Mathematische Zeitschrift

© Springer-Verlag 1986

Some Generalized Quadrangles with Parameters q^2 , q

William M. Kantor*

Dept. of Math., Univ. of Oregon, Eugene, Oregon 97403, USA

To Professor Helmut Wielandt, to commemorate his seventy-fifth birthday

1. Introduction

In [2] a new generalized quadrangle with parameters q^2 , q was constructed using the $G_2(q)$ generalized hexagon $(q \equiv 2 \pmod 3)$, q > 2). In addition, an elementary group theoretic technique was presented for constructing generalized quadrangles. This technique was refined by Payne [3] in order to simplify calculations and search for new quadrangles. All the known generalized quadrangles with parameters q^2 , q are described in [2] and [3], but only the aforementioned new family was found using the method in [2]. In this note we will use the formulation in [3] in order to obtain additional quadrangles:

(1.1) **Theorem.** Let q be a power p^e of an odd prime p. Then

- (i) If e>1 there are $\lceil (e-1)/2 \rceil$ pairwise nonisomorphic generalized quadrangles with parameters q^2 , q not isomorphic to any previously known generalized quadrangle; and
- (ii) If q > 3 and $q \equiv \pm 2 \pmod{5}$ then there is a generalized quadrangle with parameters q^2 , q not isomorphic to any quadrangle in (i) nor to any previously known generalized quadrangle.

Each of the quadrangles in (1.1) admits an automorphism group of order q^5 fixing one point x and transitive on the q^5 points not collinear with x. The quadrangles in (1.1i) have two interesting features. One is their number. The other is the fact that, for every point y collinear with x, there are q automorphisms acting as "elations with center y": automorphisms fixing every point collinear with y.

One other interesting aspect of these quadrangles and of those in [2] is simply their parameters. A generalized quadrangle with parameters s, q necessarily has $s \le q^2$, with a great deal of combinatorial information implied by equality (see, e.g., [1]). This tightness makes the number of examples in (1.1 i) seem somewhat unexpected.

The general results contained in [2] and [3] are summarized in §2. After some preliminary remarks in §3, we construct the quadrangles in (1.1) in the remaining sections of the paper.

^{*} This research was supported in part by NSF Grant DMS-8320149

46 W.M. Kantor

2. Construction Procedure

As in [2], let Q be a finite group, and let \mathscr{F} be a family of subgroups of Q. With each $A \in \mathscr{F}$ is associated another subgroup A^* . These are subject to the following conditions: for each 3-element subset $\{A, B, C\}$ of \mathscr{F} , and some integers s and t,

- (i) $|Q| = s^2 t$, $|\mathcal{F}| = t + 1$, |A| = s, $|A^*| = st$, $1 < A < A^*$,
- (ii) $Q = A*B, A*\cap B = 1$, and
- (iii) $AB \cap C = 1$.
- (2.1) Construction. Let $A \in \mathcal{F}$ and $q \in Q$ be arbitrary.

Point. Symbol $[\mathcal{F}]$; coset A^*q ; element q.

Line. Symbol [A]; coset Aq.

Incidence. [A] is on $[\mathcal{F}]$ and A^*q ; all other incidences are obtained via inclusion.

By [2], the resulting geometry $\mathcal{Q}(Q, \mathcal{F})$ is a generalized quadrangle with parameters s, t.

Payne [3] has used pp. 215-217 of [2] in order to formulate a situation in which (2.1) can be applied. The following is only superficially different from [3, §VI].

Let F = GF(q). For $u, v \in F^2$, uv^t is just the usual dot product. Define a group Q by

(2.2)
$$Q = F^2 \times F \times F^2$$

$$(u, c, v)(u', c', v') = (u + u', c + c' + vu'', v + v').$$

Then $|Q| = q^5$ and $Z(Q) = 0 \times F \times 0$.

In order to define \mathscr{F} we assume that, for each $r \in F$, we are given a 2×2 matrix B_r . Write $M_r = B_r + B_r^t$ and

(2.3)
$$A(\infty) = 0 \times 0 \times F^{2}$$

$$A^{*}(\infty) = 0 \times F \times F^{2}$$

$$A(r) = \{(u, uB_{r}u^{t}, uM_{r}) | u \in F^{2}\}$$

$$A^{*}(r) = \{(u, c, uM_{r}) | u \in F^{2}\}.$$

Then A(x) is a subgroup of order q^2 , and $A^*(x)$ has order q^3 , for each $x \in GF(q) \cup \{\infty\}$.

Now assume that B_r and M_r satisfy the following conditions for all distinct r, s, $z \in F$:

(2.4) (i) $M_r - M_s$ is nonsingular,

(ii) $B_r - B_s$ is anisotropic (i.e., $u(B_r - B_s) u^t = 0 \Rightarrow u = 0$)

and

(iii) $(M_r - M_z)^{-1} (B_r - B_z) (M_r - M_z)^{-1} + (M_z - M_s)^{-1} (B_z - B_s) (M_z - M_s)^{-1}$ is anisotropic.

In general, $D = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is anisotropic $\Leftrightarrow ax^2 + (b+c)x + d$ is irreducible over

F. When q is odd, D is anisotropic $\Leftrightarrow D+D^t$ is anisotropic $\Leftrightarrow -\det(D+D^t)$ is a nonsquare. Since the matrix in (2.4 iii) plus its transpose is just $(M_r-M_z)^{-1}(M_r-M_s)(M_z-M_s)^{-1}$, it follows that

(2.5) When q is odd, (2.4) is equivalent to the single condition that $-\det(M_r - M_s)$ is a nonsquare for $r \neq s$.

In $\lceil 3 \rceil$ it is shown that (2.1) applies to

$$\mathscr{F} = \{A(x) | x \in F \cup \{\infty\}\}\$$

if and only if (2.4i-iii) hold. We will describe two ways to obtain suitable matrices B_r and M_r in (2.4) or (2.5). These will produce new families of generalized quadrangles with parameters q^2 , q.

3. Preliminary Properties

In this section we will describe some simple properties of the groups Q and A(r), and the generalized quadrangle $\mathcal{Q} = \mathcal{Q}(Q, \mathcal{F})$ determined by (2.1)–(2.6).

Lemma 3.1. (i) $[\mathcal{F}]^{Aut 2}$ is either $[\mathcal{F}]$, all points of a line through $[\mathcal{F}]$, or all points of 2.

- (ii) $Q \leq (\operatorname{Aut} \mathcal{Q})_{[\mathscr{F}]}$.
- (iii) If $A \in \mathcal{F}$ then A^* is the pointwise stabilizer of [A] in Q.
- (iv) Aut Q acts GF(q)-semilinearly on $Q/Z(Q) \cong F^4$.

Proof. (i) Q is already transitive on the points not collinear with $[\mathcal{F}]$. Assume that G = Aut 2 moves $[\mathcal{F}]$ but is not point-transitive. Then $[\mathcal{F}]$ can only move to points p collinear with $[\mathcal{F}]$. Since $[\mathcal{F}]^G$ consists of points collinear with both $[\mathcal{F}]$ and p, while Q is transitive on the q^2 points $\# \mathcal{F}$ on [A(x)], this proves (i)

- (ii) Let $U_{[\mathscr{F}],A^*}$ consist of all automorphisms of \mathscr{Q} fixing each line on $[\mathscr{F}]$ or A^* and every point on the line [A] through $[\mathscr{F}]$ and A^* . Then $|U_{[\mathscr{F}],A^*}| \leq q^2$. Also, $A \leq U_{[\mathscr{F}],A^*}$ (since $A^* \lhd Q$ and A^* is abelian), and $U_{[\mathscr{F}],A^*g}$ is conjugate to $U_{[\mathscr{F}],A^*}$ in Q for each $g \in Q$.
 - (iii) Clear.
 - (iv) See [2, p. 217].

Lemma 3.2. Assume that $x \mapsto B_x$ is an additive map from F to 2×2 matrices.

- (a) Conditions (2.4 i-iii) and (2.5) become
- (i) M_r is nonsingular for $r \neq 0$,
- (ii) B_r is anisotropic for $r \neq 0$,
- (iii) $M_r^{-1}B_rM_r^{-1}+M_s^{-1}B_sM_s^{-1}$ is anisotropic whenever $r, s, r+s \neq 0$,
- (2.5') (for q odd) $-\det M_r$ is a nonsquare for $r \neq 0$.

48 W.M. Kantor

(b) The mappings $(u, c, v) \mapsto (u, c + uB_r u^t, v + uM_r)$ for $r \in F$ form a group of q automorphisms of Q that fixes \mathcal{F} , is transitive on $\mathcal{F} - \{A(\infty)\}$, and induces a group of automorphisms of Q fixing every point collinear with $A^*(\infty)$.

(c) (Aut \mathcal{Q})_[F] has at most 4 orbits on points.

Proof. (a) Clear.

- (b) A calculation shows that the mapping is an automorphism of Q sending A(s) to A(s+r), and hence inducing an automorphism of \mathcal{Q} . Also, each element of $A^*(\infty)$ is fixed, as is each element of $Q/A^*(\infty)$. Since the points collinear with $A^*(\infty)$ have the form $[\mathscr{F}]$, $A^*(\infty)g$ or h with $g \in Q$ and $h \in A^*(\infty)$, this proves (b).
- (c) Since Q is transitive on the points $\neq [\mathscr{F}]$ on each line through $[\mathscr{F}]$, (c) follows from (b). \square

4. Field Automorphisms

We can now prove the following

- (4.1) **Theorem.** Let q be an odd prime power, let m be a nonsquare in F = GF(q), and let $\sigma \in Aut F$.
- (i) The matrices $B_r = \begin{pmatrix} r & 0 \\ 0 & -mr^{\sigma} \end{pmatrix}$, $r \in F$, determine a generalized quadrangle $\Pi(\sigma)$ via (2.1)–(2.6).
 - (ii) $\Pi(1)$ is the PSU(4,q) quadrangle.
 - (iii) $\Pi(\sigma) \cong \Pi(\tau) \Leftrightarrow \tau = \sigma^{\pm 1}$.

Proof. (i) We will use (3.2a): trivially, $M_r = \begin{pmatrix} 2r & 0 \\ 0 & -2mr^{\sigma} \end{pmatrix}$ is anisotropic since $-\det M_r = 4mrr^{\sigma}$ is a nonsquare.

(ii) Here
$$B_r = r \begin{pmatrix} 1 & 0 \\ 0 & -m \end{pmatrix}$$
. Set $x_1 = 0$, $x_0 = m$ in [3, p. 731].

(iii) If $s \in F^*$ and $S = \begin{pmatrix} 1 & 0 \\ 0 & s \end{pmatrix}$ then $(u, c, v) \to (uS^{-1}, c, vS)$ is an automorphism of Q, and sends A(r) to the group corresponding to the new choice $B_r = \begin{pmatrix} r & 0 \\ 0 & -ms^2r^\sigma \end{pmatrix}$. Thus, $\Pi(\sigma)$ does not depend on the choice of m. Replace m by $m^{-\sigma}$ and apply σ^{-1} throughout the definition of A(r) in order to see that $\Pi(\sigma) \cong \Pi(\sigma^{-1})$.

Now suppose that $\varphi \colon \Pi(\sigma) \to \Pi(\tau)$ is an isomorphism. By (3.1i) we may assume that (with an obvious notation) $[\mathscr{F}_{\sigma}]^{\varphi} = [\mathscr{F}_{\tau}]$. By (3.1ii), φ conjugates Q to itself. By (3.2b) we may assume that φ sends $A_{\sigma}^*(\infty)$ to $A_{\tau}^*(\infty)$ and $A_{\sigma}^*(r)$ to $A_{\tau}^*(r')$ for a permutation $r \mapsto r'$ of F. By (3.1iv), φ induces a semilinear transformation

$$(u,v)\mapsto (u,v)^{\theta}\begin{pmatrix} C & 0\\ 0 & D \end{pmatrix}$$

of $Q/Z(Q) \cong F^2 \oplus F^2$ (since we can view $\bar{A}_{\sigma}(\infty) = \bar{A}_{\tau}(\infty)$ as $0 \oplus F^2$ and $\bar{A}_{\sigma}(0) = \bar{A}_{\tau}(0)$ as $F^2 \oplus 0$).

Write $M_r = \begin{pmatrix} 2r & 0 \\ 0 & -2mr^{\sigma} \end{pmatrix}$ as before, and let $N_r = \begin{pmatrix} 2r & 0 \\ 0 & -2mr^{\tau} \end{pmatrix}$. Then there is a mapping $u \mapsto u'$ of $F \to F$, depending on r, such that

$$(u, uM_r)^{\theta} \begin{pmatrix} C & 0 \\ 0 & D \end{pmatrix} = (u', u'N_r)$$

for all u. Clearly, $u' = u^{\theta} C$ and $u' N_{r'} = u^{\theta} M_r^{\theta} D$, so that $u^{\theta} C N_{r'} = u^{\theta} M_r^{\theta} D$. Thus $C N_{r'} = M_r^{\theta} D$. Now $D N_{1'}^{-1} N_{r'} D^{-1} = (M_1^{-1} M_r)^{\theta}$, and a simple calculation shows that either $\tau = \sigma$ or $\tau = \sigma^{-1}$. \square

Remark 1. Let H be the group of order q in (3.2b). Then QH is a group of order q^6 . Let R be the stabilizer in QH of the point $A^*(\infty)$. Then $R = A^*(\infty) \oplus H$ is elementary abelian of order q^4 , and acts regularly on the q^4 lines disjoint from $[A^*(\infty)]$ and fixes all points on $[A(\infty)]$. Consequently, $\mathcal{Q}(Q, \mathscr{F}) \cong \mathcal{Q}(R, \widetilde{\mathscr{F}})$ where $\widetilde{\mathscr{F}}$ consists of the $q^2 + 1$ groups

$$\tilde{A}(\infty) = 0 \times F \times 0 = Z(Q),$$

$$\tilde{A}(u) = \{(0, uB_ru^t, uM_r) h_{-1} | r \in F\} \quad \text{for } u \in F^2,$$

while

$$\tilde{A}^*(\infty) = 0 \times F \times F^2 = A^*(\infty),$$

 $\tilde{A}^*(u) = \{(0, vu^t - uB_vu^t, v) h_{-v} | r \in F, v \in F^2 \}.$

This set $\tilde{\mathscr{F}}$ behaves very much like an ovoid in F^4 : any three members generate a group of order q^3 .

However, if $\sigma \neq 1$ then $\tilde{\mathscr{F}}$ does not determine an inversive plane: $\langle \tilde{A}(0,0), \tilde{A}(1,0), \tilde{A}(1,1) \rangle$ contains just four members of $\tilde{\mathscr{F}}$.

Remark 2. The quadrangles $\Pi(\sigma)$ share one of the properties of the quadrangles in [2]: there is a group of automorphisms fixing the point $[\mathcal{F}]$ and 2-transitive on the lines through $[\mathcal{F}]$. Namely, the automorphisms in (3.2b) induce $A(s) \mapsto A(s+r)$ on \mathcal{F} , while the automorphism $(u, c, v) \mapsto (vM_1^{-1}, c-uv^t, -uM_1)$ of Q induces $A(s) \mapsto A(-1/s)$ on \mathcal{F} . These automorphisms of $\Pi(\sigma)$ generate a group S inducing PSL(2, q) on \mathcal{F} .

Moreover, S induces SL(2,q) on Q since it fixes both $Q_1 = (F \times 0) \times F \times (F \times 0)$ and $Q_2 = (0 \times F) \times F \times (0 \times F)$. (In fact, $S \cong SL(2,q)$ since the generators of S centralize the automorphism $(u,c,v) \mapsto (-u,c,-v)$ of Q.)

Clearly, QS has just three point-orbits on $\Pi(\sigma)$. It follows easily that, if $\sigma \neq 1$, then Aut $\Pi(\sigma)$ fixes $[\mathscr{F}]$ and Aut $\Pi(\sigma) \succeq QS$.

Incidentally, if i=1 or 2 then $\mathscr{F}_i = \{A \cap Q_i | A \in \mathscr{F}\}\$ determines an Sp(4,q) subquadrangle (on which Q_iS acts in the usual manner). It would be interesting to know whether there are any nonclassical (q,q)-subquadrangles.

Remark 3. All of the above quadrangles (and those in § 5) have q odd. When q is even we have not been able to find any new mappings $r \to B_r$ required in (2.4), except for the following amusing ones: $B_r = \begin{pmatrix} kr & r^{\alpha} \\ r+r^{\alpha} & kr \end{pmatrix}$ where α is any additive isomorphism $F \to F$ and $kx^2 + x + k$ is irreducible. Unfortunately, uB_ru^t and uM_r do not depend on α !

50 W.M. Kantor

5. An Additional Family

The examples in [2] have $B_r = \begin{pmatrix} -3r & 3r^2 \\ 0 & -r^3 \end{pmatrix}$ (cf. [3, p. 732]). The following is a somewhat similar situation.

- (5.1) **Theorem.** Let q be an odd prime power such that $q \equiv \pm 2 \pmod{5}$.
- (i) The matrices $B_r = \begin{pmatrix} r/2 & 5r^3 \\ 0 & 10r^5 \end{pmatrix}$, $r \in GF(q)$, determine a generalized quadragle 2 via (2.1)-(2.6).
- (ii) If $q \ge 7$ then 2 is not isomorphic to any other known quadrangle with parameters q^2 , q.

Proof. (i) Here $M_r = \begin{pmatrix} r & 5r^3 \\ 5r^3 & 20r^5 \end{pmatrix}$ and

$$\det(M_r - M_s) = \det\begin{pmatrix} r - s & 5r^3 - 5s^3 \\ 5r^3 - 5s^3 & 20r^5 - 20s^5 \end{pmatrix}$$
$$= -5(r^3 + 2r^2s - 2rs^2 - s^3)2$$
$$= -5(r - s)^2(r^2 + 3rs + s^2).$$

By hypothesis, 5 is a nonsquare in F = GF(q), so that $r^2 + 3rs + s^2 \neq 0$ for $rs \neq 0$. Thus, $-\det(M_r - M_s)$ is a nonsquare, and hence (2.5) holds.

(ii) If q=3 then $M_r = \begin{pmatrix} -r & -r \\ 0 & r \end{pmatrix}$. Let $q \ge 7$. By [3, VI. 5], \mathcal{Q} is not isomorphic to any of the quadrangles in (4.1), nor to any others except, perhaps, for one of the quadrangles in [2].

Our $\overline{\mathscr{F}} = \{A^*(x)/Z(Q) = \overline{A}(x) | x \in F \cup \{\infty\} \}$ consists of the 2-spaces $\overline{A}(\infty)$ and

$$\bar{A}(r) = \{(u, uM_*) | u \in F^2\}.$$

Thus, $\overline{\mathscr{F}}$ can be viewed as an algebraic variety defined by polynomials of degree 1, 3, and 5. The corresponding variety in [2] is defined by polynomials of degree 1, 2 and 3. Since $q \ge 7$ these cannot be projectively equivalent – and in fact, not even semilinearly equivalent. In view of (3.1 i, ii, iv), 2 cannot be isomorphic to a quadrangle in [2]. \square

In fact, (Aut Q) $_{\mathscr{F}}$ does not induce PSL(2,q) on \mathscr{F} in (5.1) whereas it does in the case of \mathcal{F} in [2].

References

- 1. Cameron, P.J.: Partial quadrangles. Q. J. Math., Oxf. 26, 61-73 (1975)
- 2. Kantor, W.M.: Generalized quadrangles associated with $G_2(q)$. J. Comb. Theory A29 212-219
- 3. Payne, S.E.: Generalized quadrangles as group coset geometries. Congr. Numerantium 19, 717-734 (1980)

Received November 26, 1984