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Theorem 6: 4 has minimum distance 8. 

Proof: Again it is sufficient to show that 4 has mini- 
111 

mum weight 8. By Theorem 3 there are only two possibili- PI 
ties which we must consider. The first of these is X = 0, 
]Y] > 6. In this case Y corresponds to a codeword in q, [31 
so ]Y ] > 8 by Lemma 4. The second possibility is 1x1 = 2, 
]Y] > 4. The automorphisms a) and c) of Theorem 2 show 141 
that we may assume without loss of generality that X = 151 
(0, l}. From Definition 2 c) and d) we find that Y corre- 
sponds to a codeword in a, i.e., ]Y] > 6 by Lemma 3. [61 
Finally we observe that ] XI = ] Y ] = 4 is possible by taking [71 
x  = Y = (0, a, p, a + p>. 

q  PI 
To find the cardinality of 9  we can use exactly the same 

method as in the proof of Theorem 4. Since (n, Y) = (n, s) 
= 1 the polynomials m,.(x) and m,(x) have degree m. 
Hence oi)’ has dimension n - 3m. The argument of Theo- [91 

rem 4 now shows that ]!?J] = 2’, where 1 = 2”‘+’ - 3m - 2. 
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On the Inequivalence o f Generalized 
Preparata Codes 

W ILLIAM M. KANTOR 

DEDICATED TO JESSIE MACWILLIAMS ON THE OCCASION OF HER RETIREMENT FROM BELL LABORATORIES 

having min imum distance 5. All the codes P( CT) have the same distance and 

Abstract-If m  is odd and (r E Aut GF  (2”‘) is such that x  + x”~ ’ is 

weight enumerators as the usual Preparata codes (which rise as P( 6) when 
x” = x2). It is shown that P( (r) and P(T) are equivalent if and only if 

I - 1, there is a [2”+’ - 1,2”+’ 

T  = (r * ‘, and Aut P(u) is determined. 

- 2 m  - 21 nonlinear binary code P(u) 

I. INTRODUCTION 

I N [13], Preparata introduced a family of [2m+’ - 1, 
2  m+l - 2m - 21 nonlinear binary 2-error correcting 

codes, where m  is odd and m  > 1. These have remarkable 
combinatorial properties: they are nearly perfect codes 
(Goethals and Snover [7]; Cameron and van Lint [4, ch. 
161) and, in particular, they are uniformly packed (Sema- 
kov, Zinovjev, and Zaitsev [14]); they give rise to designs 
[ 141, [15], [7], [12, p. 4731, [4, pp. 89-901; and they produce 
parallelisms of the lines of PG(m, 2) [15]; [l]. The pub- 
lished descriptions of these codes [13], [15], [ 12, !j 15.61, [4] 

scription which led to a generalization of Preparata’s codes. 

are complicated and difficult to work with. Fortunately, 

Let m  be odd, m  > 1, and let u  E Aut GF (2”) where 
x -+ xu2-’ is 1 - 1. (Thus, if x” = x2’ for all x then i and 
m  are relatively prime.) Baker and W ilson constructed a 

Baker and W ilson 121 have found a relatively simple de- 

code P(o) having the same parameters as Preparata’s 
codes (cf. (l)), and hence having the same combinatorial 

. 1  

properties. Moreover, their description makes a group of 
(2” - 1)m automorphisms very visible. We  will show that 
this group is precisely Aut(P(a) when m  > 3, and that 
two generalized Preparata codes P(a) and P( 7) are equiva- 
lent if and only if r = u + ‘. Similar results are obtained for 
the extended codes F(u) of length 2”+‘. 

All the codes P(u) (for fixed m) have the same distance 
and weight enumerators (by Goethals and Snover [7, p. 
851). One of the many curious properties of the extended 
Preparata codes is that their weight enumerators are re- 

Manuscript received September 11, 1981; revised March 23, 1982. 
lated to those of the Kerdock codes [ 1  l] in exactly the same 

The author is with the Department of Mathematics, University of manner as are the enumerators of a  linear code and its dual 
Oregon, Eugene, OR 97403. [ 111, [7], [ 12, p. 4681. This naturally leads to speculations as 
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to whether extended Preparata and Kerdock codes are dual 
in some direct, nonarithmetic sense. However, the results in 
this paper and in Kantor [lo] strongly suggest that this 
apparent relationship between these codes is merely a 
coincidence. 

II. DEFINITIONS 

Let F = GF (2”), where m is odd and m > 1. Form the 
(m + 1)-dimensional GF (2)-space I’ = F @ GF (2). If x 
E F and i E GF(2) we will write (x, i) = xi. Also, if 
X, Y G F we will write 

X,Y, = (x,0) u (Y, 1). 

Let 2” denote the set of all subsets of v. This is a 
2”‘+ ‘-dimensional GF (2)-space under symmetric dif- 
ference A. (We use A in order to avoid confusion with 
addition in F and V). 

If X c F and 0 < k E Z, write CXk = CxcXxk. (We use 
the convention 0’ = 1.) 

Let u E Aut F, where x + x0’-’ is 1 - 1. Then the 
generalized extended Preparata code F(a) is the following 
subset of 2”: 

P(u) = ( XOYll~XO = CYO = 0, Xx’ = CY’, 

Xx0+’ + c yo+’ + (cx’y+ = 0). (1) 

Here, ]&a)1 = 2’“‘” - 2m - 2, and ]AAB] > 6 for all dis- 
tinct A, B E F(u) (Preparata [13] if x” = x2 for all x; 
Baker and Wilson [2] in general). Thus, F(u) is a 
[2 m+l ,2m+’ - 2m - 21 code with minimum distance 6. (It 
is a straightforward but amusing exercise to verify all of 
these assertions.) 

The generalized Preparata code P(u) is obtained by 
deleting 0, from V and from all members of F(u). This is a 
P m+1 - 1,2m+’ - 2m - 21 code with minimum distance 
5. 

Aut F(u) is the group of permutations of V sending 
F(u) to itself. This group is easily seen to contain the 2m+’ 
translations of V: 

Xi + (X + b)i+j for fixed b, j. (4 

It also contains the group 

{xi + (axq)Ja E F*, ‘p E Aut F} (3) 

of order (2” - 1)m. Clearly, this group is contained in 
Aut p(u), and has the normal subgroup 

(xi + (ux),la E F*}. (4) 

(In fact, (4) is the commutator subgroup of (3).) 
Since Aut F(u) is transitive on V, all punctured codes of 

F(u) are equivalent to P(u). 

III. STATEMENT OF RESULTS 

Our goals are the following theorems. 

Theorem 1: p(u) and P<r) are equivalent if and only if 
(T = 75’. 

Theorem 2: P(u) and P(r) are equivalent if and only if 
(I = r*’ 

In view of the transitivity of Aut F(u), Theorem 1 is an 
immediate consequence of Theorem 2. 

Theorem 3: If m > 3, then Aut F(u) is the group of 
order 2m+‘(2” - 1) m g enerated by the permutations in (2) 
and (3). 

Theorem 4: If m > 3, then Aut P(u) is the group (3). 

Once again, Theorem 3 follows immediately from Theo- 
rem 4. If m = 3 then Aut P(u) = A,, while Aut F(u) is a 
semidirect product of the group of translations of V with 
A, (Berlekamp [3]). 

Theorem 2 will be proved using elementary linear alge- 
bra, Sylow’s theorem and a standard number theoretic 
result. Theorem 4 requires more complicated machinery. 

Notation: Write G(u) = Aut P(u). 

IV. RECOVERING THE HAMMING CODES 

Each code P(u) is a [2m+’ - 1,2”“’ - 2m - 21 code 
with minimum distance 5. Such codes have been studied by 
Semakov, Zinovjev, and Zaitsev [ 141, [ 151 and Goethals and 
Snover [7]. They showed that the distance enumerator 
depends only on m. Moreover, they showed that, if the 
words at distance & 3 from each codeword are adjoined to 
the code, the resulting code is a perfect l-error correcting 
code [15, p. 2581, [7, p. 861. 

Proposition 1: Let H(P(u)) consist of P(u) and all 
words in 2” at distance >, 3 from P(u). Then H( P(u)) is 
the Hamming code of length 2”‘+’ - 1 determined by I/. 

Proof: Set H = {X,Y, E 2v~(0111 + CX” = CY” = 0, 
CX’ = EY’}. Then H is the Hamming code of length 
2m+l - 1. By (1) P(u) c H. Since H has minimum dis- 
tance 3 H c H( P(u)). As already noted, H( P(u)) is a 
perfect 1 -error correcting code, and hence ] H I = I H( P( u))I. 
Consequently, H = H(P(u)). 

Corollary 1: Each isomorphism P(u) + P(T) is induced 
by a linear transformation of F. (In particular, G(u) < 
GL(m + 1,2).) 

Proof: H(P(u)) = H( P(7)) is the Hamming code de- 
termined by V, and Aut H( P( a)) = GL( m + 1,2). 

V. PROOF OF THEOREM 2 

Assume that h is a permutation of T/ sending P(u) to 
P(7). By Corollary 1, G(u), G(T), and h all belong to 
GL(m + 1,2). Note that hK’G(u)h = G(T). 

There is a prime q such that ql2” - 1 but q f 2j - 1 for 
1 < j < m (Zsigmondy [ 161). Let Q be a Sylow q-subgroup 
of the group (4). Then Q is also a Sylow q-subgroup of 
GL(m + 1,2), and Q < G(u) n G(T). 

Since h-‘Qh < G(T), by Sylow’s theorem h;‘(hK’Qh)h, 
= Q for some h, E G(T). Set g = hh,. Then g is an 
isomorphism from P(u) to P(T), and g- ‘Qg = Q. 



KANTOR: INEQUIVALENCE OF PREPARATA CODES 

The cyclic group Q has exactly two proper invariant 
subspaces: F, and {O,, O,}. The normalizer N of Q in 
GL(m + 1,2) must leave each of these invariant. Then 
IN] = (2”’ - 1)m (see the Appendix), and hence N < G(u) 
by (3). 

that k- ‘CY’ E GF (2) for each choice of (X, Y). By Re- 
mark 1, this is ridiculous. 

Lemma 3: Let H be the subgroup of G(u) consisting of 
all elements fixing F, and 0,. Then ] H 1 = (2” - 1)m. 

Consequently, g  E G(u), and hence P( 7) = P(u)g = 
P(u). 

Lemma I: P(u) = P(r) if and only if r = u *‘. 

Proof: If r = up’, then (X”+‘)’ = X7+‘, so that P(u) 
= P(r) by definition (1). 

Conversely, assume that P(u) = P(r). Let 
(y},{a, b, c, x}, E P(u). By definition, a, b, c, and x are 
distinct, y = a + b + c + x * 0, and 

Proof: By Lemma 2, H is essentially a  subgroup of 
GL(m, 2) acting on the hyperplane F,. Moreover, H con- 
tains the group (4). All subgroups of GL(m, 2) containing 
(4) were determined in Kantor [9]. Namely, we can write 
m  = de in such a way that H contains SL(d, 2’) as a 
normal subgroup. Moreover, when F  is regarded as a 
d-dimensional vector space over GF(2’), the group H 
consists of GF (2’)-semilinear transformations of F. 

Y O+’ + (u”+’ + bO+’ + CO+’ + xO+‘) + yO+’ = 0. 

Conversely, if a, 6, c, are distinct and if x”+’ = a”+’ + 
b”+’ + cut’, then x * a  + b + c (since {a, 6, c, a  + b + 
c>~ 4 &a)), y = a + b + c + x * 0, and (y),(u, b, c, x}, 
E P(u). 

If d  = 1 then GF (2’) = F, in which case Lemma 3 
holds. We  will therefore assume that d > 1 and derive a 
contradiction. 

Thus, if a”+’ + but’ + co+’ = x0+’ then a*+’ + bT+’ 
+ c 7+1 _ - x7+‘. The identity 

tu 
O+’ + bO+’ + cO+‘)T+’ = (uT+’ + bT+’ + C7+‘)“+’ 

(5)0,, 
must hold for all distinct a, b, c E F*. Of course, (5),,, 
also holds if a  = 6. 

We  will show that (5),, 7  implies that r = u * ‘. Apply 
6’ to (5),,, in order to obtain (5),-l,,. We  can therefore 
replace u by u ~ ’ if desired. 

Let x4 = x2’ and x7 = x2’ for some i, j where 0 < i, j 
< m. Replacing u and r by their inverses if necessary, we 
may assume that i, j < S(m - 1). We  wish to prove that 
i = j. Assume that i < j. 

Let a  and b be any elements of F  linearly independent 
over GF (2’). Define c by c”+’ = a”+’ + but’, so that 
{a + b + c},{O, a, b, c}, E P(u) by Remark 1. Then 
SL(d, 2’) has an element interchanging a and b while 
moving c, unless c is a GF(%‘)-multiple of a  + b, in which 
case (since c * a  + b) SL(d, 2’) has an element inter- 
changing a and c while moving b. By symmetry, we may 
assume that H has an element interchanging a and b while 
moving c. This element sends the above codeword to 
another codeword of the form {u},{O, b, a, c’}, with c’ f c. 
Since we now have two different codewords whose distance 
is at most 4, this is impossible. 

Lemma 4: [G(u)1 = (2” - 1)m or 2”(2” - 1)m. 

Fixbandcwithb*c.Setd=b”+‘+c”+‘ande= 
b7+’ + c7”. Then (5),,, asserts that the polynomial 

f(t) = (to+’ + d)‘+’ - (t’” + e)O+’ 
vanishes on F*. Consequently, t2m- ’ - 1  divides f(t). 
However, since d * 0  the degree off is 2’+’ + 2j < 2” - 1. 

This contradiction proves Lemma 1 and completes the 
proof of Theorem 2. 

Proof: Since H is transitive on F,, one of the follow- 
ing holds (Cameron-Kantor [5, p. 403 and th. I]): G(u) = 
SL(m + 1,2),G(u) fixes F,, or G(u) fixes 0,. (Note: 
When m  = 3, [5] ‘also allows G(u) to be A,, which is 
indeed the case.) By Lemma 3, G(u) # SL(m + 1,2). 

Assume that G(u) fixes F, but moves 0,. Then G(u) is 
transitive on F, (since H is already transitive on F*, ). By 
Lemma 3, ]G(u)] = [FIllHI = 2m(2m - 1)m. 

If G(u) fixes 0, but moves F,, then G(u) is transitive on 
the 2” hyperplanes not containing 0 ,, and hence ]G( a)] = 
2” . (2” - 1)m by Lemma 3. 

Remark I: We  have seen that {a + b + c + 
~>,{a, b, c, x}, E P(u) whenever a, b, and c are distinct 
elements of F  such that a”+’ + b”+ ’ + c”+ ’ = x”+ ‘. 

Lemma 5: G(u) fixes 0,. 

VI. PROOFOFTHEOREM 4 

By Corollary 1, G(u) is a subgroup of GL( m  + 1,2). 
Lemma 2: If g  E G(u) and g fixes every element of F, 

theng= 1. 

Proof: Assume that G(u) moves 0 1. By Lemmas 2 and 
4, G(u) induces a group of order.2m(2m - 1)m on F,. On 
the other hand, as in Lemma 3 we can write m  = de so that 
G(u) contains SL(d,2’). Since [G(u)] = 2*(2” - l)m, we 
have d > 1, and then ISL(d,2e)l does not divide 2”(2m - 
1)m. (Note: When m  = 3, 2m(2M - 1)m = ISL(3,2)1 is the 
order of the stabilizer of F, in G(u).) 

Proof: Assume that g * 1. Since g is the identity on 
the hyperplane F, of V, g has the form 

i 

x0 + x0 
g: x, + (x + k), 

Lemma 6: G(u) fixes F,. 

Proof: Assume that G(u) moves F,. Then G( u ) again 
acts on an m-dimensional vector space, namely, v = 
~/{O,,O,). Once again, we find that ISL(d,2’)1 divides 
2m(2m - 1)m for some d and e satisfying de = m. How- 
ever, this time we can only conclude that d  = 1. That is, for a  fixed k E F*. Let X,Y, E P(u). Then X,(Y + k), E 

P(u), so that Z(Y + k)‘+’ = CY’+‘. Expanding, we find G(u) induces a group of order (2” - 1)m on V. 

341  
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Consequently, G(u) contains 2” elements inducing the 
identity on r There are exactly 2” such elements g of 
GL( m + 1,2), and they can be described as follows (by an 
elementary calculation): there is a linear functional T: F 
+ GF (2) such that g sends xi + xi + T( x)0, for all x. 

Let (u}~ (0, u, b, c}, E P(u) (cf. Remark 1). Then a + b 
+ c = u, so c * a + b. Since T can be any linear func- 
tional, choose it so that U, c E Ker T, but a, b 4 Ker T. 
Applying the above automorphism, we obtain a codeword 
{u, a, b}, (0, c}, at distance 4 from the original one. This 
contradiction proves Lemma 6. 

Now Theorem 4 follows from Lemmas 4-6. 

VII. CONCLUDING REMARKS 

1) In order to clarify the relationship between Theorems 
2 and 4, we will show how to deduce the former from the 
latter. (This also provides further motivation for the proof 
in Section V.) 

Let g: P(u) -+ P(r) be an isomorphism. By Theorem 4 
and (3), g sends the unique fixed point 0, of G(u) to the 
unique fixed point 0, of G(r). Similarly, G(u) sends F. to 
F,. If (lo)g = a,, compose g with xi + (a-‘~)~ in order to 
assume that (lo)g = 1,. 

By Theorem 4, g normalizes the commutator subgroup 
(4) of G(u) = G(r). By the Appendix, there is a field 
automorphism ‘p such that (xo)g = (xv>0 for all x, while 
(O,)g = 0,. Thus g E G(u), and hence P(u) = P(r). Now 
Lemma 1 completes the proof. 

2) Baker and Wilson [2] have shown that one of the 
codes found by Goethals [6] can be described as F(u) n 
p(r), wherex” = x2’, x7 = x2’+’ and m = 2t + 1 > 3. This 
code has minimum distance 8. It clearly admits G(u). 
Imitating the proof of Theorem 4, we find that its group of 
affine linear automorphisms has order 2*+‘(2* - 1)m and 
is generated by the permutations in (2) and (3). However, it 
is not clear how to recover the extended Hamming code 
from p< a) n F( 7). 

APPENDIX 

In Sections V and VI we used a standard, elementary 
result concerning certain linear transformations (Huppert 
[8, (7.3a)]). For completeness, we will include a short proof 
of the required result. 

Let F = GF(q”), and regard F as a vector space over 
GF (q). The group 

H = {x + uxlu E F*) 

is a cyclic group of linear transformations. 
Lemma: Let g E H, and assume that ]g] + qj - 1 

whenever 1 6 j < m. Then the normalizer N of (g) in 
GL(m, q) is isomorphic to the group of transformations 
x -+ ax? for a E F* and cp E Aut F. In particular, ] N) = 
(q” - 1)m. 

Proof: Clearly, N contains H. If n E N and 1” = a 
then lnh = 1 for some h E H. It therefore suffices to show 
that, if 1” = 1, then x + x” is an automorphism of F. 

Each GF(q)-linear combination of powers of g lies 
inside the field H U (0). By hypothesis, GF (q)[ g] cannot 
be GF(qJ) for 1 < j < m. Thus, GF (q)[ g] = H U (0). In 
particular, n normalizes H. 

IfH= (d) andn -‘dn = d’for some I E Z, then n-‘hn 
= h’ for all h E H. 

Let f E F*, and let h: x + fx. Then 

f” = (fl)” = lh” = 1n-‘hn = lh’= f/l = f’* 

Since f + f’ is an automorphism of F*, so is n. Conse- 
quently n E Aut F, as required. 
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