
REFLECTIONS ON CONCRETE BUILDINGS* 

William M. Kantor 

1. INTRODUCTION 

In the last few years there have been many constructions and characterizations of 

finite groups acting chamber-transitively on finite building-like geometries. A number of 

these even dealt more generally with locally finite geometries: ones in which all stars are 

finite. Many of the examples, and some of the results, are concerned with quotients of 

affine buildings over locally compact local fields. The purpose of this note is two-fold: to 

discuss many of the known examples from a somewhat new point of view (§2), and to 

describe a characterization theorem due jointly to Liebler, Tits and myself (§3). 

Consider an "algebraic" affine building A, defined by means of a simple algebraic 

group over a locally compact local field (see §2 for examples of concrete buildings of this 

sort). Let N be any discrete automorphism group of A having only finite many 

chamber-orbits. One can then form the quotient A/N. In general, this is merely a 

chamber-system [T3], not a simplicial complex, and hence does not correspond nicely to a 

geometry. However, by passing to a subgroup of N of sufficiently large finite index, it 

can always be arranged that A/N is a complex, and hence gives rise to a finite geometry 

whose diagram is the same as that of A (cf. [T2]). Evidently, this produces a wealth of 

finite geometries whose local structure is the some as that of A -- in fact, too many such 

geometries: classification is impossible. Moreover, A/N will usually inherit a very small 

group of automorphisms from A. This suggests that, if we require that Aut(A/N) be large, 

then it may be possible to study A/N more readily. 

Consider the case in which G is a discrete group transitive on one of the types of 

vertices of A. In this situation, it is easy to see that A can be completely described as a 
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coset geometry in terms of G and suitable subgroups (the stabilizers of the various 

simplexes in the star of some vertex). Now if N is a normal subgroup of G of sufficiently 

large f'lnite index, then A/N will "be" a geometry, having the same diagram as A, and 

admitting an automorphism group G/N transitive on at least one type of vertices. Of 

course, the best situation of this sort, and the one of greatest group-theoretic interest, is 

that in which G is actually chamber-transitive on A: then G/N will be chamber-transitive 

on A/N as well. Nevertheless, even there it seems at present to be difficult to study A/N 

using standard geometric or representation-theoretic methods. 

There is a sort of reverse direction from which to view this. Given a finite diagram 

geometry A whose rank 2 residues are buildings (i. e., a GAB [K4]), under mild 

restrictions (on B 3 subdiagrams) Tits has proved the important result that the universal 

cover A of A is a building [T3]. Moreover, if A has rank > 4 and affine diagram then, by 

another remarkable result of Tits [T4], X arises from an affine building over a local field 

(all of which he had earlier classified: see [T1]), and A =7~/N for a discrete automorphism 

group N having finitely many orbits on A. Consequently, in the latter case we wind up 

back in the situation of the previous paragraphs. 

With all of this in mind, we will construct a number of "sporadic" examples (A, G) 

consisting of an algebraic affine building A and an automorphism group G transitive on at 

least one of the types of vertices of A. In fact, in most of the cases discussed in §2 we will 

obtain a non-type-preserving group G transitive on more than one of the types of vertices, 

and hence which will have a type-preserving normal subgroup of index >2. However, the 

constructions make it clear that there is a definite advantage in not restricting our attention 

only to type-preserving automorphisms. These constructions are based on a simple 

observation concerning the action of reflections on certain algebraic affine buildings that 

clarifies some aspects of known examples. This approach was noticed in the course of 

studying somewhat analagous methods involving trees and their images: constructions of 

relevance to theoretical computer science [LPS]. 

The "reflection method" in §2 is intended to be simple and straightforward. In a 
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future paper it will be shown how to generalize all of the examples in §2 (except for the 

existence of enough reflections to force transitivity) using entirely different methods 

(Strong Approximation for algebraic groups [Kne]). The present approach has the 

potential advantage of being more direct, and hence of making these particular buildings 

easier to visualize and hence easier to study. 

2. REFLECTION CONSTRUCTIONS 

In this section we will describe a mindless approach for constructing discrete 

automorphism groups of carefully chosen algebraic affine buildings that are transitive on 

(at least) two types of vertices. This method has implicitly been used for many of the 

known constructions of discrete chamber-transitive automorphism groups of such 

buildings. 

As a typical example, consider the affme building A for O(5,Qp) obtained from the 

vector space V=Qp 5 equipped with a nonsingular symmetric bilinear form ( , )  of Witt index 

2. If S_V let L=(S)Tz p denote the Zp-submodule spanned by S; ff S contains a basis of 

V then L is called a lattice. Two lattices are regarded as equivalent if one is a scalar 

multiple of the other; [L] denotes the equivalence class containing the lattice L. 

With this in mind, the vertices of A are the equivalence classes [Lg], where 

g~f2(5,Qp) [the notation "f2(, )" always meaning "O(,  )' "] and L is one of the following 

lattices: 

L 0 = (e l, e2, 

L 1 = (el/p, e2, 

fl, fz, u)zp 
Pfp f2, U)Zp 

L2 = (el/P, ez/P, fl, q ,  U)TZp 

where ep e 2, fl, f2, u is a basis such that (ei,fi)= (fi,ei)=l, (u,u)=l, and all other inner 

products are O. Simplexes of A are images under f~(5,Qp) of nonempty subsets of 

{ [L0], [L1], [L 2] }. 

If c is any nonsingular vector let r(c) denote the reflection 

r(c) : v ~ v-  2(v,c)cl(c,c) 
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in C ±. Then r(c)~O(5,Qp)-~(5,Qp). Moreover, LI=L0 r(c) ff c=ea+pef 1 for any unit geYZ.p 

(e. g., e=l; or e=½ if p>2). Note that (c,c)=2pe. 

Conversely, if c is any element of L0-PL o such that (c,c)/2p is a unit in 7/.p, then one 

can show that [Lo r(c)] is a vertex of the same type as [L1], and is adjacent to [L0] (i. e., this 

pair of vertices forms an edge of A). Moreover, P{L0+L0r(c)}/pL o is just the singular 

1-space (c+PL0} of the orthogonal space L0/PL o. 

PROBLEM: Find subgroups G of GO(5,Qp) [the group of all linear transformations 

preserving f proiectively] that are transitive on the set of vertices of A of type 0 and 1, but 

such that the stabilizer of one of these vertices is finite. (Then G clearly will be discrete in 

the p-adic topology.) 

The above remarks concerning reflections suggests a very simple strategy. For 

each singular 1-space of L0/PL 0, try to find a suitable choice for cCpL 0 projecting onto the 

1-space -- in which case the group generated by the corresponding reflections r(c) will be 

transitive on the set of vertices of type 0 and 1. Suitability is determined by the 

requirement that the above stabilizers are computable and finite. We will extend to Qp5 a 

form f=( ,  ) on Q5 that is positive definite, and then let G be the group GO(Z[1/p],f) of 

5×5 matrices with respect to a suitably chosen basis [3 of Q5 that preserve the form 

projectively and have all entries in Z[1/p]. We will arrange to have L0=([3)Zp, so that the 

stabilizer of L 0 in G will consist of orthogonal matrices having entries in 7/.pf~7A[1/p]=Z, 

and hence will be a finite group (since f is positive definite). Consequently, in each case 

GO(Z[1/p],f) will be discrete, while A will, in effect, be obtained entirely in terms of the 

rational space Qs. 

Example 1. p=5, f=( ,  ) is the usual scalar product, 13 is the standard basis. There 

are (5+1)(52+1) singular 1-spaces in Lo/5L 0, represented by the images of the following 3 

vectors under the group of all monomial matrices: (12000), (12120) and (11111). Each of 
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the indicated vectors c~L 0 satisfies (c,c)=5 or 10, so that r(c)~G. 

behaves as required: transitively on 2 of the 3 types of vertices of A. 

125 

Consequently, G 

Example 1'. We could also replace f by the form F4~(1 ) that is the usual F4-form 

on the ftrst 4 coordinates and the usual scalar product on the fifth. While this form is 

rationally equivalent to the scalar product used in Example 1, matrices can now be written 

with respect a fundamental system (01-100), (001-10), (00010), ¢1 1 1 lt~ ~-~-~-~v,, (00001). 

While the vector (00012) does not have integral inner product with respect to one of the 

basis vectors, the vector (0002-1) does, and the two vectors span the same 1-space 

rood 5. Consequently, we should be slightly more careful about which "reflection vectors" 

c~L 0 are used, choosing the images of (13000), (00021), (12120), (01212), (11111), 

then we obtain another group transitive on 2 of the 3 types of vertices of A. 

Example 2. p=7, f is the usual scalar product. There are (7+1)(72+1) singular 

1-spaces in L0/7L0, represented by the images of the following 3 vectors c~L 0 under the 

group of all monomial matrices: (12300), (11120), (11222). Thus, G is again transitive 

on 2 types of vertices. 

Example 3. p=3, f is the usual scalar product. This time there are (3+1)(32+1) 

singular 1-spaces in L0/3L0, represented by the images of the single vector (11100) under 

the group 25S 5 of all monomial matrices. The latter group is, in fact, chamber-transitive 

on the O(5,3)-building. Thus, in this case G is actually chamber-transitive on A [Me]. 

(Moreover, there is also a chamber-transitive subgroup H of G that does not arise in the 

present reflection approach, in which the stabilizer of L 0 is 25F20 , where F20 is a Frobenius 

group of order 20 inside S 5 [Me]: see Remark 3 following Table 2.) 

This exhausts all of the examples we have found using the reflection method with 

the usual scalar product in dimension 5. Clearly, one can move [L0] to its neighbors of 
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type 1 using orthogonal transformations that are not reflections, and a suitably transitive 

group certainly need not have reflections doing this as well. Using entirely different 

methods (Strong Approximation) one can show that, if f is the usual scalar product on Qp5 

and if p>2, then GO(Z[1/p],f) is transitive on 2 of the 3 types of vertices of the GO(5,Qp) 

building. (For the case p=2, see Example 7 below.) Note that this can be 

rephrased as the following factorization: GO(Q,f)=GO(Qr37Zp,f).GO(YZ.[1/p],f). There are 

similar stronger results concerning all of the other orthogonal groups we will consider; 

however, in this paper we merely want to examine constructions involving reflections. 

We next turn to further examples of the above process involving larger-dimensional 

spaces. 

Example 4. Let f(u,v)=udiag(111112)v t o n  V=Q36. This turns V into an O+(6,Q3)- 

space. The corresponding building A (with diagram ~ ) is the 3-dimensional 
v 

simplicial complex arising as above from the following 4 lattices: 

L0 = (el, e2, e3, fl, f2, f3)7Z3 

L1 = (el/3, e2, e3, fp f2, f3)TZ3 

L 2 = (eJ3, e2/3, %/3, fl, f2, f3)z3 

L 3 = (eJ3, e2/3, f3/3, fl,f2, e3)TZ 3, 

where epe2,e3,fpf2,f 3 is the usual type of basis. Once again let G= GO(Z[1/3],f). Since 

representatives of the (32+3+1)(3+1) singular 1-spaces of Lo/3L 0 are provided by the 

vectors (111000), (100001) and (111101), 

and 1, as above. 

However, this time we can go further. 

we obtain transitivity on vertices of types 0 

There is an obvious projective orthogonal 

transformation [ei---~ ei/3; fi---* fi] sending L 0 to L2; its determinant is 27. Similarly, if 

we send the standard basis of Q 6 to (011-100), (-101100), (110100), (-1-1-1000), 

(000021), (0000-1-1), then the resulting transformation 0 (of determinant 27) and its 

inverse both preserve f projectively and have all entries in Z[l /3] .  Thus, G is transitive 

on the set of all vertices of A! Moreover, (0, r(111000)) induces the full group D s of 
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graph automorphisms of A. 
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Example 5. Let f(u,v)=udiag(122224)v t o n  V=Q36. Then V has Witt index 2, and 

A has rank 3. This time, a slight refinement of our method is required. Namely, the 112 

singular points in Lo/3L 0 are represented by the vectors c=(110000), (010001), (011100), 

(011111) and (2110001) up to monomial permutations preserving f. The last 2 of these 

vectors c satisfy f(c,c)=12. However, it is easy to check that they also satisfy (c,Lo)C_2Z, 

so that 2(c,v)/(c,c) is in (1/3)Z for each w L  o and hence (L0)r(c) and L 0 are adjacent vertices 

of A. 

Table 1 contains many vertex-transitive groups obtained by the reflection method 

described above. This table is by no means exhaustive: additional examples of this sort will 

undoubtedly be found by a closer examination of quadratic forms. 

The columns of the table contain the following information. In column 1 we indicate 

either a row vector r such that the form is (u,v)=u diag(r)v t, or else the name of a root 

system. In the former case, all matrices are to be written with respect to the standard 

orthogonal basis; in the case of exceptional root systems or root systems of type A n, a 

fundamental system of roots should be used. The desired group G is then the group of all 

matrices with respect to this basis that preserve the form projectively and have all entries in 

Z[1/p]. Note that this is not a group of type-preserving transformations, but of course its 

largest type-preserving subgroup is transitive on at least 2 of the types of vertices of A. 

Column 2 specifies the field over which the form is to be written. Columns 3 and 4 

contain the name and diagram for the building A, following [T1]; the vertices 0 and 1 can 

be represented by any pair of nodes of the diagram interchanged by a graph automorphism. 

Each 0- or 1-vertex of A (i. e., vertex of type 0 or 1) corresponds to an equivalence class 

of Zp-lattices. The corresponding star in the building is the finite spherical building of the 

group in column 5; that group acts on L0/PL 0, an 1Fp-space inheriting a form from that of 

V. 
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Column 6 contains typical vectors ceL 0 for use in §2. In general (cf. Example 5), 

(c,c) is p or 2p, and is 4 if p=2. Moreover, suitable permutations of the indicated vectors 

c, together with suitable sign changes, are further candidates for c. Note that c is always 

written with respect to the standard basis of the appropriate rational vector space, not with 

respect to a fundamental system of roots. 

The last column contains the group induced on L 0, and hence (mod (-1)) the group 

induced projectively on the space L0/PL o -- which is the same as the group induced by that 

stabilizer on the building A. Additional transitivity and references are also included when 

appropriate. 

The exceptional root lattices are as follows: 

E8: { (xi)eQ8 I xi+xfiZ, Exie2Z } 

E7: x7=x 8 in E 8 

E6:x6=x7=x8 in E 8 

F4: 7 4 ~ t ! ! ! ! ~  ,o,z\22222 u.-,. 

We will also need 

An: { (xi)~7/-n+l I ~xi=0 }. 

In the Witt group [Cas] of Qp for any p, the quadratic forms for root systems are as 

follows: 

E8 :0  

E7: 6(1) + (2) = (-2) 

E6: 5(1) + (3) 

F4: 4(1) 

As: 3(1) + (2) + (3) 

14: 3(1) + (5) 

A2: (1) + (3) 

Finally, we note that "2" will be used to denote a cyclic group of order 2, since Z 2 

already stands for the ring of 2-adic integers. 
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TABLE 1. Some discrete groups G transitive on at least 2 types of  vertices. 
(In each case, G is gotten by using all matrices over Z[l/p] 

relative to a suitable basis for f' s Z-lamce and preserving f projectively.) 

f 

E8@A 2 

E8~(2) 

E 8 

E6@A 2 

z7 

E6~(2) 

E 6 

A 6 

field A diagram star 0 

- ~  O-(10,2) Q 2 2D 5 - .: - 

_~,o 0(9,2) Q 2 B4 ~ -: - 

Q2 D4 X O+(8,2) 

Q2 D4 ~ O+(8'2) 

c Transitivity, stabilizer, ref. 

11110000000) W(E8)xS3x2 
110000001-10) 

11110OOOO) W(E8)x2 
(110000001) 

(11110000) chamber-ira. [K1] W(E8) 
Ira. 4 vertex types 

(11110000000) W(E6)x2xS3x2 
(11oooooo1-10) 

Q2 B3 A _- _:~ 0(7,2) (11110000) chamber-tr& [KI] W(E7) 

Q2 B 3 ~ 0(7,2) (lllloo000) W(E6)x2x2 
(110000001) 

2A' 3 ~ 0-(6,2) (11110000) chamber-ira. [MW] Q2 W(E6)x2 

Q2 A3 ~ 0+(6,2) (11-1-1000) chamber-ira. [K2] S7x2 
Ira. all vertices 

A4*• Q2 A 3 ~ 0+(6,2) (11-1-1000) S5x2xS3x2 
(1-1001-10) 

Q2 B 2 ~ 0(5,2) (11-1-100)  chamber-iro- [MW] S6x2 

E8@(2) 

E 8 

~(2) 

(11111111) 

Q 3 B 4 ~- -: - 

03 D4 

03 D4 X 

Q 3 D 4 

< 0(9,3) (211000000) W(E8)×2 
(111100001) 

0+(8,3) (21100000) W(E8) 3 chamber-orbits 
Ira. 4 vertex types 

0+(8,3) (21100oo00) W(E7)×2 
(111100001) 

0+(8,3) (21100000) 28S8 
or (11100000) 

(11111100) 

E7 Q3 B3 -~ " ='~ 0(7,3) (21100000) W(E7) • 
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E6~(2) 

A7 

(1111111) 

(1111112) 

(1222222) 

(111112) 

(122222) 

(111111) 

(111122) 

(112222) 

(122224) 

~3 

~3 

Q3 

~3 

B3 

B 3 - . _ ~  

II_ -2 -" __AD 
-3  

Q3 B3 -_ . :.,o 

Q3 

Q3 

Q3 

Q3 

~3 

Q3 

a, 1'-3 

F 2  
v 

2A' 3 

9_ ~ A t  - . - . A 
z ~  3 

2A' 3 

2 A '  

WILLIAM M. KANTOR 

0(7,3) 

0(7,3) 

0(7,3) 

0(7,3) 

0(7,3) 

0+(6,3) 

(211000000) 
(111100001) 

(-2110000) 
(111-1-1-100) 

(111oo0o) 
or (211000) 

(1111110) 

(1110000) 
or (2110000) 

(1111110) 
(1000001) 

or (2000001) 
(1111001) 

(0111111) 
(1100000) 

or(2100000) 
(2111100) 

(111000) 

or (211000) 
(100001) 

or (200001) 
(nllOl) 

0+(6,3) (011100) 
(110000) 

or (210000) 
(211110) 

0-(6,3) (111000) 
or(211000) 

(111111) 

0-(6,3) (111000) 
or (211000) 

(111110) 
(110011) 
(100010) 

or (200010) 

0-(6,3) (101000) 
or(201000) 

(201111) 
(001110) 
(111100) 

0-(6,3) (011100) 
(110000) 

or(210000) 
(010001) 
(o11111) 
(211001) 

W(E6)x2x2 

$7x2 

27S7 

26S6x2 

26S6x2 

25S5x2 

25S5x2 

26S6 

24S4xD 8 

24S4xD8 

24S4x22 



(11111) 

F4@(1) 

Q3 

Q3 

B 2 

B 2 
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= ; : ". ÷ 0(5,3) (11100) 

0(5,3) (21100) 
(11oo1) 

or (11002) 

13 

chamber-tra. [Me] 25S5 

W(F4)x2 

(11112) 
F4@(2) 

(12222) 

(11114) 

(14444) 

(11122) 

(11222) 

(11144) 

(11444) 

(11224) 

(12244) 

~3 

Q3 

Q3 

Q3 

Q3 

~3 

Q3 

Q3 

~3 

Q3 

B 2 ~ 0(5,3) (21100) 
(20001) 
(11111) 

B 2 , ;- - - :  , 0(5,3) 

B 2 ÷ ;- , : 5 0(5,3) 

(11000) 
(21000) 
(01110) 
(21111) 

(11100) 
or (21100) 

(11001) 

B 2 e ;- e - :  e 0(5,3) (21100) 
(01110) 

B 2 . . . . .  0(5,3) 

B 2 ~ 0(5,3) 

B 2 t = # = = ~ . = .  0(5,3) 

B 2 ~ 0(5,3) 

B 2 ~ 0(5,3) 

B 2 ~ 0(5,3) 

(11100) 
or (21100) 

(11011) 
(10010) 

or (20010) 

(10100) 
(11110) 
(00111) 

(11100) 
or (21100) 

(20011) 
(o111o) 

(00111 ) 
(2011 O) 
(11100) 

(10100) 
or (20100) 

(11001) 
(00101) 
(11110) 
(20111 ) 

(11000) 
or (21000) 

(01010) 
(2111o) 
(20011) 
(o1111) 

24S4x2 
W(F4) x2 

24S4x2 

24s4×2 

24S4x2 

23S3xD 8 

23S3xD 8 

23S3xD 8 

23S3xD8 

D8xD8x2 

D8xD8x2 
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(12224) ~3 B 2 ~ 0(5,3) (11000) 23S3x22 
or (21000) 

(01001) 
(01110) 
(21101) 

(11111) ~5 

F4@(1) 

B 2 ~ 0(5,5) (12000) 25S 5 
or (13000) 

(11220) 
(11111) 

~5 B 2 ~ 0(5,5) (13000) W( F4)x2 
(00021) 
(11220) 
(01212) 
(11111) 

(11113) Q5 B2 ~ 0 ( 5 , 5 )  (12000) 24S4x2 
or (13000) 

(11220) 
(11001) 
(11121) 
(33301) 

(11111) Q7 B2 ~ 0(5,7) (12300) 25S5 
(11120) 
(11222) 

Subbuildings. Many of the above examples over Qp, p = 2 or 3, are "contained in" 

(i. e., subbuildings of) the one arising from the E8-form. In a sense, this is no accident: 

the subbuildings arise as fixed point sets of reflections, and each Weyl group associated 

with one of the indecomposable forms f has a unique class of reflections of a given 

"length". 

For example, let A s be the E8-example over Qp, p=2 or 3. If u 1 ..... u s is the standard 

basis for Q8 write ri+j---r(u i -t- Uj) and r--rT_ 8. ff r fixes a 0- or 1-vertex [L] then it lies in the 

stabilizer of L in G, which is a Weyl group W(E8). The latter group has a unique 

conjugacy class of reflections. Consequently, CG(r) is transitive on the set of 0- and 

1-vertices of A 8 fixed by r. The set of fixed chambers uniquely determines the 

corresponding subbuilding. 

Similarly, other examples arise from sets of fixed chambers: 
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E 6 

% 
(1112) 

(11111111) 

(1II1111) 

(1111112) 

(111111) 

(111112) 

(11112) 

(11111) 

f o r m s  o v e r  Q2 

fixed chambers of r6_ 7 on the F_,7-example 

fixed chambers of r ( ~ 1 ½ ~ )  on the E6-example 

fixed chambers of r4_ 5 on the (11111)-example (cf. Table 2) 

forms over Q3 

exact same 0- and 1-vertices as for the E8-example 

fixed 0- and 1-vertices of r 1 on the (11111111)-example 

exact same 0- and 1-vertices as for the E7-example 

fixed 0- and 1-vertices of r 1 on the ( l l l l l l l ) -example 

fixed 0- and 1-vertices of r 1 on the (1111112)-example 

fixed 0- and 1-vertices of r 1 on the (111112)-example 

fixed 0- and 1-vertices of r 1 on the ( l l l l l l )-example 

(Note that many of the other forms in Table 1 produce exactly the same 0- and 1-vertices 

[in fact, the same Zp-lattices] as those we have just considered.) The case of the 

A6-example is somewhat different from the rest: there the building happens to arise as the 

11111111 set of fixed chambers of (r 8, r ( ~ ) )  on the E8-example, but the reasoning used earlier 

to prove chamber-transitivity on this set of fixed chambers does not seem to apply. 

Additional examples of this process can be found in Table 2 (see Remark 1 

following that table). 

Further notation: G O is the stabilizer of [L0], G(2) consists of all matrices in G that 

are = 1 (rood 2), and hats denote projections mod (-1). Let A 0 be the Z-lattice spanned by 

the basis indicated in the table (usually, a fundamental system). 

PROPOSITION. (i) In each of the examples in Table 1 corresponding to the forms 

E 8 or E 7, 

= ~ ( 2 ) ~  0, 

so that ~(2) acts regularly on the set of all vertices of type 0 or 1. 

(ii) In the (11111)-example over Q3, Q=~(2)'G0 and G(2)f3G0=24. 
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PROOF. (i) Passage rood 2 sends (A0>YZ[1/3 ] to the orthogonal space of which G0 

is the full orthogonal group. Thus, G/Q(2)---G0, from which the conclusion follows. 

(ii) All reflections in Table 1 have the form r(c) with (c,c)=3, so that 

r(c)-=-i (rood 2). Consequently, G(2) is transitive on the vertices of type 0 or 1. On the 

other hand, since Go=25S5 it is easy to see that G(2)OG0=25. [] 

The regularity in part (i) implies that, in those cases, A can be described as a sort of 

Cayley graph. 

Problems: 1. Does the conclusion of the Proposition hold in any other situations 

when p>2? Strong Approximation [Kne] greatly limits the possibilities here. 

2. Does (r(c) I c~A 0, (c,c)=2p or 2p/(2,p-1)) equal the subgroup of G consisting of 

those transformations that preserve f (not merely projectively)? Since both groups are 

transitive on the vertices of type 0 and 1, this equality seems plausible. 

Moreover, in some of the examples there are distinct choices c, c' such that c-c'~A 0. 

In that case r(c)r(c')~G0-(-1). 

3. In Table 1 we indicated which group G to use, as well as the stabilizers G o and 

G 1 of the vertices [L0] and lEa] (which are conjugate in G). Does (G 0, Gz> coincide with 

the subgroup G + of G consisting of all elements preserving the types 0 and 1? This is, in 

fact, the case when G acts sufficiently transitively -- in particular, when G is 

chamber-transitive. More precisely, if G o is transitive on the vertices of type 1 in the star 

of [L 0] then (G 0, GI> is transitive on the vertices of types 0 and 1, and has the same 

stabilizer G o as G, from which the desired equality follows. In which of the remaining 

cases is it also true that G+=(G0 , GI>? 

Further examples. Table 2 contains a list of the other known examples of transitive 

discrete groups that do not arise using the reflection method. When appropriate, we have 

again indicated an associated form, in which case G is defined exactly as in Table 1. 
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Stabilizers of vertices (i. e., lattices) corresponding to diagram end nodes are also included; 

in some instances these should have (-1) factored out in order to obtain an automorphism 

group of the building. 

TABLE 2. Further examples. 

~2 02 = " -~ = G2(2) chamber-ira. [K1] 
23SL(3,2) (nonsplit), G2(2 ) 

(111111) 

~3 G2 _ :" = 02(3 ) tra. right hand vertex-type, 
stabilizer G2(2) 

~2 C-B 2 ~ O(5,2) chamber-ira. [K1] 26S6 

E6 Q3 C-B 2 ~ 0(5,3) chamber-ira. [Me] W(E6)x2 

(111113) ~3 c-B 2 . . . . .  o(5,3) chamber-ira. [KaMW] 26S5 

Q2 A2 triangle PSL(3,2) chamber-lra. 
~2((t)) P S L ( 3 , 2 )  [KMW1,2;Me;Mu;T5] 
F8((t)) PSL(3,8) Frobenius groups: order 7.3 

or 73.9 

• q((t)) A 2 Iriangle PSL(3,q) Ira. alledges [T5] 

order (q2+q+l).3e 
with q__pe, p prime 

Remark 1. Each of the first two examples in Table 2 arises as the set of fixed points 

of a triality automorphism on the corresponding E8-example (see [K1] for the case of Q2)" 

The E6-example arises from the set of fixed 0-vertices of 1"6_ 7 on the E7-example. The 

(l11113)-example arises from the set of fixed 0-vertices of (r6_7,r7_8} on the 

(11111111)-example. 

Remark 2. Additional transitivity on one of these buildings A can be deduced once 

the group G is known to be transitive on 0-vertices. For example, the E 6- and 

(111113)-forms are rationally equivalent, and split over the ramified extension Q3(J-23) of 
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Q3" Consequently, in the notation of [T1], the corresponding building has type C-B 2 with 

diagram a==e==q~e==o, and the star of each 0-vertex is isomorphic to the O(5,3)-building. 

Since G o induces a chamber-transitive group on that building, it follows that G is 

chamber-transitive on A in these cases. 

The E 6- and (lllll3)-examples o v e r  ~3 are related in an even more concrete 

manner [KaMW]. First, note that the conclusion of the Proposition holds for the group 

G=GO(f,Z[1/3]) of the E6-example. (The proof is the same as for that Proposition.) 

Then G/G(2) ~ GO(5,3), and the group for the (111 ll3)-form contains as a subgroup of 

index 2 the preimage in G of the flag-transitive subgroup 25S5 of GO(5,3) -- and is 

generated by that subgroup and a reflection. 

The preimage in G of the flag-transitive subgroup 25F20 of 25S5~ 

chamber-transitive on A. Once again, a reflection can be adjoined to obtain a slightly 

larger chamber-transitive automorphism group of A. 

Remark 3. For a construction of the PSL(3,Q2)-example as the set of fixed 

chambers of an involutory automorphism of the A6-example, see [K4]. 

Tree examples. 

We conclude our discussion of concrete buildings with some having rank 2. Here, 

A is a tree. 

Example 6. Let f be the usual scalar product on V=Q2 5. This time V has Witt index 

1. The corresponding building A (of type 2B 2 in the notation of [T1]) arises by tensoring 

up to Z 2 the two lattices Ao=TZ5 and AI=(F 4 root lattice)if)Z, where the root lattice is 

__ 1 1 1 1  spanned by Z 4 on the first 4 coordinates together with the additional vector c - ( ~ 0 ) .  Let 

G=GO(f,Z[½]). Then G0=25S 5 and GI=W(F4)x2, while G0(3Gl=24S4x2. The usual 

scalar product is induced on A0/2A0; on the hyperplane H perpendicular to the vector 

(11111)+2A o, the quadratic form ½(u+2A0,u+2A0) (mod 2) produces an 0-(4,2) geometry 

(and 2A1/2A o is the singular 1-space (2c+2A0)). Consequently, G O induces the full 
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orthogonal group O-(4,2)_=_S 5 on H, so that G=GO(f,Z[1/2]) acts chamber-transitively on 

A [Me]. This example arises from the set of fixed points of r 1 on the (111111)-example. 

Let r=r(0001-1). The centralizer of r in G i is 23S3x2, i=0, 1. The set of fixed 

chambers of r is the building A' (of type A1) corresponding to the diagonal form (1112), 

and CG(r ) acts chamber-transitively on A'. This situation was observed and studied in 

[We]. 

Example 7. Let f be the As-form over Q3" The resuking group is chamber- 

transitive on the building of type 2B 2, with stabilizers $6×2 and (D12wr2)x2 acting on the 

lattices 

t 0 = (Ul-U2, u2-u 3, u3-u 4, u4-u 5, u5-u6)TZ 3 

L 1 = (Ul-U2, u2-u 3, u4-u 5, u5-u 6, u1+u2+u3-u4-u5-u6)7Z3 

whose corresponding stars are, respectively, the 0-(4,3) and 0(3,3) buildings. 

This example arises by means of the set of fixed chambers ,~,,-e , ~ ~ i  11 ~ ~ ~ 1 ~ 1 ~ in its action 

on the E6-example. The example was also found by T. Meixner. 

In the next examples we will use the classical quaternion division algebra over the 

real numbers. 

Example 8. Consider the group G of all quaternions x=aco+bi+cj+dk with 

a,b,c,deZ[1/p] and +xx  a power of the odd prime p, where c0=½(l+i+j+k). (Note that 

(co, i, j, k) z is the ring of integral quaternions, which we have tensored up to 7Z[1/p]. 

Then G is just the group of units in the resulting ring.) Since the algebra of rational 

quatemions spfits when tensored up to Qp, we can view G as a group of 2x2 matrices 

over Qp -- that is, as a subgroup of GL(2,Qp). Then G acts transitively on the set of all 

vertices of the corresponding rank 2 .building for SL(2,Qp) [GP, p. 261], defined by the 

lattices 
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L 0 = (Ul, u2)Zp 

L 1 = (ul /p ,  t )zp, 

where u 1, u 2 is a basis of V=Qp 2. 

This is a standard example in the theory of automorphic forms [GP]. Here 

G 0~SL(2 ,3) .  Note that G(2) is the kernel of the map x ~ x(mod 2), and 

G/G(2) --- PSL(2,3). ff hats denote projections into PGL(2,Qp), then G=G(2)nG 0 and 

G(2) is regular on vertices (just as in our earlier Proposition). (Note that G(2) is a free 

group of rank ½(p+l) when p = l  (mod 4) [GP, p. 263].) 

Since G O induces A 4 on the star of [L0], G is chamber-transitive if p is 3, 5 or 11. 

In order to force further transitivity, adjoin the quatemion i+j, which normalizes G and 

whose square is the scalar -2. Then G(i+j) is also chamber-transitive when p is 7 or 23, 

since Go(i+j)/(- 1,2)~S 4. 

Example 8'. 

maximal order 

½(l+'c'i+xj, x'i+j+xk, xi+l:'j+k, i+xj+'c'k)z[,c] 

(~2-'c-1=0, x'=l/x) in the ring of quatemions over t)(4"-5), so that G O ~_ SL(2,5) 

141]. Moreover, we obtain a chamber-transitive automorphism group 

SL(2,Qp(,/-5))-building when p is 3, 5, 19, 29, o! 59. 

Similar examples arise by letting the quatemion x range through a 

[Vi, p. 

of the 

Remark 4. Each of the above chamber-transitive groups automatically is an 

amalgam of the stabilizers of 2 adjacent vertices [Ser]. 

Remark 5. See [Ih] for a discussion of the subgroups of SL(2,Qp), p odd, that act 

regularly on the vertices of the corresponding building. 
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3. CLASSIFICATION 

It is not at all clear whether it is even reasonable to ask for a classification of the 

algebraic affine buildings A and discrete automorphism groups G that are transitive on at 

least one class of vertices. In view of [Ih], one should certainly assume that A has rank 

>3. Nevertheless, even in this case it can be shown that there are large numbers of 

examples of pairs (A, G) with G transitive on at least one of the types of vertices of A. On 

the other hand, while classification may be difficult or imposssible in general, it is possible 

under suitable additional hypotheses. This is indeed the case if chamber-transitivity is 

assumed: 

THEOREM [KLT]. Let A be an algebraic affine building defined by a simple 

algebraic group ~ of relative rank > 2 _over a locally compact local field. Let G be a 

discrete, type-preserving, chamber-transitive group of automorphisms of A. Then $ is 

one of the following: 

a split group over Q2 of tYPe A2, B2, G2, A 3, B 3, or D4; 

a split group over 1I) 3 of type B2; 

a nonsplit 6-dimensional orthogonal group splitting over Q2(./-2f), Q2(42-3) or 

Q3(f-~);  or 

a split group of tYPe A 2 over IFz((t)) or IF8((t)). 

Moreover, in each case there are at most 6 coniugacy classes (_an Aut A) of groups G, all of  

which have been explicitly determined. 

All of the buildings A involved in the Theorem are contained in Tables 1 and 2 (the 

nonsplit orthogonal groups have types C-B 2, 2A' 3 and C-B 2, respectively, in Table 1 or 

2). The groups G that arise are not quite the same as the ones in §2: this time G is 

type-preserving. Moreover, in some cases there are additional groups G, obtained either 

by restricting determinants of groups in Table 1 or 2 or by using the subgroup 24F20 of 

24S5 acting chamber-transitively on the O(5,3)-building. For a discussion of similar, 
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purely group-theoretic results, see [Tim]. 

The proof of the Theorem involves several ingredients: 

(i) The determination of all of the affine buildings A defined by algebraic groups 

of relative rank >_2 over a locally compact local field K IT1]; 

(ii) The classification of all chamber-transitive automorphism groups of finite 

spherical buildings of rank >2 [Sei]; 

(iii) Character degree bounds [LS; FT]; 

(iv) Geometric properties of A [BrT]; 

(v) Properties of "good" unipotent elements (cf. [BoT; T6]); and 

(vi) A theorem [Ve] stating that B (K) cannot have a discrete cocompact subgroup if 

char K = p > 2  except when ~ has diagram ~'r-l" (Due to the restriction on p, this result is 

not actually used in [KLT].) 

Nevertheless, since there are 12 buildings and many more (conjugacy classes of) 

groups to be characterized, the arguments eventually degenerate into a case analysis of a 

small number of buildings and possible groups. There is also a separation into the very 

different situations in which the field K has characteristic 0 or characteristic p~0. 

Fortunately, in any characteristic, each finite subgroup of AutK is solvable. This almost 

always reduces considerations to a linear group rather than a semilinear one. 

In the remainder of this paper we will give an idea of the types of arguments used by 

considering some specific cases. 

Notation. 

G, ~(K), A as above. 

C: a chamber of A, with vertices 1 ..... r (r>_3). 

Gi: stabilizer of i in G. 

Gij: stabilizer o f i  andj in G. 

Star(i): star of i. 

Ki: the kernel of the action of G i on Star(i). 
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Example: A of type D 4. The diagram is ~ with end nodes 1,2,3,4. By [Sei], 

G1/KI___Pf~+(8,q) for the appropriate power q of p. It follows that the last term (G1)(°°) in 

the derived series of G 1 acts chamber-transitively on Star(l). Then ((G1)(°°),(G2)(°°)> acts 

chamber-transitively on A; we will assume that it coincides with G. On the other hand, 

G 1 is a finite linear group acting projectively on the 8-dimensional vector space V 

underlying ~(K) = Pf~+(8,K). Since G is a perfect group it lies in Pf2(V). 

Case char K=0. Here G l is a finite linear group acting projectively on the 

8-dimensional vector space V of characteristic 0. By [LS], q=2, G 1 ~ f~+(8,2), and the 

representation of G 1 on V must arise from W(Ea). Then G12 is a parabolic subgoup of G 1 

of the form 26~*(6,2) -- 26A 8. There are 3 classes of parabolics of G 1 of this sort, one of 

which arises from a monomial group within W(Es). It is easy to see that that 26A 8 lies in 

exactly 2 different subgroups W(E8) of Pf~+(8,K) -- with one obtained from the other by 

means of a reflection r normalizing our 26A 8 (and generating a monomial group 27A8 with 

it), just as in §2. Then G=(G 1,r) is uniquely determined up to conjugacy in Aut ~ (K). 

Case char K=p¢0. This time (O1)(°°)=Pf~+(8,q) acts (projectively) on V in the 

natural manner, Similarly, the representations of (Gi)(~) and hence also of G i on V are the 

usual ones (i=1,2,3,4). Let U be a Sylow p-subgroup of G c. Using Gli (i=2,3,4) we 

see that U fixes exactly 3 totally singular subspaces of V whose stabilizers in $ (K) have 

Pf2+(6,q) as a section (subspaces of dimensions 1, 4 and 4). These are just the subspaces 

fixed by Gli (i=2,3,4). Permuting the subscripts and noting that GI=(G12. O13), we see 

that G12=G34 . Viewed within Star(l), this states that G12 fixes the additional vertices 3 

and 4, which is ridiculous. 

The general case of the Theorem follows a somewhat similar pattern, at least when 

K has characteristic 0. In that case, G 1 and K 1 are greatly restricted: bounds on the 

degrees of representations of G1/K P together with the representation produced by the 

embedding G < Aut ~(K), usually force K 1 to be 1 and always force GffK 1 to be one of a 

very small list of examples in small dimension and characteristic. The representation of G 1 

can then be determined, and is usually unique up to conjugacy in Aut $(K). The same 
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analysis can then be used for a suitably chosen second vertex 2, and the groups G i and G 2 

can be played off against one another (using, among other things, the fact that G12 projects 

onto a parabolic subgroup of both G 1 and G 2 -- unless Gi/K i (i=l or 2) is one of the 

exceptional chamber-transitive groups in [Sei]). 

On the other hand, when char K=p the approach used for D 4 applies to the diagram 

7tr_ i but not to many others. We refer to [KLT] for an approach using the geometry of A 

(i. e., using the metric on the topological space underlying A [BrT]). The result in [Ve] 

could be used when p>2. However, the most elementary approach is as in the following 

example. 

Case E7, char K=p. Label the diagram 1 _- _- _- ~ _ . , 

2 

By [Sei], G J K  1 contains E7(q). Since G acts projectively on the 56-dimensional module 

V for ~(K)over  K, it follows that KI=I. Also, G2/K 2 contains PSL(8,q). We may 

assume that G is perfect and hence lies in SL(V). The groups Gp G 2 and G12 have a 

common Sylow p-subgroup U. Calculating IUI in G 1 and G 2, we find that IU~KzI=q 27. 

However, a straighforward root system calculation in ET(q) shows that the parabolic 

subgroup G12 of ET(q) has no normal subgroup of order (t27. 

A similar approach works in almost all cases, but must be tailored to each possible 

type of building A. The only significantly different situations are those of buildings of type 

A 2 in which G a is a Frobenius group of order 7.3 or 73-9; see [T8] for an indication of the 

approach used in these cases. 

[BoT] 

[BrT] 

REFERENCES 

A. Borel and J. Tits, l~IEments unipotents et sous-groupes paraboliques de 

groupes rEductifs. I. Invent. Math. 12 (1971) 95-104. 

F. Bruhat and J. Tits, Groupes rEductifs sur un corps local, I. Donn6es 

radicielles valuEes. Publ. Math. I.H.E.S. 41 (1972) 5-251. 



REFLECTIONS ON CONCRETE BUILDINGS 143 

[Ca] J .W.S.  Cassels, Rational Quadratic Forms. Academic Press, London-New 

York-San Francisco, 1978. 

[FT] W. Feit and J. Tits, Projective representations of minimum degree of group 

extensions. Can. J. Math. 30 (1972) 1092-1102. 

[GP] L. Gerritzen and M. van der Put, Schottky groups and Mumford curves. 

Springer Lecture Notes in Math. 817 (1980). 

[Ih] Y. Ihara, On discrete subgroups of the two by two projective linear group over 

p-adic fields. J. Math. Soc. Japan 18 (1966) 219-235. 

[K1J  W . M .  Kantor, Some exceptional 2-adic buildings. J. Algebra 92 (1985) 

208-223. 

[K2] ---, Some locally finite flag-transitive buildings (to appear in Europ. J. Comb.). 

[K3] ---, Finite simple groups via p-adic groups, pp. 175-181 in Proc. Rutgers 

Group Theory Year 1983-1984, Cambridge U. Press 1984. 

[K4] ---, Generalized polygons, SCABs and GABs, pp. 79-156 in Buildings and the 

.Geometry_ of Diagrams: CIME Session Como 1984, Springer Lecture Notes in 

Mathematics 1181, 1986. 

[KLT] ---, R. A. Liebler and J. Tits, On discrete chamber-transitive automorphism 

groups of afflne buildings (to appear in Bull. AMS). 

[KaMW] ---, T. Meixner and M. Wester (in preparation). 

[Kne] M. Kneser, Semi-simple algebraic groups, pp. 250-265 in Algebraic Number 

Theory (eds. J. W. S. Cassels and A. Frrhlich), Academic Press 1967. 

[KMW1] P. Krhler, T. Meixner and M. Wester, The affine building of type ~z and its 

finite projections. J. Combinatorial Theory (A)38 (1985) 203-209. 

[KMW2] ---, The affine building of type ~ over a local field of characteristic two. Arch. 

Math. 42 (1984) 400-407. 

[LS] V. Landazuri and G. M. Seitz, On the minimal degrees of projective 

representations of the finite ChevaUey groups. J. Algebra 32 (1974) 418-443. 

[LPS] A. Lubotzky, R. Phillips and P. Sarnak, Explicit expanders and the Ramanujan 



144 

[Me] 

[MW] 

[Mu] 

[Sei] 

[Ser] 

[Tim] 

[T1] 

[T2] 

[T3] 

[T4] 

IT5] 

[T6] 

[T7] 

WILLIAM M. KANTOR 

conjectures. Proc. 18th Syrup. Theory Computing (1986) 240-246. 

T. Meixner, Gruppen mit parabolischen Systemen. Habilitationsschrift, 

Giessen 1985. 

--- and M. Wester, Some locally finite buildings derived from Kantor's 2-adic 

groups. Comm. in Alg. 14 (1986) 389-410. 

D. Mumford, An algebraic surface with K ample, (K2)-9, pg=q=0. Amer. J. 

Math. 101 (1979)233-244. 

G. M. Seitz, Flag-transitive subgroups of Chevalley groups. Ann. of Math. 97 

(1973) 27-56; correction (unpublished). 

J.-P. Serre, Trees. Springer 1980. 

F. G. Timmesfeld, Tits chamber systems and finite group theory, pp. 249-269 

in Buildings and the Geometry of Diagrams: CIME Session Como 1984, 

Springer Lecture Notes in Mathematics 1181, 1986. 

J. Tits, Reductive groups over local fields. Proc. AMS Symp. Pure Math. 33 

(1979) 29-69. 

---, Buildings and Buekenhout geometries, pp. 309-320 in Finite Simple 

Groups, II, Academic Press 1980. 

---, A local approach to buildings, pp. 519-547 in The Geometric Vein. 

Coxeter Festschrift, Springer 1982. 

---, Immeubles de type affine, pp. 157-191 in Buildings and the Geometry_ of 

Diagrams: CIME Session Como 1984, Springer Lecture Notes in Mathematics 

1181, 1986. 

---, On some edge-transitive automorphism groups of the affine building of 

SL3(k((y))), for a field k possessing a cyclic extension (manuscript). 

---, t~16ments unipotents et sous-groupes paraboliques de groupes r6ductifs. 1I 

(to appear in Proc. Conf. Algebraic Groups, Utrecht 1986). 

---, Buildings and group amalgams (to appear in St. Andrews Group Theory 

Conf. 1985). 



[T8] 

[Ve] 

[We] 

REFLECTIONS ON CONCRETE BUILDINGS 145 

---, R6sum6 des cours, College de France 1984/5. 

T. N. Venkataramana, Sur la super-rigidit6 et rarithm6ticit6 des r6seaux dans les 

groupes sur des corps locaux de charact6ristique quelconque. C. R. Acad. Sci. 

Paris 302 (1986) 371-373. 

M.-F. Vign6ras, Arithm6tique des alg~bres de quaternions. Springer Lecture 

Notes in Math. 800 (1980). 

M. Wester, Endliche fahnentransitive Tits-Geometrien und ihre universellen 

Uberlagerungen. Mitt. Math. Sem. Giessen 170 (1985) 1-143. 

Author's address: 

Department of Mathematics 

University of Oregon 

Eugene, Oregon 97403 


