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Some Results on 2-Transitive Groups

WiLLiam M. KanToR (Chicago) and GARY M. Stz (Eugene)*

§ 1. Introduction

A fundamental result of Tits [19] classifies all finite groups having an
irreducible BN-pair of rank =3 and which is faithful in the sense that
() BE=1 (see [3] or [14] for the definition of a BN-pair). A group G is

geG

said to have a faithful split BN-pair of rank » if it has a faithful BN-pair
ofrankn, H= (] B",and B=XH with X <t Band X n H=1. Ifin addition
neN

G is finite, X is a p-group and H is an abelian p'-group, following Richen
[14] we say that G has a faithful split BN-pair at characteristic p. The
main purpose of this paper is to prove two results on finite 2-transitive
groups which can be applied to groups having a faithful split BN-pair
at characteristic p of rank 1 or 2.

Recent results of Shult [16] and Hering, Kantor and Seitz [9] classify
all finite groups having a faithful split BN-pair of rank 1. In Theorem A
we handle the special case of this classification in which H is abelian.
The proof of this theorem is much more elementary than those of [16]
and [9], and consists of showing that H is cyclic, so that a result of Kantor,
O’Nan and Seitz [11] applies. Our methods are a combination of ideas
found in [9] and [11].

In Theorem C we classify all 2-transitive groups in which the stabilizer
of a point has a normal nilpotent subgroup transitive on the remaining
points. For groups of odd degree this amounts to a straightforward
application of a result of Shult [15]. In the even degree case we reduce to
the result of Hering, Kantor and Seitz [9]. Once again our approach is
based in part on ideas in [9] and [11].

Theorem C has the following application to a group G having a
faithful split BN-pair at characteristic p of rank 2. Let s be a fundamental
reflection in the Weyl group N/H,and let P = (B, B*) be the corresponding
maximal parabolic subgroup. Then, in its natural 2-transitive representa-
tion on the cosets of B, P either has a split BN-pair at characteristic p
of rank 1 or is the solvable 2-transitive group of degree 9 and order
9-8-2. Thus, excluding this exceptional case, we must have X n X*<1 X.
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Moreover, a great deal is now known about the structure of these maximal
parabolic subgroups. It is hoped that this information will eventually be
useful in the complete classification of groups having a faithful split
BN-pair at characteristic p of rank 2.

Asafurther application of Theorem C, we classify all finite 2-transitive
groups G having an involution fixing just 2 points « and § and weakly
closed in a Sylow 2-subgroup of G,z (with respect to G, ).

Our notation is that of [9, 11] and, for the most part, [21]. Let G be
a permutation group on a set Q. Let X be a subset of G. Then 4(X) is
the set of fixed points of X and Wy is the pointwise stabilizer of A(X)
in N(X). Also, if YS N(X) then Y4 is the set of permutations induced
by Y on 4(X).

Throughout our proofs we will use many known facts concerning
the groups being characterized. These can be found in [11], §2 and
[91,§3.

§ 2. Split BN-Pairs of Rank 1 at Characteristic p

The following result is a special case of [9] and [16].

Theorem A. Let G be a permutation group 2-transitive on a finite set
Q. Let a, BeQ, o+ . Suppose that G, has a normal subgroup Q regular on
Q—a and that G,z is abelian. Then either G has a normal subgroup which
is sharply 2-transitive on §2 or G is one of the following groups in its usual
2-tramsitive representation: PSL(2,q), PGL(2,q), Sz(g), PSU(3,g),
PGU(3, q), or a group of Ree type.

Proof. We shall use induction on |G| to show that G, is cyclic. Then
by a result of Kantor, O’'Nan and Seitz [11], either G has a regular
normal subgroup N and QN is sharply 2-transitive, or G is one of the
groups listed above.

Assume that G,; is not cyclic. We may suppose that G, has even
order (Bender [1]. Suzuki [17]). Let T be the subgroup of G,, generated
by the involutions in G,;. If |T| =2 then we may assume that T fixes more
than 2 points (Hering [8]).

Lemma 1. Let X be a non-empty subset of G, fixing at least 3 points.

(i) Co(X)=<(Cpu(X) e A(X)) is 2-transitive on A(X), and |Cy(X)| =
l4(X)|—1.

(i) X is weakly closed in G,;.

Proof. (i) If B, ye A(X)—a let y= %, geQ. For any xe X, p#*=f¢=f*¢,
so that [x,g]eQ@ N G,;=1. Thus Cy(X) is transitive on 4(X)—a, and
(i) folows.

(ii) If geG and X*<G,; then a, B, of, ffe A(XE). By (i), o8 =u and
"= B with he C(X). Thus, X#=X*"=X as G, is abelian.
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Lemma 2. n=|Q)| is even.

Proof. Suppose that n is odd. Let § be a Sylow 2-subgroup of G, such
that S, is a Sylow 2-subgroup of G,,. Then S=(SnQ)S;. Also, S'<Q
and S§n (SN Q)=1 for all geG. Thus, if K is the kernel of the transfer
of G into §/SNQ~S, then KnS;=1. Also, K=SnQ, so that K=Q.
By a result of Suzuki [17], K is one of the groups being characterized.
Since S;<Aut K, it is easy to see that S;- K,3=G,; is non-abelian, a
contradiction.

Lemma3. Let 1 +reT.

(1) If 14(5)|>2, then C(t)= C(W,); and

(i) If |A()|=2 then t inverts Q.

Proof. By Lemma 1 (i1) we have (i), and (ii) follows from the fact that
Col)=1.

Lemmad. Let T* ={1,]i=1, ..., m}. Set k;=|A4(t)|. Let c be the number
of involutions (« B) ... and d the number of regular involutions (¢ f)... .

(i) (n—k)/k(k;—1)is an integer >1.
(i) 3 (1—kfeiki— D=c—d.
i1

Proof ([11], Lemma 4.3). (i) By Lemmas 1(ii) and 3(ii), ¢, is weakly
closed in G,;. Following Witt [22], we call a subset of Q a line if it has
the form A(#%), ge G. Then there is a unique line through two distinct
points of , and (n — 1)/(k;— 1) lines through . If p¢ A(t;) then ¢, fixes the
line through y and v, and, since k; is even, no two fixed lines of ¢; meet.
Thus, k;|n, so that (n—k;)/k;(k;— 1) is an integer. If this number is 1 then
n=k?. The points and lines then form an affine plane with a 2-transitive
collineation group G. By a result of Ostrom and Wagner ([13], Theorem 1)
G has a regular normal subgroup, which is not the case.

(i1) Since there are ¢ —d non-regular involutions (« f)..., « is moved
by {¢c—~d){(n—1) non-regular involutions. On the other hand, there are
n(n—1)/k;(k;—1) conjugates of t;, of which (n—1)/k;—1) fix « and
(n—k;)(n—1)/k;(k;— 1) move a. Thus,

e=dn—1)= ¥, (1—k)n— kit~ 1),

as required.

Lemma 5. |T| = 4.

Proof. Otherwise, T={t> has order 2. Set 4= A4(t) and W=W,. Set
k=|4|>2. By Lemma 4, n—k=(c—d) k(k—1).
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By Lemma 1 each involution xe C(t) {t}is regular on 4. 1f x and x,
are involutions in C(f)— {t} and x¥= x{ then x ! x,e (¢t by Lemma 3 (i).
There are thus two possibilities:

{a) C(¢)* has a regular normal subgroup, k>4 and ¢=2 or

(b) Co()'=PSL(2.q) and c=2-(g—1)/2.

Moreover, in (a) we have d=0 by Lemma 4, and n—k=2k(k—1). In
(b), d=0or (g~1)/2. and n<qg® + 1.

We note that W is semiregular on Q—4. For, let 1+ U< W and
4(U)> A(t). Then ¢ fixes k points of A(U), and it is easy to see that [4(U)
=k? in case (a) and [4(U)|=¢>+1 in case (b). Thus, (a) holds. However,
U is weakly closed in G,; by Lemma 1. Thus, G, contains

(n—D/14(U)|-1)=C2k+ 1)(k—1)/(k* — 1)
conjugates of U, a contradiction.

Let t'=(af)... be a conjugate of r. By Lemma 3(i), ¢’ centralizes W.
Then Wis semiregular and faithful on A(t'), so that W is cyclic of order
dividing k. If (a) holds, W is a 2-group and G, /W is cyclic, whereas G,
is non-cyclic. Thus, (b) holds and G, /W is cyclic of order dividing g~ 1.
Once again, G, is cyclic, which is not the case.

We now use the notation of Lemma 4, where ¢, is chosen so that
|A(t;)] is maximal.

Lemma 6 (1) TnW, ={t,).

(i) |T1=

Proof. (1) Suppose that t,€ T W, . By the maximality of |4(,)| we have
Colt)=Cy(t)=Cqplt t;). By the Brauer-Wielandt Theorem [20],
(ky —1)3=(n—1)(k, —1)?, a contradiction.

(i) Since |T4!| <2 this follows from (i).

We can now complete the proof of Theorem A. By Lemma 6, T4+ 1.
Also, a conjugate (« f))... of ¢, is regular on 4(¢,). If C(t,)*“? has a regular
normal subgroup then C(t,)*™ has just 2 involutions (x f).... Since
C(t;))=N(W,)=C(W,) (Lemmas 1 and 3), c=4, whereas c=2(/T}-1)=6
by Lemma 4. It follows that C(t,)"Y = PGL(2, q;). In particular, |A(T)|=2.

Let [4(t)|>2. Then T4 fixes just 2 points. Also, C(t,)*"? contains
a regular involution. Thus, C(t)*™ =PGL(2, g,). Since C(t,)= C(W, ) and
Tn W, ={t;), c=2(g;—1). In particular, g, =q;.

By the Brauer-Wielandt Theorem [20],

n—1=|Q|=(k;— Dk, — 1}k —1).

If |A(t5)| =2 then |A(t,)| >2, so that k;=k,=¢,+1 and n—1=¢g;. How-
ever, by Lemma 4 (i) (n—k,)/k, (k; — 1)=(q? — q,)/(q; + 1) g is an integer,
which is impossible.
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Thus, ky=k,=k;=¢,+1 and n—1=¢;. By Lemma 4 (ii),
2gi—D=czc—d=} (n—kj/k,(k;~ 1)=3(g;, - 1),

a final contradiction.

The definitions needed for the following corollary have been given
in§l.

Corollary. Let G have a faithful split BN-pair of rank 1 at characteristic
p. If G has no regular normal subgroup then G is one of the following
groups in its usual 2-transitive representation: PSL{2,q), PGL(2,q),
PSU(3,q), PGU(3, q), Sz(q), or a group of Ree type. If G has a regular
normal subgroup N, then |[N|=2% and p=2°—1 is a Mersenne prime. or
p=2and IN|=q for q=9 or q a Fermat prime.

Proof. We apply Theorem A in the case where @ (which is X in the
notation of [14]) is a p-group for some prime p. We need only check the
case where G has a regular normal subgroup N of order ¢° for g a prime
g+p. Then p°=|Q|=|Q|—1=g"—1 for some integer b, and the result
follows.

§ 3. Nilpotent O

As in [9], §6, we call an involution in a permutation group a 2-
involution provided that it fixes just 2 points. Clearly, these can exist only
for permutation groups of even degree. The only known 2-transitive
groups containing 2-involutions are S, with n=4 even, A, with n>4
even, and suitable subgroups of PI'L{2, q) containing PSL(2, g) with ¢
an odd prime power.

Theorem B. Let G be a finite group 2-transitive on a set Q, and let
a, ieQ, a+p. Suppose that G,; has a non-trivial normal 2-subgroup
semiregular on Q- {a, B}. Then G acts on Q as Ag, S¢ or a subgroup of
PI'L(2, q) in its usual 2-transitive representation.

Proof. The hypotheses state, in effect, that G is a transitive extension
of the type of transitive group considered by Shult [15]. If the given
2-subgroup of G, contains a Klein group, it is easy to use Shult’s result
and a result of Suzuki [187 in order to show that G is A¢ or S.

We may thus assume that G, has a central 2-involution z. If geG,
and z z¥=z% z then z® fixes §, so that ge G, and z8 =z. By Glauberman’s
Z*-Theorem [5], G,=0(G,) C(z),. As C(2),=G,p, O(G,) is transitive
on Q—g. By the Feit-Thompson Theorem [4], @ =0(G,) is solvable.

Let X be any subset of G fixing at least 3 points. Then {(zZ*{af=ua
and Bfe A(X)— o) is transitive on 4(X)— . Thus, C(X)**® is 2-transitive
and satisfies our hypotheses.

9 Taventiones math, Vol 13
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We may assume that there is an involution t =z in G,; (Hering [8]).
Since ze Z(G, ), Cy(t)s= Cg(t z)5. By the Brauer-Wielandt Theorem [20],

101 Co ()] =104l 1Co(O] | Cqt 2)]
=105 (14®)| = 1) |Co (D] (14t 2)| = 1) |Co (2 2),
=1Qsl 1Co)l? (4~ 1)(|4(t 2)| - 1).

Thus, n—1=|Q:Q4=(14()| - 1)(j4(t 2)| —1). Then ¢ and tz each fixes
at least 3 points. It follows by induction that C(1)*"=PSL(2, ¢} and
C(t 22" =PSL(2, ¢ for some g and ¢'. Then n—1=ggq'.

Lety¢ A(t). Then t centralizes the conjugate z' of zlyingin G, .. Clearly,
24" fixes no points. Here C(t)?" contains precisely (q*> —q)/2 regular
involutions, all of which are conjugate. Thus, each such regular involution
has the form z' 4 for the same number m of conjugates z’ of z. Since {t>
has precisely (1 — g — 1)/2 non-trivial orbits, it follows that (n—qg—1)/2=
m(g*>—g)/2. Then n—1=¢g(1+m(g—1)) and ¢’ — 1 =m(g—1). Interchang-
ing the roles of g and ¢’ we find that g=q' and n=q* + 1. Note also that,
since C(£)*" and C(t z)*"? each contain involutions fixing 0 points and
involutions fixing 2 points, both groups have subgroups acting as
PGL(2, g).

Let 4 be a minimal normal subgroup of G, contained in O(G,). Then
A=C4(z) C(t) Cyltz)= A C4(t) C4(tz) and A fixes no points of Q—a.
Clearly, C(t),; acts on C,(t). Since we may assume that C,(t)£G,,,
it follows that C4(t) is transitive on A(t)—o. If also C4(t2)$£G,; then
C 4(t ) is transitive on A(t z)—a and, by the Brauer-Wielandt Theorem
[20], 1AIIC4@)sl* =145 |IC 1) |C4(t2)| =451 |C4(t)sl g |C4(t 2)gl, sO
that IA:Aﬂ|=q2 =n—1. Then A is transitive on Q—a and is abelian, so
that A is regular on Q2 —a. The theorem now follows from [9].

We may thus assume that C,(t z) < G,;. Let B/A4 be a minimal normal
subgroup of G,/4 such that A <B=<0(G,). If Cy(tz) £ G, then, as in the
preceding paragraph, we find that |B: B;|= q*=n—1, and by [9] we may
thus assume that By + 1. If Cp(t2)<G,, then B,y 1, as otherwise Cplt 2)
=1=Cp(z) and hence 4 <B< C(r). whereas A is regular on A(1)—2.

If Ag#+1set P=A;. If Ag=1set P=B;. In either case, P<0G,,; and
|P| is a prime power. We note that |4(P)|= 3. For otherwise, P=B; is a
Sylow subgroup of B and G,=BN(P),=AN(P),;, whereas 4 is not
transitive on 2 —a.

Since P=1G,; and C(P)*™ is 2-transitive, P is weakly closed in G,
(compare §2, Lemma 1). Set |{A(P)|=s+1. Then P has n(n—1)/(s+1)s
conjugates in G, (n—1)/s=g?*/s of which are in G,. Also, {t,z) acts on
A(P), so that t* =t or t z fixes at least 3 points of A(P). Recall that C (t*)4¢
has a subgroup acting as PGL(2, g), so that C(t*), is transitive on A4(t*) —
{o, B}. Since C(t*),, normalizes P it acts on A(P), and it follows that
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A(t*)< A(P). Thus, g <s. However, g and s are powers of the same prime
and (s + 1)|(g* + 1). This contradiction completes the proof of Theorem B.

Theorem C. Let G be a 2-transitive permutation group on a finite set Q.
Let aeQ, and suppose that G, has a normal nilpotent subgroup Q transitive
on Q—a. Then there is a normal subgroup Q* of G, such that Q* £Q and
Q* is regular on Q—a.

Theorem C easily follows from the following result, which gives the
precise structure of those groups satisfying the hypotheses of Theorem C.

Theorem C’. Let G be a 2-transitive group on a finite set  such that
G, has a normal nilpotent subgroup Q transitive on Q—o. Then either Q is
regular on Q—ua or G has a regular normal subgroup of order p*, where p
is a Mersenne prime. Moreover, G has a normal subgroup M such that
G<Aut M and M is one of the following groups in its usual permutation
representation: a sharply 2-transitive group, PSL(2, q), PSU(3, q), Sz(q),
or a group of Ree type.

We remark that, if |2] is even, Theorem C’ implies that the group Q
is always regular on Q — . This fact will be used throughout the inductive
proof of Theorem C".

Proof. Let G be a counterexample to Theorem C’ of minimal order.
Then by results of Shult [16] and Hering, Kantor, and Seitz [9], it
suffices to show that Q nG,;=1 for a+f in Q. Thus, we suppose that
1+P=Q0NnG,;<G,p. Set A=A(P)and W=W,.

Lemma 1. G does not contain a regular normal subgroup.

Proof. Suppose that G has a regular normal subgroup N of order p“.
As G does not satisfy the conclusion of Theorem C', p*#p* for p a
Mersenne prime. If p®= 64, then, by the nilpotence of Q and a theorem
of Huppert [10], |Q|=63 and Q is regular on 2—o. Thus, neither of the
above cases occurs and. by a result of Birkhoff and Vandiver [2], there is
a prime r such that r|(p°—1) and ry(p*—1) for I<bh<a. Let Q=R x L,
where R is a Sylow r-subgroup of Q. Since (p*— 1)||Q|, R +1, and, by the
conditions on r, R is fixed-point-free and irreducible on N. If 1  xe Lthen
R normalizes Cy(x), so that Cy(x)= 1. It follows that Q is fixed-point-free
on N and Q is regular on Q — o, which is not the case.

Lemma 2. Z(Q) is semiregular on 2 —u.
Proof. If ge Z(Q), then g fixes B9 pointwise, so that g=1.

Lemma 3. (i) n is even.

(i) Q has odd order.

(iii) G has no normal subgroup of index 2.
9*
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Proof. (1) Otherwise, the Sylow 2-subgroup of Z(Q) is nontrivial and
semiregular on Q-—a. The result now follows from Lemma 1 and a
theorem of Shult [15].

(ii) This follows from (i) and Lemma 2.

(iii) If {G:N|=2 then N is transitive and Q <N. Thus, N is 2-transi-
tive. As [N| <|G|, N has the required structure, and consequently so does
G. This is a contradiction.

Lemma 4. Set k=|4|.

(i) No(P)is transitive on A—o and k is even.

(ii) N(PY is 2-transitive and k> 2.

(ili) P is weakly closed in G,4.

(iv) Call a subset of Q a line if it has the form A%, geG. Then there is
a unique line through two distinct points of € and there are (n—1)/(k—1)
lines through a.

(V) kinif Qis a p-group.

Proof. Let f'e A —a. Then f'=f* with xe Q. so that P* '<G,,n Q=P
and xe Ny(P). This proves (i). Similarly, if B..... F, are the Sylow sub-
groups of P then Ny, (F) is transitive on 4(B) —o for each i. Let af =8, g€ G.
Then P normalizes Qf and C(P)nZ(Q%=+1. By Lemma 2, N(P) is 2-
transitive on 4(P). Since P*P)=1 N(P);{*, the minimality of G implies
that P<W, and hence that [P, C(P)nZ(Q9)]=G,,nZ(Q%)=1 for
each i. Therefore, C(P)nZ(Q®)=+1 and (ii) holds.

Let P"<G,y, yeG. Then P fixes o, B, o “"and 777, so that by (ii)
o '=0* and [ '=p* with zeN(P). Thus, zyeG,; and P=P*=P",
proving (iii).

An elementary result of Witt [22] yields (iv). Moreover, there are
n(n—1)/k(k—1) lines. If Q is a p-group then n—1 and k—1 are powers
of p by (i). There are n(n—1)/k(k—1) conjugates of P, so that k|n and
(v) holds.

Lemma 5. Let X be a subgroup of G,y fixing at least 3 points and
such that ((Q|,1X)=1.

(1) Co(X) is transitive on A(X)—o and |A(X)| is even.
(i) (Cpe X)X fixes af} is 2-transitive on A(X).
(i) If X*<G,,. geG, then X and X* are conjugdte in G,

Proof.Let f'e A(X)—u. Then f' = " with ye @, so that X''<0X NGy
=PX. By the Schur-Zassenhaus Theorem, X* ‘= X* with zeP. Thus,
p'=p"=p7 and z ye Ny(X)= Co(X). This proves (i) and (ii).

Suppose that X*<G,,. Then o, f, of, ffe A4(X¥). By (i), o*'=« and
BE' = B with le C(X?®). Thus X&=X*"and gleG,,, proving (iii).
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Lemma 6. Let {t,u) be a Klein group in G,;.

() (401=-1)(4@|=1)(4w]-1)=( -4t up) - 1)
(ii) A(t)=A(u).
Proof. (i) By the Brauer-Wiglandt Theorem [20],

[CoO)] [Co)] ICo(tu)l =101 |Co(<t, u))|?
|Cr ()1 |Cp)] |Cpltw)| =Pl |Cp(<t, up) .

Clearly, |Ql/|P)l=n—1. By Lemma 5(i), |Co(){/ICp(8)|=14(){ -1, with
similar equations for u, t u and (¢, u}>. This proves (i).
(i1) If A(t)=A(u) then A(t)=A({t, u))= A(t u). By (i),
(14— 1)? (14t )] = 1)=(n— D (1 4@) - 1),

which is impossible.

and

Lemma 7. Q is a p-group for some prime p.

Proof. Suppose that Q is not a p-group. Then Z(Q)< N(P) and Z(Q)
is not a p-group. By Lemmas 2 and 4 and the minimality of n, N(P)* has
a regular normal elementary abelian 2-subgroup Ty'. We may assume
that Ty <<(Z(Q%)|ofed>=Cy(P). As W<aN(P), [Co(P), W]=1. Also,
[Al—1={Z(Q)|>3. By [9], Lemma 2.7, Cy(P) has a normal Sylow
2-subgroup T of order k=|4|, and Cy(P)=TZ(Q).

We now proceed by a series of steps.

(i) T* consists of regular involutions. For otherwise, if xe T* then
P acts on 4(x) without fixed points. In particular, C(x)*™ has no regular
normal 2-subgroup. Let x" be a conjugate of x lying in G, ;. Since C (x>
is nonsolvable and x’ acts on 4, |4An A(x')|=4. Then |4|=16 and |Z(Q)|
=15 since |Z(Q)] is not a prime power. x’ centralizes the subgroup R of
Z(Q) of order 3. Since R**"<a C(x")2™" we must have |4(x")| = 28 (see [9].
§3). Also. Q is a {3, 5}-group. Since 5¥|C(x)**"|. P4* is a 3-group and
hence P fixes a point of A(x), which is not the case.

(ii) G,, has even order (Bender [1]).

Let t be an involution in G,;. Then ¢ normalizes P and 7, and either
t*=1 or t4 fixes }/k points. Thus, |C7(t)|=k or }/k. Moreover, |4(t)|>2
and Lemma 5 applies to ¢.

We claim that C()2® has a regular normal subgroup. For otherwise,
since C,(t)?"® is semiregular, C(t)*"” has a normal subgroup PSL(2, q)
for some g>3 (see [9], § 3). Moreover, |C;(t)]<4. Since k>4 we must
have k=16 and |4 N A(t)|=|C(@)|=4. As in (i), | Z(Q)| =15, ¢ centralizes
the subgroup R of Z (Q) of order 3,and R*4® =<1 C(r)4®, which is impossible.
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(ii1) There is a normal subgroup U of C(t) of order |4(t)| containing
Cy(t) and regular on A(z). For let U be the normal closure of C(t) in
C(z). Since [C, (1), Wl T W,=1, Un W, <Z(U). Thus, U is a 2-group.
Let BA?=0(C()2) with B=W,. Then B/C4(U) has odd order and is
transitive on (U/U n W)* . If |A(t)| > 4 our assertion now follows from [9],
Lemma 2.7. If |4(t)|=4 then |4}|>4 implies that A(t{)= 4 and hence
that U= Cr(1).

(iv) The remainder of the proof closely follows that of [9], § 5. We
first show that G, contains no Klein group (cf. [9], Lemma 5.5). For let
{t,u) be a Klein group in G,; with t central in a Sylow 2-subgroup of
G- Set [=]4(<t,u))|. Since [<t, udd|=2,1>2. By (ii), t,u and t u fix I or
[ points. By Lemma 6, at most one of these fixes / points and n—1=
(I+1)2(I'—1), i=1 or 2. Computing |G|, we find that |4(¢)|=1 and C(r)
contains a Sylow 2-subgroup of G. Let V<1 C(u) with |V|=|4(u)| (see
(iii)). Then C(f) contains a conjugate V of V{u), |[V49|<I, and hence
VA W,|221%128. If ve V¥ with |A(r)] maximal then |[(V W)*"| =4,
which is impossible by Lemma 6.

(v) Next,n=|4(t)|*> and Ut is fused. For U {t) contains all involutions
in C(t). If y'+yeQ— A(t) then ¢ centralizes an involution in G, .. No two
involutions in Ut fix common points. Thus n=|4(t)|*.

In particular, |4(z)| — 1 is not a prime. For otherwise, by considering
t4, we find that C(1)n Cy(P) is transitive on 4(1)—x and hence 4(r) s 4.
Since |4(H)i=k or ﬂ it follows that A(t)=A4. Now the points and lines
(Lemma 4 (iv)) form an affine plane, and G has a regular normal subgroup
(Ostrom and Wagner [13], Theorem 1), which is not the case.

Moreover, it is easy to see that N(U {t))is transitive on the set £ = U 1.
Since C(£)ZUW, it follows that W,=(t). Consequently, C(t),z is
cyclic.

(vi) N(U<1)) is transitive on .# and Cy(¢) is transitive on S — {1}
(Lemma 5(i)). We can apply induction to N(U<{t)). Here |.#] =]4(t)| =1>2
isa power of 2. If N(U<{t)»)” does not have a regular normal subgroup then
I—1 is a prime power and hence a prime, and this contradicts (v). Thus,
N(U{t>) has a normal subgroup R containing C(¥)= U<t such that
R? is regular. Here |R|=21* where [=|4(t)].

Set A= Cy,(1). Since U consists of regular involutions, U<1RA. Then
U<Z(R)as A is transitive on (R/U)*.

(vii) Since >4 by (v), using [9], Lemma 2.7, we find that R/U=
U,yU x U<{t3/U, where C(t), normalizes U, =[R, C(¢),}. Then U <Z(U))
and A is transitive on (U,/U)*.

Since n=12, a Sylow 2-subgroup S of N(U{t>) containing a Sylow
2-subgroup of C(t),, is Sylow in G. Clearly S=U, S,;0=Uj, t€S,5, Sap
iscyclicand Uy nS§,,=1.
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By Thompson’s transfer lemma ([9], Lemma 2.3), t is conjugate to
an element u, of U,. Then u,¢U. Since A is transitive on (U/U)* and
UZLZ(U), U, is elementary abelian. However, U; £ C(y,) and C(u,) has
no elementary abelian subgroup of order I?>2I. This contradiction
proves Lemma 7.

Lemma 8. W~ C(P) is a p-group.

Proof. Let Q;=Ny(P). Suppose that L is a p'-group and 1+L<
Wn C(P). Then [Q,, LIEQnWZ0nNG,;=P Thus, L centralizes Q,/P,
and since L centralizes P, L < C(Q,).

Suppose that 4cA(L). By Lemma 5 (i), N(L)** is 2-transitive.
Clearly, P4®W+1. Since Cy(L) is transitive on A(L)—o (Lemma 5 (i)),
|A(L)|—1 is a power of p. As 1+ P41 C(L)J}". this contradicts the
minimality of G. Thus, 4=4(L). Also, P<Q,<Ny(L) and Ny(L)*®~*
is regular. Consequently, Ny(L)=0;.

Let Q, <N,(Q,) be such that Q,/Q; is a minimal normal subgroup
of Np(Q)) - L/Q;. Then [L, P,Q,]=1and [P, Q,, L}1=[Q,, L]=1. Thus,
[Q,,L,P]=1 and P centralizes {Q,,L]. Then [Q,,L]SN(P)nQ=
Ny(P)=Q,, and Lcentralizes Q,/Q; . Since Lcentralizes Q,, L centralizes
Q,, a contradiction.

Lemma 9. N(P) contains a Sylow 2-subgroup of G.

Proof. By Lemma 4 (v), k|n. Since Q is a p-group, n=p®+ 1 for some
integer b and k=p“+ 1 for some integer a. Then (p®+1)|(p® + 1), so that
b/a is an odd integer and (p®+ 1), =(p°+1),. Since G,; < N(P), IN(P)|,=
(P74 1) |Gypl2 =(p"+1), 1G,pla=1Gl,.

Lemma 10. (i) C,(P)=<Z(Q%)|0fe A is a normal subgroup of C(P)
and N(P) which is transitive on A.

(ii) Co(P)* contains a Sylow 2-subgroup of (N(P)?).

(i) Co(P)N W is a p-group.

(iv) Co(P)Nn W< Z(Co(P)).

Proof. (i) If «®€ 4, then we may assume that ge N(P) (Lemma 4). Thus,
P=pP¢<Q® and Z(Q*)Z C(P). By Lemma 2, Z(Q®) is semiregular on
A—ot. Thus, Cy(P) is transitive on 4, Cy(P)E C(P), and Cy(P)y<aN(P).

(ii) This follows by considering the structure of groups satisfying
the conclusion of Theorem C’ with |Q] even.

(i) This follows from Lemma 8 as Co(P)Nn WX C(P)n W.

(iv) Co(P)nW=aCy(P) and, if ofed, then Cy(P)nW=G, and
Co(P)~ W normalizes Z(Q®). Thus, [Co(PYn W, Z(Q¥)]Z Co(P)n W
Z(0Q®%) =1 since W fixes 4 pointwise and Z(Q?*) is semiregular on 4 — a5
This proves (iv).
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We now complete the proof of Theorem C' by considering four cases.
We use repeatedly properties of the groups being characterized by
Theorem C'. We refer the reader to § 3 of [9] and to § 2 of [11] for these
properties. Moreover, we use the Thompson transfer lemma (see
Lemma 2.3 of [9]) and the Burnside fusion lemma ([6], p. 203).

Let S; be a Sylow 2-subgroup of Cy{P) such that (S,),, is a Sylow
2-subgroup of C,(P),s, and let S, be a Sylow 2-subgroup of W. Since
Co(P)aN(P), W=aN(P), and Cy(P)nW is a p-group, §,S,=5,xS,.
Let S be a Sylow 2-subgroup of N(P) such that §; xS, <S. By Lemma 9,
S is a Sylow 2-subgroup of G, and by Lemma 10 (ii), $/S; x S, is abelian,
Also, ;=S Cy(P)<aS and S,=SnW=S.

Case 1. N(P)* contains a regular normal subgroup.

Here k=2°2>4 for some integer a and C,(P)? contains a regular
normal subgroup. Since Co(P)n W is contained in Z(Cy(P)) and has
odd order, S, is an elementary abelian 2-group characteristic in Cy(P).
Then 2°=|5,|=|4|=p?+1 for some integer b, so that a is prime and
2°=p+1. If a>2, then by a result of Huppert [10], $; xS,=8. Ifa=2
then |S:S; x S,|=2.

Let u be an involution in S;,. Then 4(u)nA4=0 and P< C(u). If
A(u) % O then P acts on A(u). and since | A(u)| — 1 isa power of p(Lemmas 5(i)
and 7), 4~ 1(w)F0. a contradiction. Thus, each involution in S, is a
regular involution.

Suppose that a>2, so that §=S, x S, and S, is a Sylow 2-subgroup of
G,;. By aresult of Bender [1], S, #+ 1. Let t be an involution in S, so that
S, < C(p). Since S, is semiregular on Q, §{'x S,. By the minimality of G
and the structure of groups satisfying the conclusion of Theorem C’,
C(1)*” contains a regular normal subgroup. Thus, 2=|A(1r)|=p*+ 1
for some integers ¢ and d, and 2°=p+1 as before. Then 2°=2? and
A(f)=A. By Lemma6 (ii), ¢ is the unique involution in S,. By [9],
Lemma 2.6, t is conjugate to some involution in S, x {t> - {t}, and from
Burnside’s fusion lemma it follows that S,={¢>. Now Thompson’s
transfer lemma and Lemma 3 imply that ¢ is conjugate to some involution
uin S,. This is a contradiction since u is a regular involution.

Now suppose that a=2 and |4|=4. Here p=3 and |Z(Q)|=3=|4|— L.
As before, there is an involution ¢ in G,, (Bender [1]). If S,=1 then
S,<{t>=S8 and, by Thompson’s transfer lemma and Lemma 3, ¢ is con-
jugate to an involution in §,. This is a contradiction as before. Thus,
S,# 1.

Suppose that §, contains a Klein group <z, u). Since S, centralizes
{t,u> and contains only regular involutions, C(t)*® contains a regular
normal subgroup or a normal subgroup isomorphic to PSL(2, p°) for some
integer e. Also, Z(Q)=G, and teS, < C(Co(P)), so that Z(Q)*“=
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C?™. As |Z(Q)|=3, |4(t)|=4. Similarly, |4(u)|=4=|4(tu)|. Thus
A(ty=A(u)=A(t u)= 4, contradicting Lemma 6. Hence, S, is cyclic or
generalized quaternion.

Let {t)=0,(S,) and suppose that there is a conjugate v of t with
ve N(P)— Co(P)W. Then we may assume that veG,;. By Lemma 5(iii)
v and t are conjugate in G,;. However, G,;,<N(P), te W=2N(P) and
v¢ W, a contradiction. Thus, each conjugate of ¢ contained in S is in
S, % S,. Suppose that §> 8§, x S,. Then S/S, is dihedral of order 8, and it
follows that Z(S)nS;=<u> for some regular involution u. By [9],
Lemma 2.6, t is conjugate to t u. However, Q,(Z(S))=(u) x {t>. so that
Burnside’s fusion lemma implies that 1, u and ru are conjugate, a con-
tradiction. Thus, S=5,x S, and £,{Z(S))=S, x {t>. By [9]. Lemma 2.6.
Z(S)—<t) contains a conjugate of 1, and by Burnside’s fusion lemma
S, =<t>. Once again Thompson’s lemma yields a contradiction.

Case 2. N(P)? contains a normal unitary subgroup.

Here C,(P)"~PSU(3.q). Suppose that <{r,u> is a Klein group
contained in §,. By Lemma 6, we may assume that A ()= A({t, ud>)=2 4.
As (t,u) centralizes Co(P), Co(P)*® is a unitary group centralized by
u®_This contradicts [9], Lemma 3.2. Thus, S, is cyclic or generalized
quaternion.

We claim that §,=1. For, otherwise, set {t>=0,(S,). By [9],
Lemma 3.2, S, is a quasidihedral or wreathed group. Let (u>=Q,(Z(S,)),
so that Q,(Z(S))=<u) x{t). If ¢ is conjugate to an involution veS—
(S, x §,) then, by [9], Lemma 3.2, we may assume ve G, ;. By Lemma 5 (iii),
vand 7 are conjugate in G,;. As G,; S N(P)SN(W), te W, and v¢ W, this
is a contradiction. Thus, each conjugate of ¢ lying in S is contained in
S, x§,. By [9]. Lemma 2.6, t is conjugate to some involution in S; X S,
~{t}. As Co(P)*"” has only one class of involutions, ¢ is conjugate to u
or ut. By Burnside’s fusion lemma, ¢, u and tu are conjugate. Since u
fixes at least 2 points of 4, u is conjugate to an element u' of Cq(P)y,.
As above, t and u’ are conjugate in G,z < N(P), whereas v'e C(P) and
te W, a contradiction. Thus, S, =1 as claimed.

By [9], Lemma 3.2, S=S, S, with S, Sy=1 and S, cyclic. If Sy =+ {,
then, by [9], Lemma 2.3, the involution » in S, is conjugate to the in-
volutions in ;. We may assume that veG,; and v is conjugate to an
involution ue Cy(P),;. Then v and u are conjugate in G,;, whereas u*
and v* are not conjugate. Consequently, S;=S.

Let ¢ be an involution in Co(P),5. As Co(P)NWZZ(Cy(P)) is of
odd order, ¢ is the unique involution in Cy(P),;, and consequently ¢
is the unique involution in G,;. With the notation of Lemma 4 (ii) of
§1, (n—k*)/k*(k* — 1)=c—d, where k*=|A4(t)|. All involutions in G are
conjugate, so that d=0. If ¢’ is an involution interchanging « and §, then
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t'e N(P). Since C4(P) contains each involution in N(P), t'e C,(P). Here
Co(P) containsg—1 involutions interchanging o and j. Since Co(P)n W
< Z(C,y{P)) has odd order, Cy(P) contains g— 1 involutions ' =( f)....
Thus, c=q-1.

As te Co(P)< C(P), P acts on 4(r) and P*V<a C(1)3}". Since |4(r)| — 1
is a power of p the minimality of G implies that P4’ =1. Thus, 4(f)c 4.
Since Co(PY*=~PSU@B.q), |Al=¢>+1 and k*=|4(t)) =g+ 1. Thus,
(n—(g+1))/(g+1)g=q—1and n=q>+1=|4}, a contradiction.

Case 3. N(P) contains a normal subgroup of Ree type.

Let |A]=g*+1. Here Co(PY'<aN(P)* so that either Co(P)? is a
group of Ree type or |4] =28 and C,(P)?~ PSL(2, 8). By [9], Lemma 3.3,
Co(P)* contains a Sylow 2-subgroup of N(P)4, so that S=S;xS5,.
Moreover, S, is elementary abelian of order 8 and there is an element
ge Co(P) such that [g| =7, ge N(S,) and {g) is transitive on the involu-
tions in §;. If u is an involution in §,; then ue C(P) and P acts on A(u).
We may assume that ueG,;, so that P4“'<a C(u)2". Since [4(¢)| - | is a
power of p we must have P4 =1. Thus, A(u)c 4.

Let ¢ be an involution in S,. Then 5;<{g> < C(t) and, by the preceding
paragraph, S, {g)*®xS,{g). By considering the groups satisfying the
conclusion of Theorem C', it follows that either C(¢)?"” contains a regular
normal subgroup I2® with S#®<I4® or C(1)*® contains a normal
subgroup of Ree type. The first case cannot occur since S; N G,,+1. If
the second case occurs then |4(t)|=g; + 1 for some integer g,, and, if u
is an involution in S;, then |4(u)n A(t)}=qg,+1. Since A(u)=A and
ASA@), g+ 1=|4(w))=q+1 and 4(t)=A4. By Lemma 6 (ii) {t>=Q,(S,).

Thus, if S,+1 then Q,(S)=8, x (tDLZ(S). In this case, there is a
conjugate v of t lying in S; x {t>—{t} ([9], Lemma 2.6). By Burnside’s
fusion lemma we must have S, = {t>. Now Thompson’s transfer lemma
implies that ¢ is conjugate to some involution u in S;. However, |4(u)|=
g+1 and |4(t)| =¢>+1, a contradiction. Therefore, S,=1 and S=5;.

Now just as in the preceding case, we proceed as in § 1, Lemma 4 (ii),
in order to show that n=[Q|=g¢>+1. Consequently, A=, a contra-
diction.

In view of the minimality of G, the proof of Theorem C’' will be
completed once we eliminate the following case.

Case 4. N(P)* contains a normal subgroup isomorphic to PSL(2, 9),
q>3.

Here Cy(P)? ~ PSL(2, ). Let u be an involution in S;. Then |4~ A(u)|
=0 or 2. Since ue Co(P)= C(P), P acts on A(u) where [d(u)|—1 is —1
or a power of p. By the minimality of G, P4 =1 and A(u)c= 4. Thus,
if g=3 (mod 4) u is a regular involution, while if g=1 (mod 4) u fixes
exactly 2 points of €.
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If g=1 (mod 4), then there is an involution u in Cy(P),;. As Co(P)
W <Z(Cy(P)) and Cy(P)n W has odd order, u is the unique involution
in Co(P)y4. Also, Co(P),s=<1G,;, so that u is central in G,,. Since u is a
2-involution, Theorem B yields a contradiction.

Thus, g=3 (mod 4). As usual, there are involutions fixing at least
2 points (Bender [1]).

Suppose that S, =1. Then |S:S;| <2 and there is a subgroup S, such
that S=S5,S, and S, Sy=1. Here S, contains only regular involutions,
so that S; <S. Let S, =<{t>, where ¢ is an involution. Then ¢ fixes 2 points
of 4 and hence is not a regular involution. Thompson’s transfer lemma
now yields a contradiction. Consequently, S, = 1.

Let ¢t be an involution in §,. Then C(¢)*® contains ${®, so that
C(t)*® contains regular involutions. As Co(P)< C(t) and Co(P)*W 1,
C(t)*® contains a normal subgroup isomorphic to PSL(2, ') for some q'.
Clearly, t centralizes Z(Q), Z(Q)<2G,, and Z(Q) is semiregular on Q—o.
Thus, Z(Q)*"<1 C()2" and Z(Q)*<a N(P)2. It follows that ¢=|Z(Q)|=¢/,
4=A(t), and, by Lemma 6(ii), {t>=0,(S,).

By the usual arguments, ¢ is conjugate to an involutionvin S; x S, — {t}
but is conjugate to no involution in S —(S; x S,). As the involutions in S,
are regular involutions, ¢ is conjugate to ut for some involution u in S,.
Allinvolutionsin C,(P)are conjugate, so we may assume that ueZ(S)n S;.
If <uy=Z(S)nS; then {u) x {t)=02,(Z(S)), and by Burnside’s fusion
lemma, ¢, tu and u are conjugate. This is a contradiction. Thus, {(u) <
Z(S)n Sy, and it follows that S=S, x §, and S, is a Klein group. Since ¢
and ut are conjugate, Burnside’s lemma implies that S,={t>. Now
Thompson’s transfer lemma shows that ¢ is conjugate to some involution
in S;. This is a final contradiction.

Corollary 1. Let G be a finite group having a faithful split BN-pair
of rank 2 at characteristic p. Let P be a maximal parabolic subgroup
containing B and set K= ("} B%. Then P/K has a faithful split BN-pair

geP
of rank 1 at characteristic p, or p=2 and P/K is the solvable 2-transitive

group of degree 9 and order 9-8 - 2.

Proof. Let G, P, B, and K be as in the statement of the corollary.
Then P/K is a 2-transitive permutation group on the cosets of B/K. Let
s be a fundamental reflection in P, so that P=(B,s>. Then B/K=
(XK/K)(HK/K)and XK/K=aB/K. As HK/K is normalized by s, HK/K
fixes the cosets B and Bs and consequently X K/K is a normal p-subgroup
of B/K transitive on the cosets of B in P other than B. Thus, P/K satisfies
the hypotheses of Theorem 3.

Consequently, either XK/K is regular on the cosets of B in P other
than B or P/K hasa regular normal subgroup of order g* for g a Mersenne



140 W.M. Kantor and G. M. Seitz:

prime. However, XK/K is a p-group, so that g — 1 = p° for some integer a.
Thus, p=2 and g=3. Then |XK/K|=8 or 16, and if [XK/K|=8 then
XK/K is regular on the remaining cosets of B. If | X K/K|=16 then B/K
is a subgroup of GL(2,3) containing a Sylow 2-subgroup of GL(2, 3)
as a normal subgroup. Thus, XK/K = B/K, and the result follows.

Corollary 2. Let G be a finite group having a faithful split BN-pair
of rank 2 at characteristic p. Let s be a fundamental reflection in the Weyl
group W= N/H. Then either

(i) XnX*=X,or
(ii) p=2 and {B, s), in its 2-transitive representation on the cosets of

B in (B, s), is the 2-transitive permutation group of degree 9 and order
9-8-2.

Proof. Let P=(B,s» and K= B® From Corollary 1 it follows
geP
that either (ii) holds or XK/K is regular on the cosets of B in P other

than B itself. Now (X nX®) K/K fixes the cosets B and Bs, so that
X nX*<K. However, K is a subgroup of B and has a normal Sylow
p-subgroup X,. Thus, se N(Xy) and X <X nX® Then X n X*=X,< P,
sothat X n X°*=2 X.

§ 4. 2-Involutions
Using Theorem C we can now strengthen the main part of Theorem B.

Theorem D. Let G be a 2-transitive permutation group on a finite set Q.
Suppose that for a, f in Q, o+ B, G, 4 contains a 2-involution z which com-
mutes with no other conjugate of z lying in G,,. Then there is an odd prime
power q such that G acts on Q as a subgroup of PI'L(2,q) containing
PSL(2, q) in its usual 2-transitive representation.

As in the proof of Theorem B, Theorem D follows easily from
Glauberman’s Z*-theorem [5] and the following result.

Theorem D', Let G be a 2-transitive permutation group on a finite set £.
Suppose that G contains a 2-involution and that for a in Q, G, contains a
normal subgroup Q of odd order and Q is transitive on Q—a. Then there
is an odd prime power q such that G acts on Q as a subgroup of PI'L(2, q)
containing PSL(2, q) in its usual 2-transitive representation.

Proof of TheoremD'. Let G be a minimal counterexample to Theo-
rem D' Let o, feQ, o= f, and let z be a 2-involution in G,,. Then G,
contains a Klein group <t,z) (Hering [8]). Also, the Feit-Thompson
theorem [4] implies that Q is solvable. Clearly, Q= Cy(z) Cy(t) Cylt 2).
and, since z is a 2-involution, Cy(2)<Q,;.



Some Results on 2-Transitive Groups i41

We first show that neither ¢ nor t z is a 2-involution. For if ¢ is a 2-
involution, then Cy(1)<Q,zand Q=Q,, Cy(t z). Then Cy(t z) is transitive
on Q—a and |A(tz)|=|Q|, a contradiction. Similarly, tz is not a 2-
involution.

As in §3, Lemma 5, C(®)*¥ and C(t2)*? are 2-transitive and
Co()*~= and Cy(rz)*“?~* are transitive. Moreover, z4® and z4?
are 2-involutions. By the minimality of G, Cy(t)*® contains a minimal
normal subgroup of C(£)2® which is transitive on A(t)—a; a similar
statement holds for Cy(t 2)**2.

Let A be a minimal normal subgroup of G, contained in Q. Then A
is an elementary abelian p-group. By a recent result of O’'Nan [12] 4 is
semiregular on —a, so that z inverts A and A= C,(t) C,(t z). Precisely
as in the proof of Theorem B, we may assume that 4= C,(t) is regular
on A(t)—ua and C,(tz)=1.

We claim that 0,.(Q)=1. For otherwise, let B be a minimal normal
subgroup of G, contained in O, (Q). As in the preceding paragraph, we
find that Cgltz) is regular on A(tz)—a. Then Cgy(t)=ACy(t), and
Co(t2)=BCy(tz); imply that Q= Cy(2) AC,(t); BCy(t z)p=ABQ,s, sO
that AB is transitive on 2 —o. Also, it is easy to see that

|AB|=(14(0)|—1)(|4(t 2)| —1)=n—1,

so that AB is regular on Q—a. Since AB<2G,, [9] yields a contradiction.
Thus, 0,,(Q)=1.

We next claim that 4=0,(Q). For suppose that L/A4 is a minimal
normal subgroup of G,/A with L<Q and L/A a p-group. First assume
that C (tz)> C,(tz),5. Then C (tz)"“P 41 and C,(t2)**? = C(r12){*?,
so that Cp (¢ z)**? is transitive on 4(t z)—a. As Cp(z) = CL(2),, it follows
that 0 =LQ,zand Lis transitive on 2 —a. By Theorem C', this contradicts
the minimality of G. Thus, C(tz)=C(tz),5 and L= C;(t) Cp(tz) C.(2)
=AL,;. As A is semiregular on Q—a, AnL,;=1. Since A< Z(L),
L=A4xL,,;. Again a result of O’'Nan [12] yields a contradiction.

Set H=Q<{(z), so that H is solvable, 0,(H)=1, O,(H)=A4, and
consequently A= Cy(A4){[7], Lemma 1.2.3). Since zinverts A, zAe Z(H/A).
Therefore, H=ACy(z) and Q=ACy(z)S£AQ,;. Thus, A4 is regular on
§2—qa, again contradicting [9].
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