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1. Introduction 

In [2] a new generalized quadrangle with parameters q2, q was constructed 
using the G 2(q) generalized hexagon (q == 2 (mod 3), q > 2). In addition, an 
elementary group theoretic technique was presented for constructing general­
ized quadrangles. This technique was refined by Payne [3] in order to simplify 
calculations and search for new quadrangles. All the known generalized quad­
rangles with parameters q2, q are described in [2] and [3], but only the 
aforementioned new family was found using the method in [2]. In this note we 
will use the formulation in [3] in order to obtain additional quadrangles: 

(1.1) Theorem. Let q be a power pe of an odd prime p. Then 

(i) If e> 1 there are [(e -1)/2] pairwise non isomorphic generalized quadran­
gles with parameters q2, q not isomorphic to any previously known generalized 
quadrangle; and 

(ii) If q> 3 and q == ± 2 (mod 5) then there is a generalized quadrangle with 
parameters q2, q not isomorphic to any quadrangle in (i) nor to any previously 
known generalized quadrangle. 

Each of the quadrangles in (1.1) admits an automorphism group of order q5 
fixing one point x and transitive on the q5 points not collinear with x. The 
quadrangles in (Ll i) have two interesting features. One is their number. The 
other is the fact that, for every point y collinear with x, there are q automor­
phisms acting as "elations with center y": automorphisms fixing every point 
collinear with y. 

One other interesting aspect of these quadrangles and of those in [2] is 
simply their parameters. A generalized quadrangle with parameters s, q nec­
essarily has s;£ q2, with a great deal of combinatorial information implied by 
equality (see, e.g., [1]). This tightness makes the number of examples in (1.1 i) 
seem somewhat unexpected. 

The general results contained in [2] and [3] are summarized in § 2. After 
some preliminary remarks in § 3, we construct the quadrangles in (1.1) in the 
remaining sections of the paper. 
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2. Construction Procedure 

As in [2], let Q be a finite group, and let ff be a family of subgroups of Q. 
With each AEff is associated another subgroup A*. These are subject to the 
following conditions: for each 3-element subset {A, B, C} of ff, and some 
integers sand t, 

(i) IQI=s2 t, Iffl=t+1, IAI=s, IA*I=st, 1<A<A*, 
(ii) Q=A*B, A*nB=1, and 

(iii) AB n C = 1. 

(2.1) Construction. Let AEff and qEQ be arbitrary. 

Point. Symbol [ff]; coset A*q; element q. 

Line. Symbol [A]; coset Aq. 

Incidence. [A] is on [ff] and A*q; all other incidences are obtained via 
inclusion. 

By [2], the resulting geometry ~(Q, ff) is a generalized quadrangle with 
parameters s, t. 

Payne [3] has used pp. 215-217 of [2] in order to formulate a situation in 
which (2.1) can be applied. The following is only superficially different from [3, 
§VI]. 

Let F =GF(q). For u, vEF2, utf is just the usual dot product. Define a 
group Q by 

(2.2) Q=F2XFxF2 
(u, c, v)(u', c', v') =(u + u', c + c' + vu't, v + v'). 

Then IQI =q5 and Z(Q) =0 x F x O. 
In order to define ff we assume that, for each rEF, we are given a 2 x 2 

matrix Br. Write Mr=Br+B~ and 

(2.3) 

A(00)=OxOxF2 

A*(00)=OxFxF2 

A(r) = {(u, uBrd, uMr)luEF2 } 

A*(r) = {(u, c, uMr)luEF2}. 

Then A(x) is a subgroup of order q2, and A*(x) has order q3, for each 
xEGF(q) u {oo}. 

Now assume that Br and Mr satisfy the following conditions for all distinct r, 
s, zEF: 

(2.4) (i) Mr - M. is nonsingular, 
(ii) Br - B. is anisotropic (i.e., u(Br - Bs) ut =o=>u =0) 

and 
(iii) (Mr - Mz)-l (Br - Bz)(Mr - Mz)- 1 + (Mz - Ms)- 1 (Bz - Bs)(Mz - Ms)- 1 

is anisotropic. 
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In general, D = e ~) is anisotropic ~ ax2 + (b + c) x + d is irreducible over 

F. When q is odd, D is anisotropic~D+Dt is anisotropic ~ -det(D+Dt) is a 
nons quare. Since the matrix in (2.4 iii) plus its transpose is just 
(Mr - Mz)- 1 (Mr - Ms)(Mz - Ms)- \ it follows that 

(2.5) When q is odd, (2.4) is equivalent to the single condition that 
- det (Mr - Ms) is a nonsquare for r =1= s. 

In [3] it is shown that (2.1) applies to 

(2.6) 9' = {A(x)lxEF u {oo}} 

if and only if (2.4 i -iii) hold. We will describe two ways to obtain suitable 
matrices Br and Mr in (2.4) or (2.5). These will produce new families of 
generalized quadrangles with parameters q2, q. 

3. Preliminary Properties 

In this section we will describe some simple properties of the groups Q and 
A(r), and the generalized quadrangle ~=~(Q, 9') determined by (2.1)-(2.6). 

Lemma 3.1. (i) [9']Aut~ is either [9'], all points of a line through [9'], or all 

points of fl. 
(ii) Q ~ (Aut ~)[jO]' 

(iii) If AE9' then A* is the pointwise stabilizer of [A] in Q. 
(iv) Aut Q acts GF(q)-semilinearly on Q/Z(Q)';E.F4 . 

Proof. (i) Q is already transitive on the points not collinear with [9']. Assume 
that G =Aut ~ moves [9'] but is not point-transitive. Then [9'] can only 
move to points p collinear with [9']. Since [9']6 consists of points collinear 
with both [9'] and p, while Q is transitive on the q2 points =1= 9' on [A(x)], 
this proves (i) 

(ii) Let qjO],A' consist of all automorphisms of fl fixing each line on [9'] 
or A* and every point on the line [A] through [9'] and A*. Then IqjO].A.I~q2. 
Also, A ~ qn A' (since A *<l Q and A * is abelian), and U[jO]. A'g is conjugate to 
qjO].A' in Q for each gEQ. 

(iii) Clear. 
(iv) See [2, p. 217]. 0 

Lemma 3.2. Assume that xr--..Bx is an additive map from F to 2 x 2 
matrices. 

(a) Conditions (2.4 i-iii) and (2.5) become 

(i) M r is nonsingular for r =1= 0, 
(ii) Br is anisotropic for r =1= 0, 
(iii) M;lBrM;l+M;lBsM;l is anisotropic whenever r, s, r+s=l=O, 

(2.5') (for q odd) -detMr is a nonsquare for r=l=O. 
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(b) The mappings (u,c,v)l-+(u,c+uBrut, v+uMr) for rEF form a group of q 
automorphisms of Q that fixes ff, is transitive on ff - {A( oo)}, and induces a 
group of automorphisms of fL fixing every point collinear with A *( 00). 

(c) (Aut fL)[y"] has at most 4 orbits on points. 

Proof. (a) Clear. 

(b) A calculation shows that the mapping is an automorphism of Q sending 
A(s) to A(s + r), and hence inducing an automorphism of fl. Also, each element 
of A *( 00) is fixed, as is each element of Q/A *( 00). Since the points collinear 
with A*(oo) have the form [ff], A*(oo)g or h with gEQ and hEA*(oo), this 
proves (b). 

(c) Since Q is transitive on the points =F [ff] on each line through [ff], (c) 
follows from (b). D 

4. Field Automorphisms 

We can now prove the following 

(4.1) Theorem. Let q be an odd prime power, let m be a nonsquare in F=GF(q), 
and let aEAut F. . (r 0) (1) The matrices Br = , rEF, determine a generalized quadrangle ° -mrO" [[(a) via (2.1)-(2.6). 

(ii) ll(l) is the PSU(4, q) quadrangle. 
(iii) ll(a)~ll(r)<=;>r=a± 1. 

Proof. (i) We will use (3.2a): trivially, Mr = (2r 0) is anisotropic since 
-detMr=4mrrO" is a nonsquare. ° -2mrO" 

(ii) Here Br=r (1 0). Set Xl =0, xo=m in [3, p. 731]. ° -m 

(iii) If sEF* and S = (~ ~) then (u, c, v) -+ (uS-I, c, vS) is an automor-

phism of Q, and sends A(r) to the group corresponding to the new choice 

Br = (~ -mOs2 r")· Thus, ll(a) does not depend on the choice of m. Replace m 

by m-" and apply a- 1 throughout the definition of A(r) .in order to see that 
ll(a)~ll(a-l). 

Now suppose that cp: ll(a)-+ll(r) is an isomorphism. By (3.1i) we may 
assume that (with an obvious notation) [~]q> = [~]. By (3.1 ii), cp conjugates Q 
to itself. By (3.2b) we may assume that cp sends A;(oo) to Ai(oo) and A;(r) to 
Ai (r') for a permutation rl-+ r' of F. By (3.1 iv), cp induces a semilinear transfor-
mation 

o(C 0) (u, v)l-+(u, v) ° D 

of Q/Z(Q) ~ F2 $ F2 (since we can view .4,,(00) =.4,( 00) as ° EB F2 and .4,,(0) 
=.4,(0) as F2 $ 0). 
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(2r 0) (2r 
Write Mr= 0 -2mr" as before, and let Nr= 0 o ). Then there 

-2mr! 
is a mapping UI---tU' of F -> F, depending on r, such that 

(u,uMl(~ ~)=(U"U'Nr') 
for all u. Clearly, u'=uoC and u'N,.,=uoM~D, so that uOCNr'=uoM~D. Thus 
CNr' =M~D. Now DN;-; 1 Nr' D- 1 =(M11 Ml, and a simple calculation shows 
that either r =0" or r =0"-1. 0 

Remark 1. Let H be the group of order q in (3.2b). Then QH is a group of 
order q6. Let R be the stabilizer in QH of the point A *( (0). Then R 
= A *( (0) EEl H is elementary abelian of order q4, and acts regularly on the q4 
lines disjoint from [A*(oo)] and fixes all points on [A(oo)]. Consequently, 
~(Q, JF) ~ ~(R,~) where ~ consists of the q2 + 1 groups 

A( (0) =0 x F x 0 =Z(Q), 

A(u)={(0,uBrut,uMr)h_1IrEF} for uEF2, 
while 

A*(oo) =0 x F X F2 =A*(oo), 

A*(u) = {CO, vut -uBrut, v) h_rlrEF, vEF2}. 

This set ~ behaves very much like an ovoid in F4: any three members 
generate a group of order q3. 

However, if (J =1= 1 then ~ does not determine an inversive plane: <A(O, 0), 
A(l, 0), A(1, 1» contains just four members of ~. 

Remark 2. The quadrangles ncO") share one of the properties of the quadran­
gles in [2]: there is a group of automorphisms fixing the point [JF] and 2-
transitive on the lines through [JF]. Namely, the automorphisms in (3.2b) 
induce A(s)I---tA(s+r) on JF, while the automorphism (u, c, v)l---t(vMl1, c-uvt, 
-uM 1) of Q induces A(s)1---t A( -lis) on JF. These automorphisms of ll(0") 
generate a group S inducing PSL(2, q) on JF. 

Moreover, S induces SL(2, q) on Q since it fixes both Q1 = (F x 0) x F x (F x 0) 
and Q2 = (0 x F) x F x (0 x F). (In fact, S ~ SL(2, q) since the generators of S cen­
tralize the automorphism (u, c, v)1---t ( - u, c, - v) of Q.) 

Clearly, QS has just three point-orbits on n(O"). It follows easily that, if 
0" =1= 1, then Aut ncO") fixes [JF] and Aut ll(0") I>QS. 

Incidentally, if i=l or 2 then ~={A(lQiIAEJF} determines an Sp(4,q) 
subquadrangle (on which QiS acts in the usual manner). It would be interesting 
to know whether there are any nonclassical (q, q)-subquadrangles. 

Remark 3. All of the above quadrangles (and those in § 5) have q odd. When q 
is even we have not been able to find any new mappings r -> Br required in 

(2.4), except for the following amusing ones: Br = (kr r
a

) where r:x is any 
r+ra kr 

additive isomorphism F -> F and kx 2 + x + k is irreducible. Unfortunately, uBrut 

and uM r do not depend on r:x ! 
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5. An Additional Family 

( -3r 3r2) 
The examples in [2] have B, = ° _r3 (cf. [3, p. 732]). The following is a 
somewhat similar situation. 

(5.1) Theorem. Let q be an odd prime power such that q= ±2 (mod 5). 

(i) Th~ matrices B, = (~2 ~~:5)' rEGF(q), determine a generalized quad­
rangle !2 VlQ (2.1)-(2.6). 

(ii) If q ~ 7 then !2 is not isomorphic to any other known quadrangle with 
parameters q2, q. 

(r 5r3 ) 
Proof. (i) Here M, = 5r3 20r5 and 

(r s 5r3-5S3 ) 
det(M,-Ms)=det 5~-5s3 20r5_20s5 

= -5(r3 +2r2s-2rs2 -s3 )2 

= -5(r-s)2(r2+3rs+s2). 

By hypothesis, 5 is a nonsquare in F=GF(q), so that r2+3rs+s2,*0 for rs,*O. 
Thus, -det(M, - Ms) is a nonsquare, and hence (2.5) holds. 

(ii) Ifq=3 then M,=(~r r-r). Let q~7. By [3, VI. 5],!2 is not isomor­

phic to any of the quadrangles in (4.1), nor to any others except, perhaps, for 
one of the quadrangles in [2]. 

Our ff = {A*(x)/Z(Q) =A(x)lxEF u {CD}} consists of the 2-spaces A( CD) and 

A(r) ={(u, uM,)luEF2}. 

Thus, ff can be viewed as an algebraic variety defined by polynomials of 
degree 1, 3, and 5. The corresponding variety in [2] is defined by polynomials 
of degree 1, 2 and 3. Since q ~ 7 these cannot be projectively equivalent - and 
in fact, not even semilinearly equivalent. In view of (3.1 i, ii, iv), !2 cannot be 
isomorphic to a quadrangle in [2]. 0 

In fact, (Aut Q)j> does not induce PSL(2, q) on ff in (5.1) whereas it does in 
the case of ff in [2]. 
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