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Some Results on 2-Transitive Groups 

WILLIAM M. KANTOR (Chicago) a n d  GARY M.  SEITZ (Eugene)* 

w 1. Introduction 

A fundamental result of Tits [19] classifies all finite groups having an 
irreducible BN-pair of rank __> 3 and which is faithful in the sense that 
(~ B g = 1 (see [3] or [14] for the definition of a BN-pair). A group G is 

gEG 
said to have a faithful split BN-pair of rank n if it has a faithful BN-pair 
of rank n, H = (~ B", and B = X H  with X <  B and X ca H = 1. If in addition 

n~N 
G is finite, X is a p-group and H is an abelian p'-group, following Richen 
[14] we say that G has a faithful split BN-pair at characteristic p. The 
main purpose of this paper is to prove two results on finite 2-transitive 
groups which can be applied to groups having a faithful split BN-pair 
at characteristic p of rank 1 or 2. 

Recent results of Shult [163 and Hering, Kantor  and Seitz [9] classify 
all finite groups having a faithful split BN-pair of rank 1. In Theorem A 
we handle the special case of this classification in which H is abelian. 
The proof of this theorem is much more elementary than those of [16] 
and [9], and consists of showing that H is cyclic, so that a result of Kantor, 
O'Nan and Seitz [11] applies. Our methods are a combination of ideas 
found in [9] and [11]. 

In Theorem C we classify all 2-transitive groups in which the stabilizer 
of a point has a normal nilpotent subgroup transitive on the remaining 
points. For  groups of odd degree this amounts to a straightforward 
application of a result of Shult [15]. In the even degree case we reduce to 
the result of Hering, Kantor and Seitz [9]. Once again our approach is 
based in part on ideas in [9] and [11]. 

Theorem C has the following application to a group G having a 
faithful split BN-pair at characteristic p of rank 2. Let s be a fundamental 
reflection in the Weyl group N / H ,  and let P = <B, B ~> be the corresponding 
maximal parabolic subgroup. Then, in its natural 2-transitive representa- 
tion on the cosets of B, P either has a split BN-pair at characteristic p 
of rank 1 or is the solvable 2-transitive group of degree 9 and order 
9 .8 .2 .  Thus, excluding this exceptional case, we must have X ca XS< X. 
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Moreover, a great deal is now known about the structure of these maximal 
parabolic subgroups. It is hoped that this information will eventually be 
useful in the complete classification of groups having a faithful split 
BN-pair at characteristic p of rank 2. 

As a further application of Theorem C, we classify all finite 2-transitive 
groups G having an involution fixing just 2 points ~ and fl and weakly 
closed in a Sylow 2-subgroup of G~ (with respect to G~). 

Our notation is that of [9, l t ]  and, for the most part, [21]. Let G be 
a permutation group on a set (2. Let X be a subset of G. Then A(X) is 
the set of fixed points of X and W x is the pointwise stabilizer of A(X) 
in N(X). Also, if yc_ N(X)  then ydcX~ is the set of permutations induced 
by Y on A (X). 

Throughout our proofs we will use many known facts concerning 
the groups being characterized. These can be found in [11], w and 
[9], w 3. 

w 2. Split BN-Pairs of Rank 1 at Characteristic p 

The following result is a special case of [9] and [16] 

Theorem A. Let G be a permutation group 2-transitive on a finite set 
(2. Let ~, fl ~ (2, ~ 4= ft. Suppose that G~ has a normal subgroup Q regular on 
~2-~ and that G,p is abelian. Then either G has a normal subgroup which 
is sharply 2-transitive on s or G is one of the following groups in its usual 
2-transitive representation: PSL(2, q), PGL(2, q), Sz(q), PSU(3, q), 
PGU(3, q), or a group of Ree type. 

Proof We shall use induction on IGI to show that G~ is cyclic. Then 
by a result of Kantor, O'Nan and Seitz [11], either G has a regular 
normal subgroup N and QN is sharply 2-transitive, or G is one of the 
groups listed above. 

Assume that G,~ is not cyclic. We may suppose that G~ has even 
order (Bender [1], Suzuki [17]). Let T be the subgroup of G~ generated 
by the involutions in G,~. If I TI = 2 then we may assume that T fixes more 
than 2 points (Hering [8]). 

Lemma 1. Let X be a non-empty subset of G~ fixing at least 3 points. 

(i) C O (X) = ( CQ~ (X)[ od ~ A (X)) is 2-transitive on A (X), and I CQ (X) I = 
1,4 (X) l -  1. 

(ii) X is weakly closed in G~. 

Proof (i) Iffl, ? ~A(X) -~  let 7=fl ~, g~Q. For any x ~ X ,  flgx=flg=flx~, 
so that [x, g] e Q c~ G,p = 1. Thus C o (X) is transitive on A (X) -  ~, and 
(i) follows. 

(ii) If geG and Xg<G,a then ~, fl,~*, fl*~A(X~). By (i), 7gh=~ and 
flgh=fl with heC(X) .  Thus, X ~ = X g h = X  as G~a is abelian. 
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L e m m a  2. n = [I21 is even. 

Proof Suppose  tha t  n is odd. Let  S be a Sylow 2-subgroup of G~ such 
that  S o is a Sylow 2-subgroup  of G,r Then S = ( S n Q ) S ~ .  Also, S '<Q 
and S ~ n ( S ~ Q ) =  1 for all g~G.  Thus,  if K is the kernel of  the transfer 
of  G into S/S n Q ~ Sp then K n Sp = 1. Also, K > S n Q, so that  K > Q. 
By a result of  Suzuki  [17], K is one of . the g roups  being characterized.  
Since S a < A u t  K, it is easy to see that  Sr  G~a is non-abelian,  a 
contradict ion.  

L e m m a  3. Let 1 +- t ~ T. 

(i) I f  IA(t)l>2, then C( t )=  C(Wt); and 
(ii) I f  IAU)I = 2  then t inverts Q. 

Proof By L e m m a  1 (ii) we have (i), and  (ii) follows f rom the fact that  
c e (t)  = 1.  

L e m m a  4. Let T*  = ( t i l i= 1,.. . ,  m }. Set ki = IA (ti)l. Let c be the number 
of involutions (~ fl) ... and d the number of  regular involutions (~ fl) .... 

(i) (n-ki) /k i (k  i -  1) is an integer > 1. 

(ii) ~. (n-k~)/ki(k , -  1 ) = c - d .  
i = l  

Proof ([11], Lemma4.3) .  (i) By L e m m a s  l(ii) and 3(ii), t, is weakly 
closed in G,p. Fol lowing Witt  [22], we call a subset of  f2 a line if it has 
the form A(t~), geG. Then there is a unique line through two distinct 
points of  O, and  ( n -  1)/(k i - 1) lines th rough  ~. If  7r A (t~) then t i fixes the 
line th rough  7 and  y~', and,  since ki is even, no  two fixed lines of  t i meet. 
Thus, kiln, so that  (n-k~)/k~(k~- 1) is an integer. I f  this n u m b e r  is 1 then 
n = k 2. The  points  and  lines then form an affine plane with a 2-transitive 
collineation g roup  G. By a result  of  Os t rom and Wagner  ([13], Theo rem 1) 
G has a regular  no rma l  subgroup,  which is not  the case. 

(ii) Since there are c - d  non-regular  involut ions (a fl) . . . .  a is moved  
by ( c - d ) ( n - 1 )  non-regular  involutions.  On the other  hand,  there are 
n (n - 1 ) / k i ( k i - 1  ) conjugates  of  t i, of  which ( n - 1 ) / ( k i - 1 )  fix a and 
( n - k i ) ( n -  1)/ki(k i - 1) move  ~. Thus, 

"_L 
( e - d ) ( n -  1)= ~ ( n - k ~ ) ( n -  1)/ki(kl- 1), 

i = l  

as required. 

L e m m a  5. IT] >4 .  

Proof Otherwise,  T = ( t )  has order2 .  Set A=A(t)  and W =  W t. Set 
k --- [A [ > 2. By L e m m a  4, n - k = (c - d} k (k - 1). 
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By Lemma 1 each involution x~ C ( t ) - { t }  is regular on A. l fx  and Xl 
are involutions in C ( t ) -  {t} and x a = x~ then x-1 xl ~ ( t )  by Lemma 3 (i). 
There are thus two possibilities: 

(a) C(t) ~ has a regular normal subgroup, k > 4  and c = 2  or 
(b) Co(t)A=PSL[2, q) and c = 2 .  ( q -  1)/2. 
Moreover, in (a) we have d = 0  by Lemma 4, and n - k =  2 k i k -1 ) .  In 

(b), d = 0  or (q-1)/2, and n<q3+ 1. 
We note that W is semiregular on ~2-A. For, let 1 4= U < W and 

A(U)~A(t) .  Then t fixes k points of A(U), and it is easy to see that [A(U)p 
=k 2 in case (a) and IA(U)] = q 3 +  1 in case (b). Thus, (a) holds. However, 
U is weakly closed in G=p by Lemma 1. Thus, G, contains 

( n -  1)/(IA (U)[-  1)=(2k+ l ) ( k -  1)/(k z - 1) 

conjugates of U, a contradiction. 

Let t '=(e/?). . ,  be a conjugate of t. By Lemma 3(i), t' centralizes W. 
Then Wis semiregular and faithful on d(t'), so that W is cyclic of order 
dividing k. If (a) holds, W is a 2-group and G, f f W  is cyclic, whereas G~r 
is non-cyclic. Thus, (b) holds and G~a/W is cyclic of order dividing q - 1. 
Once again, G~a is cyclic, which is not the case. 

We now use the notation of Lemma 4, where t 1 is chosen so that 
IA(tlll is maximal. 

L e m m a  6. (i) T n  Wt~ = ( t l ) .  

(ii) I Tt = 4. 

Proof. (i) Suppose that t 2 e T~  W~. By the maximality of IA iq) l we have 
Ce(q)=Ce( t2 )=Ce(q t2) .  By the Brauer-Wielandt Theorem [20], 
(kl - 1) 3 = ( n -  1)(kl - l) 2, a contradiction. 

(ii) Since I r  ~11 <2  this follows from (i). 

We can now complete the proof of Theorem A. By Lemma 6, T a~*~) 4 = 1. 
Also, a conjugate (~ fl).., of tl is regular on A (t 0. If C(tl) a(t~ has a regular 
normal subgroup then C(q) ~(t') has just 2 involutions (~fl) . . . .  Since 
C(tl)=N(W,,)= C(W~,) (Lemmas 1 and 3), c=4,  whereas c > 2 [ I r [ -  1)=6 
by Lemma 4. It follows that C (tl) ~ (to = PGL(2, q~). In particular, ]d (T)] = 2. 

Let [A(t~)l >2. Then T n~t') fixes just 2 points. Also, C ( t y  (t~ contains 
a regular involution. Thus, C(t)  am)= PGL(2, qi). Since C(ti)= C (W~,) and 
Tc~ Wt, = (q) ,  c = 2(q~- 1). In particular, ql = q~. 

By the Brauer-Wielandt Theorem [20], 

n -  1 = IQI = ( k , -  1)(k2-1)(k3 - 1). 

If [A(ta)[ =2  then [A(tz)l >2,  so that kl =k  z --ql + 1 and n -  1 =qi  ~. How- 
ever, by Lemma 4 (i) (n -k l ) / k l ( k  1 - 1)=(q z -qt) / (ql  + 1) ql is an integer, 
which is impossible. 
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Thus, k l = k  2 = k 3 = q t  + 1 and n -  1 =ql  3. By Lemma 4 (ii), 

2 (q r -  1 ) = c > = c - d = ~  (n-k,) /k~(k,-  1 ) = 3 ( q , -  1), 

a final contradiction. 

The definitions needed for the following corollary have been given 
i nw  

Corollary. Let G have a faithful split BN-pair of rank 1 at characteristic 
p. I f  G has no regular normal subgroup then G is one of the following 
groups in its usual 2-transitive representation: PSL(2, q), PGL(2, q), 
PSU(3, q), PGU(3, q), Sz(q), or a group of Ree type. I f  G has a regular 
normal subgroup N, then IN] =2" and p = 2  ~ -  I is a Mersenne prime, or 
p = 2  and [NI =q for q = 9  or q a Fermat prime. 

Proof We apply Theorem A in the case where Q (which is X in the 
notation of [14]) is a p-group for some prime p. We need only check the 
case where G has a regular normal subgroup N of order q" for q a prime 
q#p.  Then p b = l Q l = l O l - l = q " - I  for some integer b, and the result 
follows. 

w 3. Nilpotent Q 
As in [9], w 6, we call an involution in a permutation group a 2- 

involution provided that it fixes just 2 points. Clearly, these can exist only 
for permutation groups of even degree. The only known 2-transitive 
groups containing 2-involutions are S, with n > 4  even, A, with n > 4  
even, and suitable subgroups of PFL(2, q) containing PSL(2, q) with q 
an odd prime power. 

Theorem B. Let G be a finite group 2-transitive on a set O, and let 
~ , / ~ ,  ~4:J~. Suppose that G~a has a non-trivial normal 2-subgroup 
semiregular on O - { ~ ,  ~}. Then G acts on 0 as A6, $6 or a subgroup of 
PFL(2, q) in its usual 2-transitive representation. 

Proof. The hypotheses state, in effect, that G is a transitive extension 
of the type of transitive group considered by Shult [,,15]. If the given 
2-subgroup of G~a contains a Klein group, it is easy to use Shult's result 
and a result of Suzuki [,,18] in order to show that G is A 6 or $6. 

We may thus assume that G~ has a central 2-involution z. If g~G~ 
and z z g = zgz then z g fixes J~, so that g~G~a and z g =z.  By Glauberman's 
Z*-Theorem [53, G~=O(G,)C(z),. As C(z)==G,a, O(G,)is  transitive 
on I2 - e. By the Feit-Yhompson Theorem [-4], Q = O (G~) is solvable. 

Let X be any subset of G fixing at least 3 points. Then (zglc~g=~ 
and p g ~ A ( X ) - ~ )  is transitive on A(X) -~ .  Thus, C(X) ~lx! is 2-transitive 
and satisfies our hypotheses. 

9 lnventiones math.,Vol 13 
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We m a y  assume that  there is an involut ion t =a z in G~a (Hering [8]). 
Since z e Z (G~),  CQ (t)~ = CQ(t z)a. By the Brauer -Wie landt  Theo rem [20], 

IQI ICQ(t)~l 2=  IQpl ICe(t)l I CQ(t z)l 

= IQ,I (l~l(t)l- 1)ICe (t),l ([A(t z)l-  1)ICe(t z),l 

--IQa[ ICQ(t)el 2 ([A(t)[- 1)(IA(tz)l- 1). 
Thus, n - 1 =  IQ:QoI =([zl(t)l-1)(I,J(tz)[-1), Then t and t z each fixes 
at least 3 points. It follows by induction that C(t)~"~PSL(2, q)and 
C(tz)a~':~PSL(2, q') for some q and q'. Then n - 1  =qq'. 

Let 7 r A (t). Then  t centralizes the conjugate  z' of z lying in G r ~,. Clearly, 
z 'a(t) fixes no points.  Here  C(t) m~) conta ins  precisely (q2_q)/2 regular 
involutions,  all of  which are conjugate.  Thus,  each such regular  involution 
has the form z 'a"~ for the same number  m of conjugates z' of z. Since ( t )  
has precisely ( n - q -  1)/2 non-tr ivial  orbits,  it follows tha t  ( n - q -  1)/2= 
m(q 2 - q)/2. Then  n - 1 = q(1 + m(q - 1)) and  q' - 1 = m(q - 1). In terchang-  
ing the roles of  q and q' we find tha t  q = q' and  n = q2 + 1. No te  also that, 
since C (t) ~ (t~ and  C (t z) a"~) each conta in  involut ions fixing 0 points  and 
involut ions fixing 2 points,  b o t h  groups  have  subgroups  act ing as 
PGL(2, q). 

Let  A be a min imal  no rma l  subg roup  of  G~ conta ined  in O(G,). Then 
A = CA (z) CA (t) CA (t z) = A, CA (t) CA (t z) and A fixes no points  of  Q - ~. 
Clearly, C(t)~, acts on Ca( t  ). Since we m a y  assume that  CA(t)~G,a, 
it follows that  Ca(t ) is transit ive on A(t)-~. If also CA(tz)~G~a then 
CA(t Z) is transit ive on A(t z ) -~  and, by  the Brauer -Wie landt  Theorem 
[20], IAI ICa(t)al2=lhal ICA(t)I I f  A(tZ)l =lZal q [CA(I)I~[ q [Ca(tZ)oI, SO 
that  IA:A,l=q2=n - 1. Then A is transit ive on f 2 - e  and is abelian, so 
that  A is regular  on O - a .  The  theorem now follows f rom [9]. 

We m a y  thus assume that  CA(t z) < G,t3. Let  B/A be a min imal  normal  
subgroup  of GJA such tha t  A < B < O (G,). If  Cn(t z) ~ G~t J then, as in the 
preceding paragraph ,  we find that  IB: B~t = q2 = n -  1, and by [9] we may 
thus assume that  B a + 1. If CBIt z)< G~t j then B~ :t: 1, as otherwise Ce~t z) 
= 1 = CB(z) and hence A<B<=C~t). whereas A is regular on A(t)-~.. 

I f  Ap :t: 1 set P = Ao. If  Ar = 1 set P - -  B~. In either case, P___ G, ,  and 
IPI is a p r ime power.  W e  note tha t  IA(P)I>3.  F o r  otherwise,  P=B,  is a 
Sylow subgroup  of B and  G,=BN(P),=AN(P)~, whereas  A is not 
transit ive on ~ 2 -  e. 

Since P__< G,p and C(P) ~(P~ is 2-transitive, P is weakly  closed in G,~ 
(compare  w 2, L e m m a  1). Set IA (P)[ = s + 1. Then  P has  n (n - 1)/(s + 1) s 
conjugates  in G, (n-1)/s=q2/s of which are in G,.  Also, ( t ,  z )  acts on 
A(P), so that  t* = t or  t z fixes at least 3 points  of  A(P). Recall  tha t  C(t*) a"*) 
has a subgroup  acting as PGL(2, q), so tha t  C(t*),t~ is t ransit ive on A(t*)- 
{~, fl}. Since C(t*),~ normal izes  P it acts on A(P), and  it follows that 
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A ( t* ) -  A (P). Thus, q < s. However, q and s are powers of the same prime 
and (s + 1)](q 2 + 1). This contradiction completes the proof of Theorem B. 

Theorem C. Let G be a 2-transitive permutation group on a finite set ~. 
Let ct ~ Q, and suppose that G~ has a normal nilpotent subgroup Q transitive 
on t-2-ot. Then there is a normal subgroup Q* of  G~ such that Q * < Q  and 
Q* is regular on t 2 - a .  

Theorem C easily follows from the following result, which gives the 
precise structure of those groups satisfying the hypotheses of Theorem C. 

Theorem C'. Let G be a 2-transitive group on a finite set ~ such that 
G~ has a normal nilpotent subgroup Q transitive on Q - ~ .  Then either Q is 
regular on ( 2 -  ~ or G has a regular normal subgroup of order p2, where p 
is a Mersenne prime. Moreover, G has a normal subgroup M such that 
G < Aut M and M is one of  the following groups in its usual permutation 
representation: a sharply 2-transitive group, PSL(2, q), PSU [3, q), Sz(q), 
or a group of  Ree type. 

We remark that. if J~21 is even, Theorem C' implies that the group Q 
is always regular on (2-~.  This fact will be used throughout the inductive 
proof of Theorem C'. 

Proof Let G be a counterexample to Theorem C' of minimal order. 
Then by results of Shult [16] and Hering, Kantor, and Seitz [9], it 
suffices to show that Q c~ G,~ = 1 for e4:fl in Q. Thus, we suppose that 
14: P = Q c~ G~t~  G~.  Set A = A (P) and W= W e . 

Lemma 1. G does not contain a regular normal subgroup. 

Proof Suppose that G has a regular normal subgroup N of order p". 
As G does not satisfy the conclusion of TheoremC' ,  p"4:p 2 for p a 
Mersenne prime. If p" = 64, then, by the nilpotence of Q and a theorem 
of Huppert  [10], 1Q1=63 and Q is regular on Q - a .  Thus, neither of the 
above cases occurs and. by a result of Birkhoff and Vandiver [2], there is 
a prime r such that r[(p a -  1) and rX(p b -  1) for 1 < b < a .  Let Q = R  • L, 
where R is a Sylow r-subgroup of Q. Since (p" -  1)[ ]Q[, R 4: 1, and, by the 
conditions on r, R is fixed-point-free and irreducible on N. If 1 4: x~ Lthen 
R normalizes Cu (x), so that Cu (x)= i. It follows that Q is fixed-point-free 
on N and Q is regular on Q - ~ ,  which is not the case. 

Lemma 2. Z ( Q )  is semiregular on (2 - ~. 

Proof Ifg~Z(Q)r then g fixes fie pointwise, so that g =  1. 

Lemma 3. (i) n is even. 

(ii) Q has odd order. 

(iii) G has no normal subgroup of  index 2. 

9* 
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Proof. (i) Otherwise, the Sylow 2-subgroup of Z(Q) is nontrivial and 
semiregular on O - a .  The result now follows from Lemma 1 and a 
theorem of Shult [15]. 

(ii) This follows from (i) and Lemma 2. 

(iii) If IG:N I =2 then N is transitive and Q<=N. Thus, N is 2-transi- 
tive. As IN[ < IG[, N has the required structure, and consequently so does 
G. This is a contradiction. 

Lemma 4. Set k=lAI. 

(i) NQ(P) is transitive on A - ~  and k is even. 

(ii) N(P) A is 2-transitive cmd l(> 2. 

(iii) P is weakly closed in G,~. 
(iv) Call a subset of ~ a line if it has the form A g, geG. Then there is 

a unique line through two distinct points of f2 and there are ( n -  1)/(k- 1) 
lines through ~. 

(v) k l n if Q is a p-group. 

Proo[~ Let fl'~ A - ~. Then [/'= fi~ with xe  Q, so that P~-' < G~ ~ Q = P 
and xeNQ(P). This proves (i). Similarly, if P~ . . . . .  P,. are the Sylow sub- 
groups of P then N e (Pi) is transitive on A (Pi)- c~ for each i. Let c~ ~ =//, g ~ G. 
Then P normalizes Q~ and C(Pi)c~Z(Q~)+-l. By Lemma2, NIP..) is 2- 
transitive on A(P,). Since p~(r,)~ ~e.~ N(P)~ , the minimality of G implies 
that P<_We, and hence that [P,C(P~)~Z(Q~)]<=G~I~:~Z(Qg)=I for 
each i. Therefore, C(P)c~ZIQ~)+l and iii) holds. 

Let PY<_G~p, yEG. Then P fixes e, fl, c: -1 and flY-~, so that by (ii) 
_ - /~,_~=/~ ~-~ ~=cd and with zeN(P).  Thus, zyeG~a and p=p~r=pr,  

proving (iii). 
An elementary result of Witt [22] yields (iv). Moreover, there are 

n ( n -  1) /k(k-  1) lines. If Q is a p-group then n -  1 and k -  1 are powers 
of p by (i). There are n ( n - 1 ) / k ( k - 1 )  conjugates of P, so that kin and 
(v) holds. 

Lemma 5. Let X be a subgroup of G~ fixing at least 3 points and 
such that ([QI, IXI) = 1. 

(i) CQ{X) is transitive on d ( X ) - a  and IA(X)] is even, 

(ii) ( Co,(X)IX fixes ~> is 2-transitive on AIX). 

(iii) If  X~<G~I~, g~G, then X and X ~ are conjugate in G~/~. 

Proof. Let fl'e A ( X ) -  ~. Then fl' = fly with y ~ Q, so that X y-' < QX n G, 
=PX.  By the Schur-Zassenhaus Theorem, X Y - ' = X  ~ with zeP.  Thus, 
f l '= flY= fl~Y and z y ~ N o (X)= C o ( X). This proves (i) and (ii). 

Suppose that X g < G,~. Then a,/3, c:,/~geA (X~). By (ii), ~gt= ~ and 
fl~t_ fl with l e C (Xg). Thus, X g = X gt and g le G,~, proving (iii). 
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Lem ma  6. Let (t, u) be a Klein group in Gag. 

(i) (1~ ( t ) l -  1)(IA (u ) l -  1)(IA(tu)[- 1 ) = ( n -  1)(IA(Kt, u ) ) l -  l) z. 
(ii) A (t) =a A (u). 

Proof (i) By the Brauer-Wielandt  Theorem [20], 

and 
ICQ(t)l IC~(u)l ICQ(tU)l = IQI ICo(<t, u>)[ z 

IC~ (t)l ICp(u)l Iep( t  u)l = Iel [Cp(<t, u>)l 2 . 

Clearly, [QI/IP] = n -  1. By Lemma  5 (i), ICQ(t)l/JCp(t)l = IA(t)]- 1, with 
similar equat ions for u, t u and ( t ,  u).  This proves (i). 

(ii) IfA(t)=A(u) then A(t)=A((t ,  u))~_A(tu). By (i), 

(IA ( t ) l -  1) 2 ([A(t u ) [ -  1 ) = ( n -  1)(IA ( t ) l -  1) 2 , 

which is impossible. 

Lemma 7. Q is a p-group for some prime p. 

Proof Suppose that  Q is not  a p-group. Then  Z(Q)<=N(P) and Z(Q) 
is not  a p-group. By Lemmas  2 and 4 and the minimali ty of n, N(P) A has 
a regular normal  e lementary abelian 2-subgroup To d. We may assume 
that To <= ( Z  (Qg) [ o~ g E A > = C O (P). As W <  N(P), [ Co (P), W] = 1. Also, 
IA[-I>>=IZ(Q)]>3. By [9], Lemma2.7 ,  Co(P ) has a normal  Sylow 
2-subgroup T of order  k = I A [, and Co (P )=  TZ(Q). 

We now proceed by a series of steps. 

(i) T ~ consists of regular involutions. For  otherwise, if x ~ T  ~ then 
P acts on A (x) without  fixed points. In particular, C (x) ~ t~ has no regular 
normal  2-subgroup. Let x' be a conjugate o fx  lying in G~t ~. Since C(x') A~'~ 
is nonsolvable and x' acts on A, }A c~ A(x')l =4.  Then IAI = 16 and IZ(Q)I 
= 15 since IZ(Q)] is not a prime power, x' centralizes the subgroup R of 
Z(Q) of order  3. Since R~X')< C(x')~ I~'~ we must have IAtx')l = 28 isee [9], 
w 3). Also, Q is a {3, 5}-group. Since 5XIC~x')~(~'q, P~('> is a 3-group and 
hence P fixes a point of A (x), which is not  the case. 

(ii) Gap has even order  (Bender [1]). 

Let t be an involut ion in Gate. Then t normalizes P and T, and either 
t d = 1 or t d fixes l / k  points. Thus, ]Cr ( t ) l  = k  or 1/~. Moreover ,  IA (t)[ > 2  
and Lemm a  5 applies to t. 

We claim that  C(t) m~ has a regular normal  subgroup. F o r  otherwise, 
since Cr(t) ~(t~ is semiregular, C(t) ~"1 has a normal  subgroup PSL(2, q) 
for some q > 3 (see [9], w 3). Moreover ,  I CT(t)l < 4. Since k > 4 we must  
have k =  16 and IA c~A (t)l = I f r ( t ) [ - -4 .  As in (i), IZ(Q)] = 15, t centralizes 
the subgroup R of Z(Q) of order  3, and Rd(tl~ C(t)~ (t), which is impossible. 



134 W.M. Kantor  and G.M. Seitz: 

(iii) There is a normal subgroup U of C(t) of order IA (t)[ containing 
Cr(t) and regular on A (t). For  let U be the normal closure of Cr(t) in 
C (t). Since [ Cr (t), Wt] < T n  Wt = 1, U n W~ < Z (U). Thus, U is a 2-group. 
Let BA~=O(C(t)~ "~) with B>  W t. Then B/Cs(U ) has odd order and is 
transitive on (U/U c~ Wt)*. If IA (t)l >4  our assertion now follows from [9], 
Lemma2.7. If IA(t)l--4 then ]A[>4 implies that A(t)~A and hence 
that U =  Cr(t). 

(iv) The remainder of the proof closely follows that of [9], w 5. We 
first show that G~a contains no Klein group (cf. [9], Lemma 5.5). For  let 
(t, u)  be a Klein group in G~a with t central in a Sylow 2-subgroup of 
G,p. Set 1= IA((t, u))l. Since I(t, u)~l--2, l>  2. By (ii), t, u and t u f i x / o r  
l 2 points. By Lemma 6, at most one of these fixes l points and n - 1  = 
(l+1)2(1 ~- 1), i=1  or 2. Computing IGIz we find that IA(t)l=l and C(t) 
contains a Sylow 2-subgroup of G. Let V <  C(u) with IVI--IA(u)I (see 
(iii)). Then C(t) contains a conjugate l? of V(u), I(/A")I<=I, and hence 
112n W~1> 212/1> 8. If v~l? ~* with IA(v)b maximal then I(l?~ W~)~"~I>4, 
which is impossible by Lemma 6. 

(v) Next, n = IA (012 and U t is fused. For  U ( t )  contains all involutions 
in C (t). If 7 t =~ y s O - A (t) then t centralizes an involution in G~ ~t. No two 
involutions in Ut fix common points. Thus n =  IA (012. 

In particular, IA(t)l- 1 is not a prime. For  otherwise, by considering 
t ~, we find that C(t)~ Co(P ) is transitive on A(t)-~ and hence AIt)c_A. 
Since IA(t)l=k or ] fk  it follows that A(t)=A. Now the points and lines 
(Lemma 4 (iv)) form an affine plane, and G has a regular normal subgroup 
(Ostrom and Wagner [13], Theorem 1), which is not the case. 

Moreover, it is easy to see that N(U (t)) is transitive on the set ~r = U t. 
Since C(J)<UWt it follows that Wt=( t ) .  Consequently, C(t)~ is 
cyclic. 

(vi) N(U(t)) is transitive on ~ and Co(t ) is transitive on J - { t }  
(Lemma 5 (it). We can apply induction to N(U(t)). Here 1,~1--IA (t)l = 1> 2 
is a power of 2. If N(U(t)) "~ does not have a regular normal subgroup then 
1-  1 is a prime power and hence a prime, and this contradicts (v). Thus, 
N(U(t)) has a normal subgroup R containing C ( J ) =  U(t) such that 
R j' is regular. Here IRI =212 where l=lA(t)l. 

Set A = Co(t). Since U consists of regular involutions, U< RA. Then 
U<Z(R) as A is transitive on (R/U)*. 

(vii) Since l > 4  by (v), using [9], Lemma 2.7, we find that R/U= 
U1/U x U(t)/U, where C(t)~ normalizes Ul= [R, C(t)~]. Then U <ZIU 1) 
and A is transitive on (U~/U)*. 

Since n=I 2, a Sylow 2-subgroup S of N{U(t)) containing a Sylow 
2-subgroup of  C(t)~ is Sylow in G. Clearly S=  U~S~pt>U~, teSta, S~a 
is cyclic and U~ n S~p = 1. 
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By Thompson's transfer lemma ([9], Lemma 2.3), t is conjugate to 
an element u 1 of Up Then ul(~U. Since A is transitive on (U1/UF and 
U<Z(Ua), U1 is elementary abelian. However, UI< C(uO and C(uO has 
no elementary abelian subgroup of order 1 z>2/. This contradiction 
proves Lemma 7. 

Lemma 8. W~ C(P) is a p-group. 

Proof Let Ql=NQ(P). Suppose that L is a if-group and 14=L< 
Wc~ C (P). Then [Qa, L] < Q c~ W < Q ~ G,t~ = E Thu s, L centralizes Q1/P, 
and since L centralizes P, L< C(QO. 

Suppose that A cA(L). By Lemma 5(ii), N(L) n'L~ is 2-transitive. 
Clearly, Pd(L)4=I. Since CQ(L) is transitive on A(L)-e  (Lemma 5(i)), 
]A(L)]-1 is a power of p. As 1 +pA~L)'<a F'II~A(L) this contradicts the 
minimality of G. Thus, A =A(L). Also, P<QI<No(L) and NQ(L) a(t)-" 
is regular. Consequently, NQ(L)= Q1. 

Let Qz<Ne(QO be such that Qz/Q1 is a minimal normal subgroup 
of No(Q0- L/Q:. Then [L, P, Qz]= 1 and [P, Q2, L] <[Q~, L] = 1. Thus, 
[Qz, L, P] = 1 and P centralizes [Qz, L]. Then [Q:, L] < N(P) c~ Q = 
NQ(P) =-Qa, and L centralizes Qz/Qt. Since L centralizes Q1, L centralizes 
Q2,  a contradiction. 

Lemma 9. N(P) contains a Sylow 2-subgroup of G. 

Proof By Lemma 4 (v), k]n. Since Q is a p-group, n =pb+ 1 for some 
integer b and k=p"+ 1 for some integer a. Then (p"+ 1)](pb+ 1), SO that 
b/a is an odd integer and (pb+ 1) 2 = (p,+ 1)2. Since G,o < N(P), ]N(P)]2 = 
(pa+ 1) 2 ]Ga/~] 2 =(pb + 1) 21Ga/~] 2 = ]G]2" 

Lemma 10. (i) Co (P)= (Z(Qg) IegeA} is a normal subgroup of C(P) 
and N(P) which is transitive on A. 

(ii) Co(P) a contains a Sylow 2-subgroup of (N(P)J) '. 
(iii) Co (P)~ W is a p-group. 
(iv) Co(P)~ w<Z(Co(P)). 
Proof (i) Ife*eA, then we may assume that geN(P) (Lemma 4). Thus, 

P=Pg<=Qg and Z(Qg)<=C(P). By Lemma2,  Z(Q ~) is semiregular on 
A - a  g. Thus, Co(P) is transitive on A, Co(P)<= C(P), and Co(P)<aN(P). 

(ii) This follows by considering the structure of groups satisfying 
the conclusion of Theorem C' with IOI even. 

(iii) This follows from Lemma 8 as Co(P)c~ W<= C(P)n  W. 

(iv) Co(P)nW<aCo(P) and, if cdaA, then Co(P)nW<=G~, and 
Co(P)c~ W normalizes Z(Q*). Thus, [Co(P)c~ W, Z(Qg)]=< Co(P)n W~ 
z(Qg)= 1 since w fixes d pointwise and Z(Q g) is semiregular on A - a  g. 
This proves (iv). 
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We now complete the proof of Theorem C' by considering four cases. 
We use repeatedly properties of the groups being characterized by 
Theorem C'. We refer the reader to w 3 of [91 and to w 2 of [11] for these 
properties. Moreover,  we use the Thompson  transfer lemma (see 
Lemma 2.3 of [91) and the Burnside fusion lemma ([63, p. 203). 

Let $1 be a Sylow 2-subgroup of Co(P) such that ($1)~ is a Sylow 
2-subgroup of Co(P), p, and let $2 be a Sylow 2-subgroup of W. Since 
Co(P)~N(P), W~N(P) ,  and Co(P)c~ W is a p-group, SIS2=Sl xS2. 
Let S be a Sylow 2-subgroup of N(P) such that S~ x $2 < S. By Lemma 9, 
S is a Sylow 2-subgroup of G, and by Lemma 10 (ii), S/St x S z is abelian. 
Also, $1 = S r Co (P)----- S and S 2 = S r W___ S. 

Case 1. N(P) a contains a regular normal subgroup. 

Here k = 2 " > 4  for some integer a and Co(P) A contains a regular 
normal subgroup. Since Co(P)c~ W is contained in Z(Co(P)) and has 
odd order, $1 is an elementary abelian 2-group characteristic in Co(P). 
Then 2"=lsl l=lAl=pb+l for some integer b, so that a is prime and 
2~=p + 1. If a >  2, then by a result of Hupper t  [10], $1 x $2 = S. If a = 2  
then IS: $1 x S z I <= 2. 

Let u be an involution in St. Then A(u)~A=O and P<C(u). If 
A (u) + 0 then P acts on A (u), and since I A (u) l - 1 is a power ofp (Lemmas 5 (i) 
and 7), A r ttu)0 e~3, a contradiction. Thus, each involution in S 1 is a 
regular involution. 

Suppose that a > 2, so that S = $1 x Sz and $2 is a Sylow 2-subgroup of 
Gap. By a result of Bender [11, $2 4 = 1. Let t be an involution in $2, so that 
St < C(t). Since S~ is semiregular on g2, S~a~')~ $1. By the minimality of G 
and the structure of groups satisfying the conclusion of Theorem C', 
C(t) ~ '  contains a regular normal subgroup. Thus, 2"=lA(t)]=pe+l 
for some integers c and d, and 2C=p+ 1 as before. Then 2c=2 a and 
A(t)=A. By Lemma6(i i ) ,  t is the unique involution in S 2. By [9], 
Lemma 2.6, t is conjugate to some involution in S, x ( t )  - {t}, and from 
Burnside's fusion lemma it follows that $2 = ( t ) .  Now Thompson 's  
transfer lemma and Lemma 3 imply that t is conjugate to some involution 
u in S 2 . This is a contradiction since u is a regular involution. 

Now suppose that a = 2 and ]A I= 4. Here p = 3 and tZ(Q)[ = 3 = [AI- I. 
As before, there is an involution t in G,/j (Bender [1]). If S 2 = l then 
S~/,t)=S and, by Thompson 's  transfer lemma and Lemma 3. t is con- 
jugate to an involution in S 1. This is a contradiction as before. Thus, 
$ 2 + l .  

Suppose that Sz contains a Klein group (t, u). Since S~ centralizes 
(t ,  u)  and contains only regular involutions, C(t) a~') contains a regular 
normal  subgroup or a normal  subgroup isomorphic to PSL(2, pe) for some 
integer e. Also, Z(Q)~G= a n d  teSz<=C(Co(P)), so that Z(Q)A(t)~--~- 
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C(t)~ I~ As IZ(Q)I=3,  IA(t)l=4. Similarly, IA(u)l=4=lA(tu)l. Thus 
A(t)=A(u)=A(tu)=A, contradicting Lemma 6. Hence, $2 is 'cyclic or 
generalized quaternion. 

Let ( t )=O1($2)  and suppose that there is a conjugate v of t with 
yeN(P)-Co(P)  W. Then we may assume that veG~a. By Lemma 5(iii) 
v and t are conjugate in G~ .  However, G~a<N(P), t e W ~ N ( P )  and 
vr W, a contradiction. Thus, each conjugate of t contained in S is in 
$1 • $2. Suppose that S > $1 • Sz. Then S/$2 is dihedral of order 8, and it 
follows that Z ( S ) n S I = ( u )  for some regular involution u. By [9], 
Lemma 2.6, t is conjugate to t u. However, O1(Z(S))= (u )  • (t), so that 
Burnside's fusion lerama implies that t, u and tu are conjugate, a con- 
tradiction. Thus, S=S  1 x S 2 and ~I(Z(S))=S1 x ( / ' ) .  By [9]. Lemma 2.6, 
Z ( S ) - ( t )  contains a conjugate of t, and by Burnside's fusion lemma 
S 2 = ( t ) .  Once again Thompson 's  lemma yields a contradiction. 

Case 2. N(P) ~ contains a normal unitary subgroup. 

Here Co(P)~PSU(3,  q). Suppose that ( t ,u)  is a Klein group 
contained in $2. By Lemma 6, we may assume that A(t)~A((t ,  u))~_A. 
As (t, u) centralizes Co(P), Co(P) ~~ is a unitary group centralized by 
u al~ This contradicts [9], Lemma 3.2. Thus, $2 is cyclic or generalized 
quaternion. 

We claim that $2=1.  For, otherwise, set ( t )=Qt (S2) .  By [9], 
Lemma 3.2, S~ is a quasidihedral or wreathed group. Let (u )  = f21 (Z(Sl)), 
so that O~(Z(S))=(u) x ( t ) .  If t is conjugate to an involution v e S -  
(S 1 x $2) then, by [9], Lemma 3.2, we may assume ve G~p. By Lemma 5 (iii), 
v and t are conjugate in Gap. As G,r <= N(P) < N(W), te W, and vr W, this 
is a contradiction. Thus, each conjugate of t lying in S is contained in 
$1 • $2. By [9], Lemma 2.6, t is conjugate to some involution in $1 x S 2 
-{t}. As Co(P) ~~ has only one class of involutions, t is conjugate to u 
or u t. By Burnside's fusion lemma, t, u and t a are conjugate. Since u 
fixes at least 2 points of A, u is conjugate to an element u' of Co(P)~r 
As above, t and u' are conjugate in G,p<N(P), whereas u'eCo(P) and 
t~ W,, a contradiction. Thus, $2 = 1 as claimed. 

By [9], Lemma 3.2, S = St So with S~ c~ S o = 1 and S o cyclic. If So =~ 1, 
then, by [9], Lemma 2.3, the involution v in So is conjugate to the in- 
volutions in St. We may assume that wG,~ and v is conjugate to an 
involution ueCo(P)=t3. Then v and u are conjugate in G,a, whereas u ~ 
and v A are not conjugate. Consequently, $1 = S. 

Let t be an involution in Co(P)~B. As Co(P)c~ W<Z(Co(P)) is of 
odd order, t is the unique involution in Co(P)~, and consequently t 
is the unique involution in G,a. With the notation of Lemma 4 (ii) of 
w 1, ( n - k* ) / k* (k* -1 )=c-d ,  where k*=lA(t)l. All involutions in G are 
conjugate, so that d=0 .  If t' is an involution interchanging c~ and/3, then 
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t'~N(P). Since Co(P) contains each involution in N(P), t ' c  C0{P). Here 
Co (P)a contains q -  1 involutions interchanging a and ft. Since Ca(P) n W 
<Z(Co(P)) has odd order, Co(P) contains q -  1 involutions t ' = ( ~  fl) . . . .  
Thus, c = q -  1. 

As t ~ Co(P)< C (P), P acts on d(t) and pA(t) <zl ,o ~,Vl(t) Since Id( t )]-  1 
is a power o f p  the minimality of G implies that pd(t)= 1. Thus, A(t)cA. 
Since Co(P)d~PSU(3, q), [ A [ = q 3 + l  and k*=[A(t)[=q+l. Thus, 
(n - (q + 1))/(q + 1) q = q - 1 and n = q3 + 1 = [A I, a contradiction. 

Case 3. N(P) a contains a normal subgroup of Ree type. 

Let [A[=qa+ l .  Here Co(P)a~N(P) a so that either C0(P) ~ is a 
group of Ree type or ]A[ = 28 and Co (p)n ~ PSL(2, 8). By [9], Lemma 3.3, 
Co(P) a contains a Sylow 2-subgroup of N(P) a, so that S=S~• $2. 
Moreover,  $1 is elementary abelian of order 8 and there is an element 
g~ C0(P) such that [g[ =7,  g~N(S1) and ( g )  is transitive on the involu- 
tions in S t. I fu  is an involution in $1 then ueC(P) and P acts on A(u). 
We may assume that u~G~p, so that pa(,,).~ c,~,,~n(,) Since [A(t)]- 1 is a 
power of p we must have pAt,)_ 1. Thus, d(u)~d. 

Let t be an involution in Sz. Then Sx ( g )  < C(t) and, by the preceding 
paragraph, S 1 (g)~Ct)~S 1 (g ) .  By considering the groups satisfying the 
conclusion of Theorem C', it follows that either C (t) ~ (t) contains a regular 
normal subgroup L a(~) with S~(t)~L a(t) o r  C(t) Ll(t) contains a normal 
subgroup of Ree type. The first case cannot occur since Sa ~ G~r 4: 1. If 
the second case occurs then ]/l(t)l =q3 + 1 for some integer q~, and, if u 
is an involution in $1, then IA(u)nA(t)]=ql+l. Since A(u)~A and 
A ~_A(t), q~+ 1 =]A(u)l=q+ 1 and d(t)=d. By Lemma 6 (ii) ( t )  = f21($2). 

Thus, if $24:1 then f21(S)=S a • ( t )<Z(S) .  In this case, there is a 
conjugate v of t lying in S~ • ( t ) -  {t} ([9], Lemma 2.6). By Burnside's 
fusion lemma we must have S 2 = ( t ) .  Now Thompson ' s  transfer iemma 
implies that t is conjugate to some involution u in Sa. However, IA(u)l = 
q + l  and IA(t)l=q3+l, a contradiction. Therefore, $2=1  and S=Sa. 

Now just as in the preceding case, we proceed as in w 1, Lemma 4 (ii), 
in order to show that n = l t J l = q 3 + l .  Consequently, A = O ,  a contra- 
diction. 

In view of the minimality of G, the proof  of Theorem C' will be 
completed once we eliminate the following case. 

Case 4. N(P) ~ contains a normal subgroup isomorphic to PSL(2, q), 
q>3 .  

Here C o (p)d ~ PSL(2, q). Let u be an involution in S~. Then I/1 ~ A (u)l 
- -0  or 2. Since u~Co(P)<C(P), P acts on A(u) where IA(u)]- 1 is - 1 
or a power of p. By the minimality of G, pa(,)= 1 and A(u)cd .  Thus, 
if q-=3 (mod 4) u is a regular involution, while if q---1 (rood 4) u fixes 
exactly 2 points of f2. 
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If  q = 1 (mod 4), then there is an involution u in Co (P),t~- As Co(P)c~ 
W ~ Z(Co (P)) and Co (P) n W has odd order, u is the unique involution 
in Co(P)~. Also, Co(P),t3~G,~, so that u is central in G,#. Since u is a 
2-involution, Theorem B yields a contradiction. 

Thus, q - 3  (mod 4). As usual, there are involutions fixing at least 
2 points (Bender [1]). 

Suppose that $2 = 1. Then IS:St] _<2 and there is a subgroup So such 
that S = $1 So and $1 n So = 1. Here S~ contains only regular involutions, 
so that $1 < S. Let S o = ( t ) ,  where t is an involution. Then t fixes 2 points 
of A and hence is not a regular involution. Thompson 's  transfer lemma 
now yields a contradiction. Consequently, $2 + 1. 

Let t be an involution in Sz. Then C(t) ~t) contains S~ "), so that 
C(t) att) contains regular involutions. As Co(P)<= C(t) and Co(P)dt')#: 1, 
C(t) ~t) contains a normal subgroup isomorphic to PSL(2, q') for some q'. 
Clearly, t centralizes Z(Q), Z(Q)~ G~, and Z(Q) is semiregular on O-ct .  
Thus, Z(Q)AI~)~_ C(t) AItI and Z(Q)a~ N(P) A. It follows that q = IZ(Q)I = q', 
A =A(t), and, by Lernma 6(ii), (t)=(21($2). 

By the usual arguments, t is conjugate to an involution v in Sx x $2 - {t} 
but is conjugate to no involution in S- (S~ x $2). As the involutions in St 
are regular involutions, t is conjugate to u t for some involution u in S~. 
All involutions in Co (P) are conjugate, so we may assume that ueZ(S) n S~. 
If (u )=Z(S)nS1  then ( u ) x  (t)=OI(Z(S)), and by Burnside's fusion 
lemma, t, t u and u are conjugate. This is a contradiction. Thus, ( u ) <  
Z(S) nS~, and it follows that S=S~ x $2 and S~ is a Klein group. Since t 
and u t  are conjugate, Burnside's lemma implies that S 2 = ( t ) .  Now 
Thompson 's  transfer lemma shows that t is conjugate to some involution 
in S1. This is a final contradiction. 

Corollary 1. Let G be a finite group having a faithful split BN-pair 
of rank 2 at characteristic p. Let P be a maximal parabolic subgroup 
containing B and set K = ~ B g. Then P/K has a faithful split BN-pair 

geP 
of rank 1 at characteristic p, or p = 2 and P/K is the solvable 2-transitive 
group of degree 9 and order 9 .8 .2 .  

Proof. Let G, P, B, and K be as in the statement of the corollary. 
Then P/K is a 2-transitive permutat ion group on the cosets of B/K. Let 
s be a fundamental reflection in P, so that P =  (B, s).  Then B/K= 
(XK/K) (HK/K) and X K / K  <~ B/K. As HK/K is normalized by s, HK/K 
fixes the cosets B and Bs and consequently X K / K  is a normal  p-subgroup 
of B/K transitive on the cosets of B in P other than B. Thus, P/K satisfies 
the hypotheses of Theorem 3. 

Consequently, either XK/K is regular on the cosets of B in P other 
than B or P/K has a regular normal subgroup of order q2 for q a Mersenne 
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prime. However, X K / K  is a p-group, so that q 2  _ 1 =p"  for some integer a. 
Thus, p = 2  and q=3 .  Then IXK/KI=8 or 16, and if IXK/KI=8 then 
X K / K  is regular on the remaining cosets of B. If IXK/KI = 16 then B/K 
is a subgroup of GL(2, 3) containing a Sylow 2-subgroup of GL(2, 3) 
as a normal subgroup. Thus, X K / K  = B/K, and the result follows. 

Corollary 2. Let G be a finite group having a faithful split BN-pair 
of rank 2 at characteristic p. Let s be a fundamental reflection in the Weyl 
group W= N/H. Then either 

(i) X n X S ~  X,  or 

(ii) p = 2 and ( B, s), in its 2-transitive representation on the cosets of 
B in (B, s), is the 2-transitive permutation group of degree 9 and order 
9 . 8 . 2 .  

Proof Let P =  (B, s)  and K =  ('] B g. From Corollary 1 it follows 
g~P 

that either (ii) holds or  X K / K  is regular on the cosets of B in P other 
than B itself. Now ( X ~ X  ~) K / K  fixes the cosets B and B s, so that 
X n X ~ < K .  However, K is a subgroup of B and has a normal Sylow 
p-subgroup X o . Thus, s e N(Xo) and X o < X n X S. Then X c~ X ~ = Xo <~ P, 
so that X n X s . ~ X .  

w 4. 2-1nvolutions 

Using Theorem C we can now strengthen the main part  of Theorem B. 

Theorem D. Let G be a 2-transitive permutation group on a finite set f2. 
Suppose that for c~, fl in f2, ~ ~ fl, G,p contains a 2-involution z which com- 
mutes with no other conjugate of z lying in G,t ~ . Then there is an odd prime 
power q such that G acts on (2 as a subgroup of PFL(2, q) containing 
PSL(2, q) in its usual 2-transitive representation. 

As in the proof  of  TheoremB,  Theorem D follows easily from 
Glauberman 's  Z*-theorem [5] and the following result. 

Theorem D' .  Let G be a 2-transitive permutation group on a finite set f2. 
Suppose that G contains a 2-involution and that for c~ in f2, G~ contains a 
normal subgroup Q of odd order and Q is transitive on f 2 -  ~. Then there 
is an odd prime power q such that G acts on f2 as a subgroup of PFL(2, q) 
containing PSL(2, q) in its usual 2-transitive representation. 

Proof of  Theorem D'. Let G be a minimal counterexample to Theo- 
rem D'. Let ~, f l~2,  c~+fl, and let z be a 2-involution in G~a. Then G,~ 
contains a Klein group ( t , z )  (Hering [8]). Also, the Fei t -Thompson 
theorem [4] implies that Q is solvable. Clearly, Q = Co(z ) CQ(t) CQ(t z), 
and, since z is a 2-involution, CQ (z) < Q,p. 
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We first show that neither t nor t z is a 2-involution. For  if t is a 2- 
involution, then CQ (t) < Q,~ and Q = Q,a CQ (t z). Then CQ (t z) is transitive 
on f 2 - e  and IA(tz)l=lf21, a contradiction. Similarly, tz  is not a 2- 
involution. 

As in w Lemma5,  C(t) ~") and C(tz) ~(t~ are 2-transitive and 
Ce(t) A(t)-~ and CQ(tz) ~(t~)-~ are transitive. Moreover, z ~t) and z a(t~) 
are 2-involutions. By the minimality of G, CQ(t) A(t) contains a minimal 
normal subgroup of C(t)~ c') which is transitive on A(t)-c~; a similar 
statement holds for CQ (t z) j"~). 

Let A be a minimal normal subgroup of G~ contained in Q. Then A 
is an elementary abelian p-group. By a recent result of O'Nan [12] A is 
semiregular on f2-c~, so that z inverts A and A = CA (t) CA(t z). Precisely 
as in the proof of Theorem B, we may assume that A = CA(t) is regular 
on A ( t ) -  c~ and C A (t z) = 1. 

We claim that Op,(Q)= 1. For  otherwise, let B be a minimal normal 
subgroup of G, contained in O v, (Q). As in the preceding paragraph, we 
find that Cn(tZ) is regular on A(tz)-c~. Then CQ(t)=ACQ(t)a and 
CQ (t z) = B CQ (t z)~ imply that Q = CQ (z) A Cz (t)t~ B CQ (t z)t ~ = ABQ~#, so 
that AB is transitive on s'2- ~. Also, it is easy to see that 

IABI =(IA(t)I - 1)(IA(t z)l - 1 ) = n -  1, 

so that AB is regular on O -  ~. Since ABe_ G,, [9] yields a contradiction. 
Thus, Op, (Q) = 1. 

We next claim that A=Op(Q). For suppose that L/A is a minimal 
normal subgroup of GjA with L < Q and L/A a p-group. First assume 
that CL(t z)> CL(t z)~. Then CL(t z)~"~)0e 1 and CL(t z)A(t~)< C(tz)~ "~, 
SO that CL(t z) a~'~) is transitive on A (t z ) -  ~. As CL(z) = CL(Z)~r it follows 
that Q = LQ~a and Lis transitive on Q -  c~. By Theorem C', this contradicts 
the minimality of G. Thus, CL(t z)= CL(t z),p and L =  CL(t) CL(tz)CL(Z) 
=AL~#. As A is semiregular on f 2 - a ,  Ac~L~a=I. Since A<Z(L), 
L = A • L,a. Again a result of O'Nan [12] yields a contradiction. 

Set H=Q(z>, so that H is solvable, Op,(H)=l ,  Op(H)=A, and 
consequently A = Cn(A) ([7], Lemma 1.2.3). Since z inverts A, zA~ Z(H/A). 
Therefore, H=ACn(z) and Q=ACo(z)<AQ,p. Thus, A is regular on 
g2-a,  again contradicting [9]. 
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