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NONOESARGUESIAN PLANES, PARTIAL GEOMETRIES, STRONGLY REGULAR GRAPHS AND CODES 
ARISING FROM HYPERBOLIC QUADRICS 
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Spreads of hyperbolic quadrics are used to construct translation planes, 

partial geometries, strongly regular graphs and codes, all having a rich geometric 

structure. 

1. INTRODUCTION 
+ . n n-l A hyperbolic quadric Q ln PG(2n-l ,q) has (q -l)(q +l)/(q-l) points, and 

contains n-l-spaces each having (qn_l)/(q_l) points. A spread of Q+ is a family 
n-l + + ~ of q +1 subspaces of Q of dimension n-l partitioning the points of Q. A 

spread can only exist if n is even (when n is odd, Q+ does not even contain 3 

pairwise disjoint n-l-spaces). The only known examples occur when n=2, when q is 

even, or when n=4 and q =- 0 or 2 (mod3) . 

In this paper, we will summarize some of the ways spreads of hyperbolic 

quadrics have been used recently. 

2. TRANSLATION PLANES AND THE CONSTRUCTION OF SPREADS 

If X is any subspace of PG(2n-l,q), then Xl will denote its polar with re­

spect to Q+. Consider a spread ~ of Q+, and assume that q is even. Fix any point 

x tF Q+, and form the family xl n ~ = {xl n wlw E ~}; clearly, this consists of 

n-2-spaces partitioning the quadric} n Q+. Since q is even, x E } and i /x is 

a PG(2n-3,q) equipped with a symplectic (or null) polarity. If ~(x) denotes the 

projection of xl n ~ into xl/x, then ~(x) is a spread in the more usual sense: 

qn-l+1 subspaces of dimension n-2 which partition the points of xl Ix. Consequent­

ly ~ and x determine a translation plane A(~(x)) arising from a symplectic spread. 

Conversely, suppose that nand q are even, and that ~, is a symplectic 

spread of PG(2n-3,q). Then~' arises from some Q+, ~ and x, as follows (Dillon 

[4], Dye [5]). We can regard PG(2n-3,q) as our former} Ix, related to Q+ as be-

r 
! 



512 W.M. Kantor 

n-l fore. Each of the q +1 members of L' is the projection of a unique n-2-space of 
1 + 1 + 

x n Q , and the resulting family L" of n-2-spaces partitions x n Q. Fix one of 

the two families of n-l-spaces of Q+; each n-2-space of Q+ is in a unique member 

of this family. Thus, L" lifts to a family I of qn-l+ l of these n-l-spaces, any 

two having at most a point in common. Since no two of these n-l-spaces can have 

exactly one point in common (as n is even), I consists of pairwise disjoint sub­

spaces. Consequently, I is a spread of Q+. 

The preceding construction produced an essentially unique spread of Q+ from 
1 

a symplectic spread of x Ix. In particular, I(x) essentially determines I (where 

"essentially" means that the symplectic geometry on xl Ix can arise from several 

quadrics in PG(2n-l ,q), and that we singled out one of the two families of n-l-
+ + spaces of Q). However, more is true. Let I and Ii be spreads of Q , and let x 

and xl be points off Q+. Then any isomorphism from A(I(x)) to A(I (x )) induces a 
. . + 1 1 

colllneatlon of PG(2n-l ,q) sending Q to itself, I to Ii and x to xl (Kantor [6]). 

In particular, each collineation of A(I(x)) is the product of a perspectivity with 

axis at infinity and a collineation of PG(2n-l ,q) preserving Q+, I and x. Thus, 

the collineation groups of many translation planes can be found simultaneously 

once the group G(I) of collineations preserving Q+ and I is known. 

Several spreads I are described in Kantor [6,7] , and some of the resulting 
n-l translation planes of order q are studied in detail. When n=2, or n=4 and 

q=2, only desarguesian planes occur. In all other cases, new planes are obtained. 

Some of the planes are uninteresting, but others have collineation groups behaving 

in unusual manners (such as flag-transitively, or behaving as decribed in 

Johnson's paper in these proceedings). Complete arcs and dual ovals in all of 

these planes were found by Thas [13]. 

The simplest example of a hyperbolic spread is obtained as follows. The 

desarguesian n-l plane AG(2,q ) arises from the unique spread n-l of PG(l ,q ), which 

is trivially symplectic. This produces a symplectic spread I' in PG(2n-3,q) , and 

hence (if nand q are even) a spread I of a hyperbolic quadric in PG(2n-l ,q). 

This spread is called desarguesian, for obvious reasons. It was found by Dillon 

[4] and Dye [4]; G(I) was determined by Dye [5] and Cohen and Wilbrink [2]. As we 

will see in §6, an "affine" version of this spread was discovered much earlier by 

Kerdock [10] . 

Other hyperbolic spreads arise from the hermitian curve in PG(2,q2), from 

triality, and from field changes generalizing that of the preceding paragraph. 
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For coordinate descriptions of many of the known examples we refer to Kantor[6,7). 

It seems unlikely that hyperbolic spreads can exist when n > 4 and q is odd. 

On the other hand, if q is even and fixed, the number of inequivalent hyperbolic 

spreads probably +00 as n+oo. 

3. MORE TRANSLATION PLANES; OVOIDS 

Let Q+ be a hyperbolic quadric in PG(7,q), where q is now even or odd. 

Consider a spread L of Q+. Then L belongs to one of the families of 3-spaces of 

Q+. Let T be any member of that family not in L. If WE L then T n W is either 

empty or a line. Set T (') L = {T n wlw ELand T n L is a line}. Then T n L is a 
2 spread of PG(3,q), and hence determines a translation plane of order q. (The 

3 2 
translation planes obtained from L as in §2 when q is even have order q , not q .) 

These translation planes are studied in Kantor [8). 

Let, be a triality map. Then, cyclically permutes the following three 

sets: the points of Q+, and the two families of 3-spaces on Q+. At the same time, 

, sends lines of Q+ to lines of Q+, while preserving incidence between lines and 

both points and 3-spaces of Q+. It follows that L' is either another spread, or 

else consists of q3+ l pairwise noncollinear points of Q+. 

Let Q+ be a hyperbolic quadric in PG(2n-l,q). An ovoid of Q+ is defined (by 
n-l + Thas [14)) to be a set n of q +1 pairwise noncollinear points of Q. A simple 

count shows that each n-l-space on Q+ contains a unique point of n. It follows 

that, if x E Q+ - n, then xl n n projects onto an ovoid n(x) of the obvious 

quadric in xl/x. 

If n > 4, ovoids probably do not exist, but this has only been proven in 

PG(2n-l ,2) (Kantor [9, (4.3)) ). If n=3, ovoids correspond (under the Klein corre-

spondence) to spreads in PG(3,q), and hence to translation planes of 2 order q . 

If n=4, L is a spread, and L' is not a spread, then L' is an ovoid n. 

Moreover, if Tis as before then T' is a point x, and T n L and n(x) are related 

by the Klein correspondence. When dealing with coordinates, it is easier to work 

with n(x) than Tn L, since points of n require 8 coordinates while 3-spaces in L 

are more complicated to describe. The translation planes A(n(x)) are studied for 

all known L in Kantor [8). Unlike the situation in §2, it is not clear how to 

recover nor L from A(n(x)); moreover, some collineations of the plane need not be 

related to automorphisms of n or L. 
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4. STRONGLY REGULAR GRAPH 

Let ~ be a spread of a hyperbolic quadric Q+ in PG(2n-l ,q), where n > 4. 

Let n be the set of all hyperplanes of members of ~, so that Inl=I~I(qn_l )/(q-l) 

is the number of points of Q+. If X, YEn and X f Y, write x-y~x1ny f O. Then 

(n,-) is a strongly regular graph having the same parameters as the col linearity 
+ + graph (Q ,1) of Q (Kantor [9 J). If n=4, these graphs are i somorphi c (an 

i somorphi sm bei ng induced by tri a 1 ity) . However, if n > 4 they are probably never 

isomorphic. This is known if q=2 (see [9]); the proof uses the nonexistence of 

ovoids of Q+ when q=2. The graphs are also not isomorphic when ~ is the 

desarguesian spread defined in §2; this was proved in [9] by brute-force calcula­

tions. 

If W E ~ let /' be its set of hyperplanes. Then ~'" = {w"'lw E ~} is a 

partition of n into cliques. If X En - w'" then X is joined to exactly 
n-l ~I~ ~I, i ~': 

(q -l)/(q -1) members of w, namely, {Y E W Ix n WE Y}. Thus, each clique w 

inherits from (n,-) the structure of a PG(n-l,q) in a natural manner. Further 

properties of (n,-) reminiscent of properties of (Q+,l) are found in [9]. While 

it is easy to reconstruct Q+ and ~ given (n,-) and ~*, it is not known whether ~* 
can be determined from (n,-) alone. 

Variations on the construction of (n,-) are found in [9]. Instead of a 

spread of a hyperbolic quadric, spreads of other quadrics, of hermitian geometries, 

and of symplectic geometries could have been used: strongly regular graphs again 

arise in exactly the same manner, having the same parameters as the underlying 

geometries. In the symplectic case, new symmetric designs are also obtained 

having the parameters of PG(2n-l ,q). 

5. PARTIAL GEOMETRIES 

In this section, Q+ and ~ will be as before, but q will be 2 or 3. Define n 

as in §4. 

If q=2, let N be the complement of Q+. If q=3, let N consist of the points 

of the complement of "length" 1 (where "length" refers to the value at x of the 

quadratic form defining Q+). 

It is straightforward to check that the incidence structure (N,n,l) is a 

partial geometry pg(~) (DeClerck, Dye, Thas [3,15]). Namely, if x E N and X E n, 

then x is perpendicular to qn-l+1 members of n (one per member of ~),x is perpen-
n-l 1 

dicular to q +1 members of N (lying in an affine space), and (if x ~ X ) there 
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are exactly qn-2(q_l) pairs (y,Y) with yEN, YEn, y E Xl n yl and x E yl. 

1 Let x, yEN, x f. y. Then x, y E X for some X En if and only if q=2 and x 

and yare perpendicular, or q=3 and x and yare not perpendicular. Consequently, 
+ PG(2n-l,q) and Q can be recovered from pg(I). Moreover, projectively inequiva-

lent spreads I produce nonisomorphic partial geometries (Kantor [9, (7.3)]). If 

n=4 then I is essentially unique (cf. Patterson [12]; Kantor [6, §lO]), and hence 

so is pg(I). If q=2 and n-l is composite then I is not unique (Kantor [7,(9.12)]); 

presumably, the same is true for all even n > 4. On the other hand, if q=3 and 

n > 4 it seems likely that no I exists. 

Let x, YEn, X f. Y. Then x, Y E / for some x E N if and only if X and Y 

are not adjacent in the graph (n,-) obtained in §4. 

6. CODES 

Let Q+ and I be as usual. In order to define some codes, we will have to 

introduce coordinates. The vector space underlying Q+ can be written E $ F with 

E, FEn. Fix a basis e , ... ,e of E, and let f , . .. ,f be the dual basis of F, 
1 n 1 n 

so that the underlying bilinear form has (e .,f.) = 0 ... We will write matrices 
'& J '&J 

with respect to the ordered basis e 1,··· ,en' f 1,··· ,fn · 

Let F' E n - {E}. Then 

F I = F (I 0) 
M' I 

for a uniquely determined skew symmetric nXn matrix M' (with zero diagonal), where 

o and I are the zero and identity nXn matrices. (The above 2nX2n matrix preserves 

Q+, and is the identity on E.) 
Thus, I and E determine a family K=K(I,E) of skew symmetric nXn matrices. 

This provides an "affine" version of I. If F ' , F" E I -{E} , F' f. F", and if M' 

and M" are the corresponding matrices, then F' n F" = 0 implies that M'-M" is 
n-1 

nonsingular. Thus, K is a Kerdock set: a set of q skew symmetric nXn matrices 

(with zero diagonal) such that the difference of any two is nonsingular. 

Conversely, any Kerdock set of nXn matrices defines a hyperbolic spread via 

("'). Note that this spread is uniquely determined; thus, inequivalent spreads 

produce different Kerdock sets. Note, however, that different Kerdock sets can 

produce the same spread. A further discussion of equivalence of Kerdock sets can 

be found in Kantor [6, §5]. 
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Now let q=2, and fix a Kerdock set K of nXn matrices. We may assume that 

o E K. If ME K, there is a quadratic form QM(x) associated with M: 

xMyt= QM(x+y) - QM(x) - QM(Y) 

for all x, y E zn. Consider the following functions zn, ~ z : 
2 2 2 

("';' ) 

for ME K, L a linear functional, and c E Z2' There are 2n-~ 2n'2 = 22nfunctions, 

Let C = C(K) be the set of all sets of zeros of the various functions (**). 
n Clearly, C contains all hyperplanes of AG(n,2) as well as ~ and Z2' 

If X, Y E c, then their symmetric difference X~Y has size 0, 2n, 2n-l, 

2n-l±2~n, corresponding to whether X~ is {O}, z2n, an affine hyperplane, or a 
2 

quadric or its complement in z2n (cf. Cameron and Seidel [1]). If the vectors in 
2 

2n . 2n n Z ~re called v , ... ,v
N 

wlth N = 2 , then each subset X of z can be written 
2 N 1 N 2 

X =2: a.v. with a. E Z , where 2: refers to symmetric difference. In this way,c 
1 't 't 't 2 1 

can be regarded as an error-correcting code (MacWilliams and Sloane [11]), having 

length 2n, minimum distance 2n- 1_2 1n , and size 22n. It is extremal in a sense 

di scussed on p. 667 of [ 11] . 

The codes C(K) were first discovered by Kerdock [10] , with K a Kerdock set 

arising from the desarguesian hyperbolic spread described in §2. Since inequiva­

Jent spreads exist whenever n-l is composite, inequivalent codes C(K) exist as 

well. However, from a coding theoretic point of view, it is not clear how differ­

ent codes C(K) differ (for a fixed n): those corresponding to desarguesian spreads 

seem as if they should be "best", but it is not clear what this means. 
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