j p r? P j = I Q n R i > 1 Q n P /, 
so that p ~P.AsHnP~(QnR)nP,=Q?PaandR~P)thercsult 
follows from Lemma 1.5. 

LEMM\IA 1.7. Let Q be a conjugate of P such that Q n P & a tame intm- 
section, Q y: P, bt(t S - P wherever S is a cmjugate of P with ] S n P 1 > 
I Q n P i. Let x f <PO , Quo>, where PO, Qs are .&groups of NG(Q IT P) 
containing Q 0 P and conjugate in G to subgroups of P. 

(i) If R is a conjugate of P such that R 0 P = Q n P, tha R - Rx, 

(ii) (2” + P, p n P =I- Q IT P, and p CT P is a tame ~nt~secti~. 

Proof. Letx=x,.--x,, xiE:PsorxifQ,,fori= I,..., n.LetPe<V, 
QO :< W where V, W are conjugates of P. Set Qi = Q, i = l,..., n. Set 

Ui LT V if x, E P, and Ui = W if xi $ PO . Then xi E U”( n NG(Q IY P), 
i -- l,..., n, R n P == Qr n P and (R n P)xl..*xf = Qi+, n P, i = I,..., n - I. 
This yields R - R”, via x, proving (i). 

liow set R = Q. Since Q -IQ” and Q + P, we have 8” + P. Since 
.~E~~7~(QnP),~rtPs(QnP~nPr:QnP. 'I%us IpnPI 2 
iQnP[. Asp+P, by hypothesiswemusthave !pnP/ = fQnP//, 
sothatpnP==QnP. 

It remains to show that &” n P is a tame intersection. Since NG(p n P) = 
:V,(Q n P) an d since Q n P is a tame intersection, P n iVG(p IT P) is a 
maximal intersection of a conjugate of P with N&p n P). Suppose that 
S n XG(’ n P) > 8” n Ni(p” n P), where S is a conjugate of P. 
Then 

SnMG(QnP)>~nLVG(QnP)=pnNG(QnP)z, 

so that 

S=-” n X&Q n P> ‘, Q n NG(Q n P). 

This contradicts the fact that Q n P is a tame intersection, proving (ii). 

THEOREX 1.8. Let P be a s~g~~u~ of a finite group G. Suppose that there 
is a couj~gate T of P for which T + P. Then there is a ~o~jugate Q of P such that 

(i) Q + P, whereas S - P whenever S is a conjugate of P with 
;SnPI>!QnP/. 

48r/r6,l2-10 
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(ii) Q n P is a tame intersection andQ # P. 
(iii) (Np(Q n P), No(Q n P)> is a p-group. 
(iv) Let R be a conjugate of P containing Q n P and H, K, L subgroups of 

G such that P, Q, R are p-Sylow in II, K, L, respectively. If Q n P is not 
p-Sylow in KnL, then R +P. 

(v) Let R be a conjugate of P containing Q n P and H, K, L subgroups 
of G such that P, Q, R are p-Sylow in H, K, L, respectively. If Q n P is not 
p-Sylv~ in K n L, then R n P = Q n P and this intersection is p-Sylow in 
L n H. 

(vi) Let P be p-Sylou in a subgroup H of G and Q be p-Sylow in a sub- 
group K of G. Then Q n P is p-Sylow in K n H. 

Proof. Let T be a conjugate of P such that T + P and 1 T n P 1 is 
maximal for such groups T. Then T # P, and S N P for every conjugate of 
PsuchthatISnP( > [ TnPI. 

Let S be a conjugate of P containing P n N,(T n P) such that 
S n NG( T n P) is a maximal intersection of No( T n P) with a conjugate of 
P. Then S n P > P n N,(T n P) > 1’ n P implies that S N P. Let 
S - P via x. By Lemma 1.5, Tz + P. -Moreover, P = Sz >, (T n P)", so 
that T"nP>(TnP)+nP==(TnP)". If TxnP>(TnP)", then 
T"-P as 1 TznP( >I TnPI, a contradiction. Thus, TxnP= 
(T n P>". We claim that P n NG( Ta n P) is a maximal intersection of 
NG(Tz n P) with a conjugate of P. For, if V is a conjugate of P such that 
Vn NG( Tzn P) > Pn hTc(Tzn P), then 

VnNG(TnP>"= VnNG(TxnP)>PnNG(TnP)", 

SO that V-' n NG( T n P) > Pz-’ n N,( T n P) = S n N,( T n P), contra- 
dicting the choice of S. 

Let U be a conjugate of P containg TX n NJTZ n P) such that 
U n N,(T" n P) is a maximal intersection of N,(Tz n P) with a conjugate 
of P. We first note that U + P. For otherwise, 

and Lemma 1.6 implies that TX N P, a contradiction. Clearly, 
Unti>TxnP and jUnPIalTznPI=I(TnP)zI=(TnPj. 
Then U n P = T" n P, as otherwise the maximality of ( T n P I would 
imply that U N P. -4s U n Nc( T" n P) = C’ n No( U n P) is, by definition, 
a maximal intersection of hTG( Ts n P) = N,( U n P) with a conjugate of P, 
and P n N,(Tx n P) = P n NG(U n P) is known to be a maximal inter- 
section of N&U n P) with a conjugate of P, U n P is a tame intersection. 
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Let P be a p-Sylow subgroup of (Nr.(U 0 P), N,(U n P)) containing 
Np( U n P). Let N&J n P>” <. P, ZI E {Np( t’ n P), N&U n P)i. If we set 
Q = U’, then Lemma 1.7 implies that U-Q, Q+P, UnP =QnP 
and Q n P is a tame intersection. 

We now verify (i)-(vi). 

(i) We have already observed that Q +J P. Moreover, ! Q n P ! = 
/ UnP! = 1 TnP\, SO that S N P whenever S is a conjugate of P for 
whichiSnP\>jQnPj, 

(ii) Q n P is known to be a tame intersection, 

(iii) This follows from 
-. 

Np(QnP)=N,(UnP)",<P and N&Q n P) = Np{Un P) < B. 

(iv) Let R, be a p-Sylow subgroup of L such that NRJQ n P) is 
p-Sylow in NL(Q n P) and NR,(Q n P> 2 N,(Q n P). Let QO be a p-Sylow 
subgroup of K n L n fV,(Q n P), so that QO > Q n P. By Lemma 1.2, 
QO S. N&Q n P)" for somey E(Q,,, h70(Q n P)).ByLemma1.7,Q m&v + P, 
Q” n P = Q n P and 8” n P is a tame intersection. Also Qaz < N,l(Q n P) 
for some z F (QO , N,,(Q n P)). By Lemma 1.7, 9” m(2”” + P and 
p n P .= Qg n P = Q n P. Since 

011~ n R 1 &QoZn R, ==Qg >(QnP)Z =Q n P =QyznP 

and Q2”” + P, by Lemma 1.6 R, + P. Then R, n P > Q n P implies that 
R, n P -= Q n P. Finally, R, n R > N,(Q k~ P)>Q n P ==- R, n P, SO 
that another application of Lemma 1.6 yields R + P. 

(v) Assume that Q n P is not p-Sylow in K n L. Let R, be as in the 
proof of (iv). By(iv), R + P. As R n P > Q n P it follows that R n P = 
Q n P. 

Suppose that Q n P is notp-Sylow inl; n H. Let P,, be ap-Sylow subgroup 
of L n H n ill&Q n P). Then PO > Q n P. As .NEI(Q n P) is p-Sylow in 
-VLfQ n P), there is an element t E (PO , Nxz(Q n P)> such that 
PO < I\'~,(Q n P)“. By L emma 1.2, there is an element w E (PO , Np(Q n P)) 
such that P,,lc &. N,(Q n P). Then R, N Rlt by Lemma 1.7, so that Rlt + P. 
As Rlt n P > Q n P we have Rlt n P = Q n P. By another application of 
Lemma 1.7, Rxt - Ri", so that R:" + P. However, 

IR:“nPj>\PomnPj= iPow\ >;(QnP)wj= ]QnPl 

implies that RiW N P, a contradiction. 

(vi) SetR=QandL=Xin(v). 

This completes the proof of Theorem 1.8. 
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We note that, in Theorem 1.8 (iv), (v) and (vi), we may very well be 
considering several permutation representations simultaneously. 

As a consequence of the above theorem, we have the following result of 
Alpcrin ([1], Lemma 5) 

COROLLARY 1.9. (Alperin). If P is a p-Sylow in G and if Q is any conjugate 
ofP,thenQNP. 

Proof. In Theorem 1.8 (vi) set H = K = G. 
The situation considered in the following theorem is one of the simplest to 

which Theorem 1.8 applies. As the proof illustrates, a fusion theorem can be 
obtained whenever P is a p-subgroup of G such that Q N P for all conjugates 
QofP. 

THEOREM 1.10. Let G be a Jinite group, H a subgroup of G, and P a 
p-Sylozc subgroup of H. Suppose that each intersection of the form Hg n H 
contains a p-Sylow subgroup of H. Let A and A” be subsets of P conjugate in G. 
ThenthereexistconjugatesQ, ,..., Qn, U, ,..., Li,ofPandelenmtsx, ,..., x,,,,y 
of G such that 

(4 z = x1 ... x,y. 

(b) Qi n P is a tame intersection, i = I,..., n. 

(c) xi is in Vi n Nc(Qi n P), i = l,..., n, and y is in Ar;,(P). 

(d) Qi n P < Vi, i = I,..., tl. 

(e) A C Q1 CI P and A*l”‘“d _C Qi.tl n P, i = l,..., 71 - 1. 

We remark that, in Theorem 1.10, we have A21”‘5f, AZ1’*.2i+1 contained in 
Qi+r n P and conjugate by the element xi+1 of No(Qi+r n P), i = l,..., n - 1. 

Proof. We first note that, by Theorem 1.8 (vi), we have Pz-’ N P. Let 
pa-’ ,- Pviax and choose conjugatcsQ, ,..., Qn , Ur ,..., U,, of Pand elements 
Xl >*-.7 x, in G in accordance with Definition 1.3. Pz-lx = P, so setting 
y = x-lz we have y in NC(P) and x = xy = x1 *a* x,y. This gives (a), (b), 
(c), (d) of Theorem 1.10. Since A C Pz-’ n P < Q1 n P and 

(e) also holds. 
This completes the proof. 
As a particular case, if P is p-Sylow in G, Theorem 1.10, yields Alperin’s 

Main Theorem [l]. 
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2. EXAMPLES 

In this section we list some examples of situations in which Theorem 1.8 
is applicable. In each case, our conclusion will be that Q - P for all conjugates 
Q of P. Hence, in each case there is a fusion Theorem as in Theorem 1.10 and 
the remark preceding its proof. 

EXhMPLE 1. Let G be a transitive permutation group on a finite set a 
such that each orbit of G, , ry E J2, has length relatively prime top. Let P be a 
p-Sylow subgroup of H = G, . 

EXAhtPLE 1'. Let G be a finite group such that G = BN,(P)B, where B 
is a subgroup of G and P is a p-Sylow subgroup of B. 

Example 1 is precisely the situation already considered in Theorem 1.10. 
Examples 1 and 1’ are easily seen to describe the same situation. 

EXAMPLE 2. Let G be a finite group having a normal subgroup M such 
that G/M has a split (B, N)-pair (see [4] for definitions). Let G/M = 
B/M . N/M . B/M in accordance with the (B, N) structure of G/M, and let 
H/M be an abelian Hall subgroup of B/M with N/M < -,,,(H/M). 
Suppose that p 1 1 H/M 1, and let P be p-Sylow in II. 

Since H a N, N < IIN, by the Frattini argument. Therefore 
G = BNB = BHN@)B = B,I’((P)B. 
We now appeal to Example 1’. 

As a special case of Example 2 we have 

EXAMPLE 3. G is a finite group having a split (B, N)-pair and P is p-Sylow 
in the abelian Hall subgroup H of B. 

EXAMPLE 4. Let G = GL(v), I’ an n-dimensional vector space over a 
finite field of characteristic p. Let H be the pointwise stabilizer of a subspace 
S of V *and P ap-Sylow subgroup of H. 

Suppose that Q = Pg is as in Theorem 1.8. Let P be a p-Sylow subgroup 
of G containing NP(Q n P) and No(Q n P). P fixes a nest (or composition 
series) of subspaces V, C VI C *** C V, = V, dim Vi = i, i = l,..., n. Also, 
P fixes a chain of subspaces S = S, C S,+, C ..* C S, = V, dim Si = i, 
t = s,..., n, and these are the only subspaces fixed by P of dimension 3s. 

Set t = dim(S -I- Sg); t may be n. As Pg n P is p-Sylow in Ho n H by 
Theorem 1.8 (vi), Pg n P fixes a chain of subspaces S t Sg = Tt C ... C T,, , 
dim Ti = i, i = s,..., n, and these are the only subspaces fixed by Pg n P of 
dimension >t. As Pg n P < P, it follows that T, = Si , i = t ,..., n. Similarly, 
Ti = S,g , i = t,..., n. As P and Pg stabilize the chain Tt C ..* C T, , and 
Pu n P is the only p-Sylow subgroup of Hg n H stabilizing this chain, it 



306 KANTOR AIhiD SEITZ 

follows that P and Pg normalize Pg n P. Then also P, PO < p, so that these 
groups stabilize the nest V,, C e-0 C V, . It follows that Si = Vi = S,g , 
. .t F’S,..., 71. In particular, S = Sg. Then both P and PO are the pointwise 
stabilizer of S = Sg in P. Thus, P = Pg, a contradiction. 

It is clear that the above argument is equally valid for SL( V), PGL( V) and 
PSL( V). 

&AMPLE 5. Let G be a 2-transitive permutation group on a finite set !?, 
and let P be a p-Sylow subgroup of G, , LY E 9. 

Set rz = ) fi :. Ifp t n then P isp-Sylow in G and Alperin’s result (Corollary 
1.9) applies. Ifp 1 71 then p t (n - 1) and Example 1 applies. 

We now consider the case of a 2-transitive group in which the stabilizer of a 
point is one of the groups described in Example 1. Theorem 1.8 (v) is needed 
here. 

k4MPLE 6. Let G be a 2-transitive permutation group on a finite set J? 
such that each orbit of G,, , OL, /3 E JJ, a: f 8, has length relatively prime top. 
Let P be a p-Sylow subgroup of Gus . 

Let Q be a conjugate of P as in Theorem 1.8. By hypothesis, P < Gms,, for 
some y # LX, 8, and Q < Gk, S # E. As 6 $ a: or /z?, we may assume that 
6 # a. Set H = G,, , K = G,, and L = Gas. Then Q n P < Gmfir = 
K n L and, by hypothesis, K n L contains a p-Sylow subgroup R of L 
containing Q n P. By Theorem 1.8 (v) it follows that R n P = Q n P is 
p-Sylow in L n H = G,,, . As G,,, contains ap-Sylow subgroup of Gas , we 
must have Q = P, a contradiction. 

As in Example 5, we now obtain 

EXAMPLE 7. Let G be a finite 3-transitive permutation group and P a 
p-Sylow subgroup of the stabilizer of two points. 

3. APPLICATIOKS TO FUSION. 

Let P be a p-subgroup of a group G. 

DEFINITION 3.1. A subgroup N of G is said to controlfusion in P provided 
that two subsets of P conjugate in G are already conjugate in N. 

LEMMA 3.2. Let P < G be a non-abelian Hamiltonian 2-group and let 
Q, U be conjugates of P with Q n P < U. If g E CT, then there is an element 
h E P such that gh-’ E C,(Q n P). 

Proof. Let Q n P = CxD, where D is elementary abelian and C is either 
quaternion of order 8 or cyclic of order <4. Then D is centralized by P and U. 
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If C is quatemion then U = (Q n P) . C,(Q n P), which implies the result. 
If C is cyclic of order <4 then g either centralizes or inverts Q n P, and either 
action can be obtained by the use of an element of P. There is thus an element 
h in P with gh-1 E Co(Q n P). 

THEOREM 3.3. Let G be ajnite group, Ha subgroup of G, and P up-Syl0w 
subgroup of H. Suppose that P is Hamiltonian and that each intersection of the 
form Pr n P < P is not a p-Sylow subgroup of Ho n H. Then iv,(P) controls 
fusion in P. 

Proof. By Theorem 1.8 (vi) we have Q N P for each conjugate Q of P; 
and by the remark preceding Theorem 1.10 it follows that the conclusions of 
Theorem 1.10 hold if A, A” are subsets of P conjugate in G. Thus, there are 
conjugates Qr ,..., Qn , Cl, ,..., U, of P and elements xi ,..., x, , y of G satis- 
fying (a)-(e) of Theorem 1.10. If P is abelian then xi centralizes QZ n P, 
i = l,..., n, so that A” =I ,&I*‘~GY = Au; since y E No(P) the result follows. 
If P is non-abelian then Lemma 3.2 applies, and for each i = l,..., n there is 
a element hi E p such that A”I”‘G = A~I*.‘Q-I~z. ‘rhen A” = A”I-“%Y :: 
Ahl”.hraY and h, ... h,y E No(P). This completes the proof of the theorem. 

The above theorem generalizes a classical result of Burnside [3], p. 327. We 
note that the hypotheses of Theorem 3.3 imply that Iig n 11 always contains a 
p-Sylow subgroup of H (see Lemma 3.8). Using this fact and Burnside’s 
method, it is possible to give a direct proof of Theorem 3.3 (see the proof of 
Theorem 3.7). However, we note that the proofs of Theorems 1.10 and 3.3 
show that No(P) controls fusion in P whenever P is a Hamiltonian p-subgroup 
of G and Q N P for each conjugate Q of P. 

If P is assumed to be a nilpotent Hall subgroup of a subgroup H of G, then 
much of $1 holds with little change. This is due to theorems of Wielandt [5]. 
In particular, Theorem 1.8 can be generalized with the exception that part (iii) 
must be removed. As a result, Theorem 3.3 holds in the more general setting. 
We mention one special case (see $2, Example 3). 

COROLLARY 3.4. Let G be a group with a split (B, N)-pair and let H be a 
q-complement in B, where q is the characteristic of thegroup. Then No(H) controls 
fusion in H. 

This corollary can also be proved directly using the uniqueness of the 
Bruhat decomposition, although our proof indicates that the only fact needed 
is G = BNo(H)B. 

As in Theorem 3.3, by examining the step-by-step conjugation we obtain 
the following 

THEOREM 3.5. Let G be afinite group, H a subgroup of G, and P a p-Sylow 
subgroup of H. Suppose that each intersection of the form Pg n P < P is not a 
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p-Sylow subgroup of Hg n H. Then No(P) controls the fusion of muximul 
subgroups of P. That is, two maximal subgroups of P conjugate in G are already 
conjugate in No(P). 

More generally, the conclusion of Theorem 3.5 holds whenever it is known 
that Q N P for all conjugates Q of P. An interesting special case of this 
generalization is provided by the situation described in $2, Example 4. 

We remark that, in Theorem 3.5, if we had assumed that P is a p-group 
having a cyclic maximal subgroup of order p*, then we would conclude that 
No(P) controls the fusion of elements of order pn in P. 

DEFINITION 3.6. If P is a subgroup of G, let Z*(P) consist of those 
elements x of P with the property that each conjugate of x lying in P is actually 
in Z(P). 

We were led to the proof of the following theorem by the step-by-step 
conjugation approach. However, we shall first give a proof by direct methods. 

THEOREM 3.7. Let P be p-Sylow in a subgroup H of G such that each 
intersection of the form Pg n P < P is not a p-Sylorc subgroup of Hg n H. Then 
Z*(P) is a group and No(Z*(P)) controls fusion in P. 

LEMMA 3.8. (I. M. Isaacs). Suppose P, H, G satisfy the hypotheses of 
Theorem 3.7. Then each intersection Hr n H contains ap-Sylozu subgroup of H. 

Proof. Let g E G and set Q = Pg, K = Ho. Let R be p-Sylow in A’ n H. 
There are elements h E H, k E K such that R < PiA and R < Qk. If Ph z- Q”, 
then Ph < K n Ii as required. Suppose that Ph + Qk. By hypothesis, there 
is a p-Sylow subgroup S of Kkhml n H properly containing Qkh-’ n P. Then 
R <Q” n Ph = (Qkh-’ n P)” < Sh < (Kkh-’ n H)h = K n I$. As R is 
p-Sylow in K n H, this is a contradiction. 

Proof of Theorem 3.7. Let A and As-’ be subsets of P conjugate in G. 
Then A C Pg n P. Let R be a p-Sylow subgroup of Hg n H containing 
PO n P. By Lemma 3.8, R is p-Sylow in H and Hg. By definition, Co(A) 
contains Z*(P), Z*(R) and Z*(Pg). As Z*(P) and Z*(R) are in C,(A), there is 
an element c E C,(A) such that (Z*(P)c, Z”(R)) is contained in a p-Sylow 
subgroup P1 of H. Since Z*(P,) is weakly closed in P1 with respect to G, it 
follows that Z*(P)c = Z*(P,) = Z*(R). Similarly, Z*(R)d = Z*(P”) with 
d E C,,(A). Thus, Z*(P)“” = Z*(P)g. Set n = cdg-1. Then A@ = 
Ad-‘c-ln = A”. It follows that No(Z.*(P)) controls fusion in P. 

To show that Z*(P) is a group we need only prove that, if a, b E Z*(P), 
then ab E Z*(P). Let (ab)g E P. Since N&Z*(P)) controls fusion in P we may 
assume that g E NG(Z*(P)). Then ag, br arc in Z*(P) < Z(P), so that (ab)g = 
agbg E Z(P). 
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COROLLARY 3.9. Let P be ap-Sylou, subgroup of a subgroup fi of G such that 
each inteysectio~ of the form Pg n P < P is not a p-Sy~~ subgmq of HQ n Ii. 
If the subgroup !E&(P) of P gewrated by all elements of order dividing p is a 
subgroup of Z(P), then N&,(P)) controls jmion in P. 

In order to give an alternative proof of Theorem 3.7, we first introduce a 
conjugation family, in the sense of Alperin [l]. Let P be a p-subgroup of 
group G. Let .g be the set of pairs (Q n P, 7’) where Q n P is a tame inter- 
section and I‘ -= N,(Q n P) if Z*(P) c Q n P, while T = Co(Q n P) if 
F(P) g Q n P. 

For conjugates Q, R of P we define Q w R in case there exist elements 
(Qr n P, Tl) ,..., (Qn n P, Y’,) of F, conjugates Ui ,..., U, of P, and elements 
Xl ,-.-* x, in G such that 

(a) Qi n P < ET< , i = l,..., n. 

(b) xi E I;:< n Ti , i = I ,..., n. 
(c) Q!“l-“,t =: R. 

(d) Q n P < Q1 n P and (Q n P)q*..zi < Q1-i n P, i = l,..., n - 1. 

'THEOREM 3.10. Let P be p-Sylow in a s~gro~p H of G such that, for each 
g E G, HB n II contains a p-Sylom subgroup of H. If Q is any conjugate of P, then 
Q m P. 

Theorem 3.10 can be proved by using the same methods as in Theorem 1.8 
(compare Alp&n [l], Theorem 5.1). 

Alternative proof of Theorem 3.7. Theorem 3.7 leads to a fusion theorem 
as in Theorem 1 .lO. If A, A” are subsets of P conjugate in G then there are 
elements (Qr n P, Ti) ,..., (Qn n P, T,) of .F, conjugates U1 ,..., Ii, of P, and 
elements x1 ,..,, x, ,y of G such that AZ -2 A*l”.Zny, y E N,(P), and 
xi E ti, n Ti , for i = I,..., 1~. Suppose that Z*(P) C Qi n P and hence 
“r; = No(Qi n P). Then Z*(Pp CQ, n P < P, so that Z*(Pp 3 Z*(P) 
and xi E N&*(P)), If Z*(P) iz: Qi n P, then xi E C,(Q, n P) and Asl‘.**i = 
A”1 “‘2i--1. Since y E No(P) < :V,(Z*(P)), we have AZ = Ah for some 
h e N,(Z*(P)). This proves that No(Z*(P)) controls fusion in P. The 
remaining assertion of Theorem 3.7 is proved as before. 

4. CONCLUDING REMARKS 

Results such as those proved in Alperin and Gorenstein [2] seem to rely 
strongly on having a p-Sylow subgroup P of G. However, it seems likely that 
further fusion results along the fines of Theorems 1.10, 3.3, 3.5, and 3.7 can 
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be obtained. It would also be of interest to have more examples of situations 
in which Q + P for all conjugates Q of P. In the situation of Theorem 1.8, 
additional information can be obtained concerning the conjugates of P 
containing Q A P. For example, we mention without proof the following 
generalization of Theorem 1.8 (iv) and (v): 

LetQ = R, ,..., R, be conjugates of P containing Q n P and L, ,..., L, , H 
subgroups of G such that Ri is p-Sylow in Li , i = I,..., n, and P is p-Sylow 
in II. Suppose that Q n P is not p-Sylow in Li n I&, , i = I,..., n - 1. Then 
Ri+P,RinP:=QnP,andQ~Pisp-SylowinLinH,i= 1,...,n. 
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