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Classical groupz from a aon~classical viewpoint

PREFACE

How well-known are the well-known finite simple groups?
There are several approaches to this question. One leads
to chafactexizatiah'theorems, Aﬁd another to representation
theory. A thirﬁ'apbroaah; taken in these notes, concerns
subgroups and permutation repressentations. '

These notes vecord a series of lectures given at Oxford
University in 1978. Part 1 is devoted to an extremely quick
sunmary of the standard, basic facts concerning the classical
groups, thelr geometries and their BN~-pairs; it is
essentially a long collection of exevrcises. Part 2 1s the
main part, and presents some recent vesults and methods
concerning these groups. Finally, Part 3 is devoted to
the geometry of the not-gso-classical groups Eg(q).

The background of the audience included the basic,
elementary properties of groups, characters and BN-pairs.

The goal was to presgent ideas, rather than complete
proofs of the most general known results. Conseguently,
only partial proofs of significant special cases were
given, while wmore general results were merely described,
Referencés to the latter are given here. However, no

attempt hag been made to give a comprehensive bibliography;




therefore, apologies are owed to those-peop}e whose
important contributions have not been mentioned.

I am gf&tefu1 tG C. anse fgr his excellent notes, upon
which the present account is based; to the ﬁathematics
Institute at Oxford University for imviting me to give

these lectures; and to Joyce E. Falkenberg for her
excellent typing.
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Part 1, The classical theory of claasical ernups

{AYy The special linear groupr SLin.q}

All fields, vectors spaces and groups will be finite.
Let F=GF{(q), and let V hé an n-dimensional vector
gpace over F with n=22,

SL(V)=?SL(n,q) dénates ﬁhe gfoup cf'allllinear trans-
formations on V of determiﬁanﬁ 1, while GL{V)=¢L{(n,q)
denotes the group of all nonsingular linear transformations
on V. Both groups are transitive on the set of i-spaces
for each 1su-1.

rrﬁﬁ;ggig; Fix a basis ely.‘u,én of V. ‘Set

B = stabilizer of"{(el,ﬁ‘,,ei}§i=ﬁi,...,n-1§,

N= stabilizer of '{<e15;...;<en>3, - |
with both stabilizers taken in lSLfb,Q). Then

REz{F*)H”lxg S,» where S  is the Weyl group.

Maximal parabolic subgroups. Each of those containing

E is just the stabilizer of some éel,...,eix.

Root groups = transvection groups. These are the

;- . L0
conjugates of {{ 1.,
¢

%

} ol weFy, and are isomorphic

= Oy 2

-

+ N - s
to ¥ . Thus, each consists of all transformations




%
vavtaf(v)a for all ¢c¥F and some acV-{0}, £€V -{01.

Notice that each such transformation (called a transvection)

induces the identity on both ker £ and V/{(a).

Lemma. SL(V) 4is genevated by its transvection

groups.

Theorem. SL{n,q)/scalars is simple, except for

5L(2,2) and §L(2,3).
See Artin {1] or Carter [7].

(1.8) BRilinear forms

We will now assume that V is also equipped with a
form ( , Y:VxVaF; for the time being the form will
be agssumed bilinear, amd subjsct to one of’the following

two conditions VYu, v& V!

svmplectic ' orthogonal, g «dd

(v,v) =0, (U,V) = ««(v?u} (u,v) = {(v,u).

If XcV, set X'={vev|(v,x)=0}. We then further

assume that V'=0 (so V is nonsingular}.

Lemma., If W<V then dim V=dim W +dim W' and

@)t =u.




Thus, WNAW'=0 iff V=WaeW'; in this case W is

called nousingular, and we write V=W W',

' ;scmetrz: g GL(V) satisfying (8,8 = (u,v)
T, vev. 'I‘i«:_ set of isometries forms a group, called

and dencted as follows in our. tWo cases.
symplectic group Sp{V§*=Sp{n,q) afthsganal group O(V).

{(1.C) Symplectic geometry

Assume that V 1s symplectic.

Basis. Take any 31#0 in ¥V, and aay fleif ~el~*“.
Then (e13 f}_/ {el,fl)) =1. Replace £, by ,.fli (el,f}_‘)
and deduce that

(eg,ey) =0=(£1,£;) and (e,f;)=1=-(f;,e;).
Set Wl = (a}_,fl‘;, aud compute that Wl ﬂwli =0, Thus,
V"WILW:{’L, and ( , )} induces a nonsingular symplectic

"geometry'’ on W}i. This yields the following.

Theorem. There is a basis (called a symplar:tic basis)

A A A 314 A

el,,..:,e‘.m, fl’“"fm (w’sze‘re m=n/2} such :"i"}ar Vi,
{ei,ej)wﬂé (fi’fj> and f f }”é)[j {‘»jaw)

J :

{?ﬂlgl+zsifl, i\fi i Lft f \”‘_‘(CL b ﬁi’{i}a




Coroilary. 'The dimension »n of ¥V is even, and
there is a unigue symplectic geowetry for each ¢  and
cach aven n.  (Here, "unique” refers to unigqueness up
to an obvious notion of equivalence of spaces and forms.)

2

Example. n=2m=2, (‘J,é;’:}

G

EREL, yep ol =dec (0.

R |

Here, g< GL{Y¥)} is an isometry iff det g=1, su

8p(2,q) = SL(Z,q).

The proof of the theorem also yields several
trangitivity properties:

Corsllary: Sp(V) 1is transitive on (the set of)
symplsctic bases.

Corollary. Sp(V) is transitive on the ordered pairs

of non-perpendicular I-spaces, as well as on the ordered

paivs of district perpendicular 1-spaces.

A subspace W of V 1is called totally isotropic

(v.i.) 1if (W,W)=0.

ggggglafg~ Sp(V) is t#ansiﬁive on the t.i. sub-~
spaces of dimeﬂﬁianv i for each j=1,...,m. The
maximal t©.i. subspaces have dimensiom m {(éi,..*,em}
is an example of ome). |

Such iraﬁsitivity prmpérties are all ébntaihed in

the following basic result.



W

Witt's Theorem. Let W, W' sV, and assume that

h:W-+W' is an invertible linear transformation such
h . N R B : i . . N
that (v&,w )= ({v,w} v, we¥W. Then thers exists some

g€ 8plV) such that giw=?h. {Artia [1].)

Lemma, If W=V then W/WNW' naturally inherits
a nonsingular symplectic geometry. {Compute, using

wAW WY, vHW WY = (w,v) for w, vEW.)

BN~ gair, ﬁa%taailize}r of [(eg,...,e) 3 i=1,...,ml,
V==stabwlizer of ({epd,v.e,iay Yo lEp Yy ee s (BT

This time N2 (g{‘k} e (me bm), wh@re Z‘n denotes an

2

elementary abelian group of that order and 2™ B, is

the Weyl group, of type Cm,

The maximal paraboliL subgraupa rantaining B are

precisely the st&blixgers of the t.1. suﬁspaaeﬁ

{al,;..,et,a

Each long root group is a transvectien group

fvev+alv,a)alce ¥}, one for each l-space (a). (Here
and elsewhere, short root groups will usually be omitted

from our discussion.)

Theorsm. Sp(V) 1is generated by 1lts transvection groups.
Thiz foliows from the B8N structure, but c¢an also
be sasgily obtained directly by starting with

Sp(2,q) =5L{2,q) and applving induction.
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Theorem. Sp{fm,q)/¢-1y is simple for 2m»2, with

the single exception Sp(é,z)asséa {Artin [1].)

Examgle.' Léﬁ W be a 6-dimensional vector space
over F=CF(2), and let V1=°;$Vg be a basis. Note
that 86 acts as a subgraﬁp.cf GL{W) permuting
{Vl,,,.gv6}a Define ( , }:WxW~F by (vi,v } = l'Fb.j
This yields a nonsingular symplectic geometry (computel}, .
Clearly, W1==(2vi> is S6~invar;ant, 80 86 “actg on
the space Vﬂa%ll/w which is itself nnnsinngar by a
previocus lemma. The ﬁranbpasitian {1, Z)r-S& induges a
transvectiéﬁ‘ v~@vw%(v,v1-%v2){v1~hy2) on W, and hence
also on V. This &ields all (g)*=2&?-1 transvéctiéns ih
Sp(v)" Thﬁ@,vvsﬁmﬁSp(@ 2y, | |

An altarnative approach to part cf thxs identiflcafxpn

of Sp{4 ?) is provided by the following

Theorem. !Sp(stQ)P* 'W(q ~1).

Proof. There are q°® -1

(qu ?m 1}/(q -1) = q m-1 choices for £, with (el’fljﬁll

choices for €4, and then

Now inéuc&ion shsws thﬂt the number of symplectic bases

equals the stated product.




{1.2) Unitary geometry

Since unitary geometry resembles symplectic geometry,
we will discuss it b,gfore returning to the orthqgonal
case. Here, F will denote GF(q‘z ), and hence -a.dmiﬁs'i:he
the involutory antomorphism Tci*uqa n€ F. This time, the
(hermitian) form( , ) Vx( Vs F will satisfy the following
{(vu, v,w GV, ‘m?:-”F)k: o |

{(u+v,w) = {u,w)+ (v,w)

Cou,v) =alu,v) and (u,av)=>alu,v)

(u,v) = (v,u)

vt -'?G (nons inguiérity);

Note that (v,v)= (Vi;v)}. so (v,v)¢ Gf'(q).
- Once again, if W<V then dim V=dim W%dim W' and
(W) =W, and W is called nonsingular if WnW! =0

But this time, many Ll-spaces are not el
Theorem. There is an orthonormal basis.

mgg. 1) mv: (y,v) %Cs if n>1l. For, }“Qt,
{(v,v) =0= (w,w) with wév'., Then we may assume that
(v,w) =1, 8o that {(v+qw, v+ aw) = (v,v) + a(w,v) +5(v,w)
+ (W,E&?} =q+n#0 for some acF.
2y V=(vy,v* and { , ) induces a unitary geometry

on vi. Also, (v,v) €GF(q), so (v,v)=a (Dy/eq




for some a¢F, and then (av,ov)=1. Induction now

completes the proof,

Cdrollégz. Each vector space over 'GF(qz) has a
"anique unitary geometfy‘ If vi,.:.qu‘ is an orthonormal

basis SV, TR.V.) =Y, B. .
S v then {“Gi i T8y 1> rag By

Theorem. There is another basis of one of the
following types:

| n=7m: &1,.Q.,em,'fi,o,«,fm,

n=2m+1: d’el"“’em’ fl"’*’%ﬂ’ | {

wm ()= (F 1 = = {F

where (Qi’ej) 0 (ti’fj)’ (ei’fj) éLJ -~(*j’ei)’

(d,8) =1, (d,e;) =0=(d,E).

Préanw We may assume that n=2m. There is a vector
ey #0 with (ei,el} =0 (such as r:ivi tvy, where
o9t =1y, and some £, fe;t with (e;,£)=1. Now
1771 171
proceed as in the symplectic cagse. =
This time the group of isomstries (the unitary'group}

is denoted by GU{(n,q), while SU{n,q)= CU{n,q)rWSL(n,qz).

Example. If gi§i==1 for i=1,...,n, then with
respect to an orthonormal basis _{vi} the diagonal
matrix diag(og,...,a,) 1is in  GU(m,q); its determinant
is Motgs and hence 18 an element of F of order q+1.

More generally, GU(n,q} can be identified with the group




of all nxn (unitary) matrices (g,ij} satisfying
(ay ) (Fyg) =1, Thus, (det o1 for all gecu(n,q).
If S consists of all scalar transformations v av with

o1 =1, then GU(n,q)= SU(n,q)-8i

lemma. SU{n,q) 1is tramsitive on nonsingular (resp.
t.i.) j-spaces for each j<n/2. A maximal ¢t.1. subspace

has dimension [n/Z]_.

BN structure. Let n=2m or 2m+1 as above and set

B=gstabilizer of [(ey,...,e;5|i=1,...,m},
N= gtabilizer of Helh"’“".(‘-em)’_,,(fly"""{-me?
with both stabilizers taken in SU(n,q) or in GU(n,q).

Maximal parabolic subgroups behave as in the symplectic

case, the Weyl group is as before, but the root system is
of type B or "BC“‘" (the union of a system of type
B, with ome of type Crix)" ’

 Long root groups again consist of transvections, and

can be described as follows. Fix a¢F with o= -0 #0. Set

(1, v) " =0(u,v), s0 (v,u)' =olv,u)=-53(4,v)=-(G,v)'. Then
{vav+a(v,a)alae CF(gq)1 is a long root group for each

t.i. 1l-space (a). These transvactions generate SU(n,q).

Theorem. SU(2m,q) = Sv{2m,q).
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Proof. Write £,'=-f;/0. Then o
(Toge; +E8, £, ", Byse; 56,8, ) =0(a,5; - By “fi)»

which implies the result. ,
Note that the loﬁg root groups of Sp{(2m,q) are also long

root groupv fsr SU(Zm,q) A‘lsi‘), sU(2,q) = 8p(2,9) = SL(2,q)

| (compute ' Lo o o
This time, SU(n,vq)/scalars is Sim;_zle for n>2,

~with the exception of  suU(3,2)  (Huppert [14] or

Dieudonné [131). Also,  {su(n,q)| is computed as-befare.

(1.E) Orthogonal geometry

The orthogonal case is ‘some‘wha_t harder, Since we
want to include characteristic 2, we will need both a
bilinear form and a quadratic form.

Let V be equipped with a nt}nsingulary symmetric |
bilinear form ( , }. Thus, V vHis an orthogonal geometry

~in odd characteristic. A quadratic fvrﬁx‘:assoéiatéd' with
{5, ) is a function Q:V+F satisfying (Vu, veVv,

Vo€ F):

Qav) = aQ(V) and Q(qu) Q(u)"%Q(V)‘f{u v},

Rerﬂa:r:lg_g° 4Q(v) = Q(2v) = Q(v) + Qv) + (v,v), 50
(vw) =2Q(v}. Thus, for q odd, ¢ , ) and Q deter-

mine one ancther. For g even, this is false; however,
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(v,w) =0, so { , J defines an underlving svmplectic

geometry. In either case, V, equipped with Q,. will be

called an orthogonal geometry.

Note also that dim V is evew if q is even. A
modification of this defiﬁitipn igs needed when dim V
is odd but g 1is even; Ithis_will be discussed later in
(L.¥).

Anpgggggggz is a linear transformation ge GL{(V) such
that Q(v®) =Q(v) (and hence (uB,v8) = (u,v)) for all
u,veV. The group of isometries is dencted by O(V),
while.'SG(V)==0(V){\SL(V); There ié‘aléc a normal sub-
group (V) of index 2 in 50(V) wﬁich has yet to be
constructed (and only will be in characteristic 2y
here, {V)=0(V)' with only one exzception.

- A gingular vector is a vector. v# 0 satisfying

Q(v) =0. Any other nonzero vector is called nonsingular.

A totally singular (t.s.) subspace is a subspace W

satisfying QW) =0, and hence also (W,W)=0. Thus,
if q is even then t.s. 4mplies t.i., but the con- I

verse is false.

As before, a subspace W 1is called nousingular if

Wawt=0, (Note that Q is irrelevant here.) Warning:
If g 1is even and v 1is a nonsingular vector, then

{v} 1is not a nonsingular subspace.
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Lemma. If WsV then WH/W nW* acquires an ortho-

gonal geometry via thé definition Q(v+W) =Q(v).

Foliowing the pattern of (1.C) and (1.8), w=a
have to discuss the following topics for V and O(V):
bases, uniguéness of gecmetry‘ types, transitivity properties,

genefatioﬁ, simplicity, and BN structure.

Bases. If q is odd, then V has an orthogonal
basis (whose existence is proved as in (l,b))}. However,
we will aim at a different type of basis, which exists
in each ahazéacterist;c and is related to the BN struci:ure.
The orthogonal geometry V 1is called anisotropic

if Qv}+#0 feor all 1‘7%9«.‘

Lemma. If vV is anigotropic, then dim V<2, If,
moreover, dim V=2, them V is of a unique type, and

has a basis d,d' satisfying Q(d')=1={d,d").

Proof. Assume that nz22, take any eaaéi) “and_ ‘gny
df e, and consider W= (d,e}, Set Q(e)=e, and adjust
d 8o that (d,e)=:, 8Set Q{(d)=gec for some o. Then
Qoe+4d) *7{11,2‘5:3_”5' GetOe= e(az +0+4+0)#0 for all a<¥, so
x% »x-!-a‘ | is an irreducible polynomial. Let. 8 be a root
of this polynomial in ,G'F(qz)s énd let bar dencte the

involutory automorphism of F(8) w;GE_‘(qz)_s ~ Then
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Q(oe+ bd) = c(a+£8) (a+ p8). This proves first that
QW) =F, so we may take e¢=1; and then that W has a
unique type. _ |
Finally, if n=3 and vé(d,e)* -{0}, then
Q¢w) = -Q(v) for some wEW. But then Q(v+w)=0,

contradicting the fact that V is anisotropic.

Theorem. There is a basis of one of the following

types: |
(1) n=2m:eg, 0,8y £y,...,f with Qe;)=Q(f;) =0
and (ei,fj)a‘éij;

(i1) n=2m+2: 4d,d', @pseers€ £ppee f, with e;
and £, as above, (d;ei) =(d,f;) = (d*',e.i} = (d'’ ,fi) =0,
Qd'y=1=(d,d'), Q(d)#0, and (d,d'y anisotropic; or

(iii) n=Zm+1: d,,el,,.._,em,,_ fl""’fm.’ behaving as
Cin (11). |

Progf. By the preceeding lemma, we may assume that
theré' is a singular vector "ell". As usual, there exists
£ with (el,f) =1, Then Q(c;;_el-k £)=Q(f)+o, 80 (el,f}
has & unique t.s. 1l-space 0th‘eaer that {ey). We may then
assume that Q(f)=0. Now seﬁ fi-‘*f, obgerve that

Ve={e;f) (el,fl}", and apply induction.

Corollary. Q has ocne of the fclléwing shapes:
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(i1) Q(yd+y'd' +%oze, +38,F,) =Top, + ve

a+vy' +v5; or

s e - - . 2
(iii) Q(Yd+}‘aiei+zﬁifi)23"3131"*"1‘ 5

Corsllary. For each even n there are at most two
types of orthogomal geometries. For each odd n and

odd gq there is essentially _:}us!: one such type.

Proof., Defining G by (i), (ii) or (iii) pfoduces
a quadratic form, and V'=0 by a simple computation.
Uﬁiqueness For (ii} is clear from the lemma., IF .
n=2m+1, xeplacing Q(v) by Q(v)/o for all wveV
does not change anything except in a trivial manner,

and hence the geometry is essentially unique.

Definitions. In (i), (ii) and (iii), v is said

to have type 0+(2m,q), 0" (2m+2,q) and O0(Cm+1,q),
regpectively. The correspending groups are denoted as

follows (where the last column remaias to be defined):

o() 50(V) o{v)
0¥ (2m,q) s0"(2m,q) o (2m,q)
0" (2m+2,q) SO™(2m+ 2,9) T (m+2,q)

0Cm+1,q) SO(2m+1,q)  a(2m+1,q).
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Remark. The geometries of types §¥{2m,q} and
0" (2m,;q) are, in fact; distinct. This feollows, for
example, from the fact that they have different numbers

of t.s8, l-spaces (see below).

Corollary. O(V) is transitive on t.s. i-spaces
for each i<%¥ dimV {or i<k dim V-1 in the case )
of G'{Em,q)); Also, 0(?) is trénéiti?e on the set
of crdaéédhééirs of distinct éerpéndicular”(resp. non-
perpéhdicﬁlar)x”t.s,’ 1~é§aces. R -

The number of t.s. subspaces of each dimension is
easily counted (as is also true in symplectic and unitary
gaométtiés); The method is elementary; two eﬁam?les

will be given for future use.

Example. The number of t.s. 1l-spaces is
(q®-13 (¢® " 1+1)/ (q-1) For a geometry of type 0 (2m,q).
(This number is (qm+1}(qm"1—1)!(le) for an 0 (2m,g)-

space.)

- Proof. Let Py denote the number of vectors v such
that Q(v)=0; this is also the number of sclutions to
.ZéiEimG” Clearly, ¢g=1. Let m=xl. If a; #0 then

m 2m-2

8 =-oil ¥ o 8., and this praﬁidés‘ {q - L)q ‘solutions.
I O A S -

If a1==ﬂ then 51 is arbitrary, and Wé obtain q@ﬁ_l




solutions. Thus, LI ] + (g - 1)q2m"2’. Since

T 1Y/(q ~1) is the number of t.s. l-spaces, our

assertion is proved. (The case 0 (2m,q) is very similar.)

Example. For an 0+{2m,q) geometry, there are exactly

m~1
2 H (q +1} t.s. m-spaces.
i=1 _

Proof. W’e wiil count: the paqu ((v; SM) with
OfveM and M a t.s. m-space. 1f 8y denates the
number of su::h aubspacas M, then there are 6§ (q -1}/ (q-1)
such pairs‘._ But each (Y ﬁetermines an O {Zm- ,q)
space v“’v/(vﬁ, .whnse t. 8. m- 1 - spaces, correu:pond to

those t.s. m- spaces c,ontaining (v} ‘ By z:he arecedinb

example, the number of pairs is alsc 8, 1({1 -1} (qm 1~§vl)/{q 1).

Since 84 =gq=2, the result follows.

Generatipg,’ If Q{a)+# 0, define ré by

v (v,a)
Ty Vo o
TatV ‘(ﬁ@%a

Then r_ induces the identity on a' and sends a to
-a. 1f a 1is even, r, is a transvection. If q is

odd, then i:g- is a reflection.

Theorem. O(V) = {1, iQ(a) #0, v"é‘xce;::t fbr 0+(4,2) = SBZST
This is proved by mduf,tlan, see A.:tin ‘{ 1] Hiar '

Dieu dorme i U}




alV).

Theorem. O{V) has z normal subgroup (V) having
index 2 in S80(V).

Again see Artin [1] (for gq odd) or Dieudonné {13}.
They use the preceding generation result, together with

Ciifford algebras.

Proof for q even.

Case ﬁ+(2m,g}. Lat o denote the set of all ¢t.s.

m-spaces, 5o hﬂ:zzmgl(qi4~1). Let Q{a)#0, and
consider the action cé rer, on J. If M* =M for
M€, then the definition of r, implies that either
a€¥M or M=za'., Since Q(a)#0=0(M), the first
possibility cannot occur; if Msa* then aeM'=M
since M s<M' and dim M¢==dim V ~dim M=m. Thus, ¢
has lw#1/2 transpositions on »#, and hence induces an
odd permutation there.

Now simply define ﬁ+(2m,q} to be the set of elements

of O+(2msq) inducing even permutations on J.

o~

Case 0 {2m,q). Set Vk=V€§G?(q>$F(q2), and define

Qivel)=G{v). . Then @ extends to a quadratic form on
¥, and turns V into an 0+(2m,q2) space. (Think in
terms of the basis and the irrveducible polypomial used

, B3 €GF(a’).)

4
b

to define 0 (2m,q), but let y,v', o
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Then O(W)=0{(V)ols G(V). Define Qf{V) by
a(V)y21={0@)el)n Q(‘\}). If Q{a)#0 then

r %ra®1¢n(§h and hence raénWO. Thus,

a®l ,
fowy : o = 2.

Simplicity. See the table in (I.G). There,

Po(V) = {V)/scalars, PSp(V}=¥Sp(V)/sca1ars, and
PSU (V) = SU{V)/scalars.

BN-pair. Let B150005€ fl,.o.,gn ‘be as before;
d and d' are irrelevant for now. As in (1.C) and
(1.D), define the following subgroups of 0(V):

B=stabilizer of {(el,...,ei§§i=;l,,..,m),

N = stabilizer of {{el}g,..,<em}, {fl>,.,.g{fm}}g
This provides a BR-pair for O0(V), with Weyl group of
type B . The maximal parabolic subgroups are simply
the stabilizers of t.s. subspaces.

Similarly, @ (Zm,q) and {Zm+1,q) have BN-pairs

of type B .

- Case ,Qf(ﬁm,q). Here <e1="°’em«1> is in exactly

Y,WO tu&e m"Sp&CﬁS: (&1,..a9& and (elgsa,e ,emhlj f );

w m
and these are in different d+{2m,q)¢orbitsa Thus, the
stabilizer of (el,..,pemwl) is no longer a maximal
parabolic subgroup. When B and N are defined as above,

the Weyl group has type D, of index 2 in B -
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"Long" root groups. Assume that t.s. 2-spaces

L={a,by exist. Then long root groups T(L) are defined
as {g€0(V)! g induces the identity on L'}. A

computation shows that T(L) consists of the transformations
vev-a{v,a)b+alv,bla with «€F,

A long root element is defined to be an element of some

such  T(L).

Theorem. If t.s. lines exist then Q(V) = (T{L)|
L is a t.s. Llinej. | o
"Short'" woot groups are defined only when the Weyl

groué is B, C_ or BC&} However, as groups of linear

m
transformations these also exist £or D Namely, let
© dim (a,by =2 with 0{a)=0, Q(b)=1 and (a,b)=0.

Then the desired subgroup of O(V) consists of all
vasv+talv,b-aj{a+b) -alv,b)b with «cK.

Moreover, G(V) is always generated by all lomg and short

oot proups.

(1.¥} Further remarks concerning orthogonal groups

(i} Each T, is in  OV) -{V}. The group Q+(2m,q)

has 2 orbits on the set of t.s. m-spaces of V. Using
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 the transformations »_, it is not hard to show that
two t.s. m-spaces E and F are in the same orbit iff
dim E/ENF 1is even.

{ii) Ve have seen that Sp(2Zm,q) 1is a subgroup of
su (2m,q), generated by suitablealong root groups of the

latter.

Theorem. SU(2m,q) ¢ (4m,q) and  SU(2m+1,q) <
0 (dm+2,9), with unitary transvection groups beiﬁg‘

long root groups of the orthogonal groups.

Progf. Start with a unitary space 'V over GF(q/),
regard V as a GF(g)-space, and define Q(v)= (v,v}.
This yields a quadratic form (ove: GF(q)), and turns
V into an orthogonal space. Thus, Sﬁ(n,q)s;ﬁi(zn,q}a
A l-dimensional t.i. wunitary space over GF(QZ) becomes
becomes a animensianal t.8. subgpaea; this iﬁpliesv
the last part of the result.

(111) What about q{Zm+ 1,q) when q=w21?
Let V be a 2m+ 2-dimensional orthogomal GF(q)-space.

Take any uonsingular vector w, and set W= (w).

Definition. 0(2m+1,9)=0(2m+1,q) 1is the stabilizer
of W in (V).

Theorem. a{(2m+1,q)=Sp(2m,q).
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Proocf. Since W, ,Wi=0, the space V=W'/W inherits
a symplectic geometry from that of V. Each g€ o(Zm+1,q9)
induces a symplectic¢ transformation g on V. We will

show that g-g is the desired ispmorphism.

1-1. If =1 then g ipduces the identity on W'/W
and preserves Q. It follows that gééirw>, and hence

that g=1 since rwe;f a{V).

Onto. Each T((w,a))' with siﬂgulér' atw' (defined
at the end of (1.E)) induces a transvection on vwi?
and hence also on V. All transvéction groups of Sp (V)

arise in this manner, and generate‘ Sp(V).

Note: ((Zm+1,q) naturally has a BN-pair of type
B Its long and short root groups correspond, respectively,
to the short and long root groups of  Sp(Zm,q). Moreover,
the underlying space W' (equipped with G}  is vreadily
- seen to be essentizlly independent of the choice of the

original space V.
(1.6) Summary

Some properties of symplectic,_unitary_and orthogonal
groups are summarized in the accompanying table and the

first 6 items on the following list. Many of these
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properties have been discussed, and many will reappear
later in these notes. The reader may wish te regard these
as a formidable exercise, with Artin [1], Dieudomné [13]
and Carter [7] available if rescue is needed from the

hardest parts of them.

Notation. G is the relevant group. ‘A point is
a t.i. or t.s. l-space, and a 1line isa ¢t.i. or
t.s. 2~3pace.‘ (In the orthogonal case, only t.s.
subséaées are cansidéfad néw.) ‘ ‘

(1) 1if points exist but not lines, then G vis
2-transitive on thé set of pcings (with‘hhe éxception of
o 2,9)).

~If lines exist and geometries of type ‘Qf(&,q}kare
"~ excluded, then G ig transitive on thé set of lines
and has rank" 3 on the set of points. If x is a point
then the 3 point-orbits of G, are {x}, the set of
points in x* other than x, and the set of points not in
x*; their lengths are given in the last column of the table.

Twe points are perpendicular i1ff theyare collinear‘

(2 G/Z(G) 1is usually simple (see the‘taﬁle).
(3 € has a BN-pailr, with corresponding root system
in the table. The groups B and N are obtained as

follows. There are linearly'independeﬁt vectors
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el""’fl’“"’ with' {ei) and {fi) points and
(ei,fj)==ﬁij, such that;,(el,,..,fl,.,.>L contains no
points. Then B is the stabilizer of {{el},(el,e2>,..a]
and N is the stabilizer of {{hl},,..,(f1>,...},,_Thg
stabilizer of & t.i. or t.s. subspace is a maximal
parabolic subgroup of G, except in the case of t.s.
m-1-gpaces when G = Q%(Zm,q}.”

(4) G 1is transitive on the t¢.i. or t.s. subspaces

of each dimension, except that ot

(2m,q) has 2 orbits on
the set of t.s. m-spaces, which are interchanged by

+

0 (2m,q).

(5) Svmplectic and unitary cases. Each point

x={a) vyields a long root group T(x), which consists

of the ¢ transvections

v v+al{v,a)a, o€ GF{(q) {symplectic case)

v+v+alv,a)a, a= -aé€ (;F(qz) (unitary case).

Clearly, T(x}sﬂGF(q5+e Also, G permutes the set of
T(x)'s as it does the set of x's, as a 2-transitive
or rank 3 group (cf. (1)).

If x and vy are distinct perpendicular points,
then (Tx),T(v)y=TE)xT(y); if x and vy are

non-perpendicular points, then (T{(x),T(y)) = SL(2,q).
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(6) Orthogonal cases, when lines exist: each line
L=7{a,b) yields a long root group
TL) = {va+v-olv,a)b+ ulv,blala € GF(q)} EGF(q)*,
which centralizes LY.
Let I and L' be distinct lines. If L'<«L', then
(TLY, T(L'")Y =TI X T(L'); 2f dim L' NLt=1, then

3‘.and is isomorphic to a

{T(L), T(L')Y has order q
" Sylow subgroup of SL(3,q); and if L'NL*=0 then
LT{L), T(L")) =8SL(2,q). (This is proved by a straight-
forward calculation,)

(7) "B-S propertvy'. If a point x is not on a line

L, then x 1is collinear with either exactly one point

of 1 or with all points of L. (For, dimx'nL=1 or 2.)
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" Other “natural" isomorphisms between classical ‘groups:
'9(3,q)ePSL(2,q) , Pa”(6,q) =PSU(4,q)
P (é,q)=-PSL(2,Q)xPSL(2,q) Pat(6,q) ¥ PSL(4,q) -
PQTE4,9) = PSL(2,07) © a(2eH,2Y) esp(am,2t)
n(S,q)sPSp(4,q) I -

.:.... . e g st

s Union of B and«c im,
e.8., Bourbaki 5 appendix [5}
These are not root groups from

' the BN viewpoint; they merely . A
i exist as linear transformations .-

B rransvectims
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Part 2  Recent results

(Z.A) VThe’BuekenhQut~Shu1t Theorem.

Consider a gedmetry consisting of a finite set of
points, tdgether with a family of'distinguiéﬁeﬁ subsets
called lines. Assume that the following axioms hold:

(1) The set of lines is nonempty; each line has
at least 3 peints;

(é} Yo point is collinear with all remaining points;

(S} If x if a point not on the line L, thén X

is collinear with either one or with all points of L.

Buekenhout-Shult Theorem. If (1) - (3) hold, then

either

(1) The geometry is isomorphic to the geometry
consisting of all t.i. or t.s. points and lines of a
symplectic, unitary or orthogonal space; . or

(I1) 1if x and L are as in (3) then x ig
colllnear with exactly one paint of L (iu which case
the geometry is precisely the same as what is called a

generalized quadrangle)

For the proof, see Buekenhout-Shult [6}, Shult {29}
and Tits [30], -
Note that axiom (3) is the basic ome. That it holds
~in  (I) was already noted in (1.G(7)). | |
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Applications.

"~ 1. Characterizing generalized hexagons (Yanushka
{331, Ronan [26]).

2. Characterizing classical groups via rank 3
subdegrees {cf. ( B)}

3., Aschbacher {2] used this theorem in his
Lharacterlzation of (more or 1ess) simple groups G
havzng an 1nv01ution { such thar Ce (t) coatains
SL(Z,q) as a subnormél subgrcup for some odd q ”

4. Characterizing E6' and E, geometries
(Cooperste*n [81). o B

5. Further characterizations of classical gaometries’

Let G be a transitive group of permutatlons of the
finite set X. If =x¢X and Gx has exactly r orbits
on X, then G is sald to have rank r on X;  -the

lengths of these orbits are the subdegrees of 6.

Theorem. Assume Lhat the subdegreﬁb of a rank 3
group are as in the 1ast column of rhe table fn (1 G)
for some prlme power q. Then thare is a natural way to
introduce 11nes so that the Buekenhout- Shult Theorem

applies. (In particular, if m is not too small then
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X can be identified with the set of points of a classical
geometry, and ¢ is a group of automorphisms of the

geometry.)

Remarks. 1. 1In each case where X corresponds to
a classicai geometry, thé augomérphism group of the
geometry is-knewn to be generated by‘all isémetrieé, all
field aﬁtomorphisms, and”suitaSIe additidnalldiagonal
matrices. | | :

2. The theorem Says‘hothing éboutv-Gﬂ'itéelf (cf.
@.c)n. | | - |
3. WThefe afe general nﬁméfieaigconditions which
guarantee that the Buekenhout-Shult Théoremiapplies to
a giveh rank 3 situation ‘(cf, [16}1). Héwever, only

one séeéial case will be proved here:

Theorem. Suppose G has rank 3 on X, with
subdegrees 1, q(qnfzul)/(q~1), qn'l - for some prime ¢
and some integer n=25. Themn n 1is even, and X can
be ideﬁtified with the sét of all éoints‘of an 'Sp(n,q)
or an>'0(n4'1,q) geometry, in such & way that G -

acts on the geometry as a group of automorphisms.
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Proof. Step 1. Graph.

k=q(qn“z-1)/(q-l) ' ; &:qn-l

There is an orbit (x,7)%cXxX of length |[X|k. call
X]_.i‘ yp 1ff (xy,y7) ¢ x,7)%. call x * 2z if x#z and
x~z is false. -

Note that Gy is transitive on the set of points
y ~ x, as well as on the set of points y f‘x Thus,

since k#¢, the relation ~ is symmetric.

Step 2. Parameters.

If x~y, let A denote the number of points
Z *’X,y. ‘
If x~y, let u denote the number of points

Z~X,Y.
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The number of iandicated pairs (y,z) is
k(k- A ~1)=4y. Thus,
n-2 ~ .
q 1 k-r-1)=q"L, or
q-1
n-zwl L n_‘z
9—-;—- (k~2-1)=q “u, so
q— «

qn~2 lker-1<ke an"‘z, and hence

k-x-1 .=qn"2 and = (qn‘zel)/(q-'l)«

 Step 3. Lines. | ('i‘his ‘step is independent of the
particular k,s,%,u.) |
call x* #;{y\'y"ix or "y**”x'},
Clearly yex' iff x€yl. Let x~y, and note
that |x'ny'|=2+% (the number 2 counting the set

{x,y}). Now define the line xy by

xy=nwtix,yewtl=n{w*lwext ny'l.
Claim: If x'#y' and x',y' €xy, then xy=x'y'.

Proof. wex'ny'=s x',y' €xycw'+ wex'tny't,
Use w=x' to see that x'ecy't. Then I|x'‘ny*l=|x"*ny'*{.
But x'ny'cx'tny't. Thus, x*ny'=x'"tny'', and hence

xy=x'y'’.

Claim: All iines Ry have the same size h+1l, say.

(Use transitivity.)
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Cl&m The number of lines on x is ‘k/b. (For,

these lines, wn;h X removed partition x*-{x}.)

Step 4. g-Groups. Let % ~y. Let PéSqu ny
and P{Q@Sﬂpv ”

Smce X! = q(q™” 2—1);’((;-1), we have }Q Pl=gq.

Since Gy is t:ransm.tive on the qn 1

o x, so is its Syiow subgruup Q

‘points not Joined

- Claim: P is transitive on the set of k-a-1.

rolnts =z such that z~y and z#x,

" proof. Note that

R T L B 1 S NPy
iPzi %Pzt IQ ‘

© Step 5. Main Step. h=2q. = (Thus; iines are “big'. *

In fact, it is unusual for rank 3 groups to have lines -

of size greater than 2.)

“Proof. Assume that h<ag.

Then P acts on the set x%ny!~xy, whose cardinality
satisfies the condition (A +2) - (h+ 1) =1+1L-h#0 (mod q).
Thus, P fiwes some. y'extp y‘j’ SRy,

If yiny'teoxtnyt then yrny't=x'nyt (as both
set have size A+2), and then ¥’ cyy' =xy.
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‘Thus, there exists a point z in ytoay't but not
in ?L ‘C}early, _P acts on f;he set af all suéh pomts
z. By Step 4, {z =k - 1 - 1. This yields the contra~
diction S co

qnw:‘z% iz‘?‘ slytny'ti=a+2.

. Step 6. B-8 axioms. f{'i'le first two ax_ibms in (2.4)

are obvious. Ccnsider the thlrd axmm if zéL, we
must show that z' contains one or all peints of L.

We may assume that x€L and z¢ x'. We must then
prove that |z'nL|=1 |

Firstly, {z'niLl<l. For, if ¥12Y9 ¢ z' nL with
YI#YZ’ then xGLsyiyzcz s which'is not t’zé case.
' Next, there are u=(q" »1)/(q 1) =k/q=k/h points
of x*! which lie on lines thrmugh z. {Use the definition
of {1; together with . Steps 2 and 5.) But each of: the
k/h. - lines on  x has at most one such point (cf. Step 3).

Thus, each such line meets 2%, as required. .

Step 7. Completion. Since A+2>h+1l, the set

xt iyt - %y is nonempty, and hence case (IL)} of the
Buekenhout~Shult Theorem cannot occur. - Comparison of
the given k and 1 with the table in (L.G) now

completes the proof of the theorem. .
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' Further remarks. 4. Only a little move care is

needed to handle the case where q is a prime power.

5. Clearly; the preulse paraméters k and 4
were nst needed. What was needed was a large enough
prlme power lelsor of &, sultably related to k
'-(cf 1161). . e e .- o

J‘6: The theorem is also true for ‘n=4 when q

is prime but the prime pOWer case remains open.

7. The above method of proof ariginated in the
study of symmatric des1gns. It has very recently also
been used’ by Cameron in the sf&dy"oftdistaﬁée—transitive

graphs.

{2.C) Perin's Mathod.
The results in (2.B) still leave open the question

of determining G..

Theorem. Let G be an automorphism group of a
symplectic, unitary or orthogonal gsometry V. Assume
that t.i. or t.s, 1lines exist, and that G acts as
a rank 3 .permutation group.on the set of all points. .
Then G contains the corresponding group PSp(V), PSU(V)
or BQ(V), . except for the case  G=A, <S5, =5p(4,2)=q(5,2).
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- The symplectic and unltary cases of thls theorem are
due to Perin [23}, except for the case Sp(Zm 2), ,the‘
orthogonal case was handled by Kantor & Liebler {19],
except for the case ?(2m4~1 2), using Perin s method;
and the excluded cases were settled very recently by
Cameron & Kantor using a dlfferent approach. More . generally,
Cameronv& Kantor detefmined a11:automorphismtgroups which
are traﬁsitivé cn_tﬁe érdergd‘pairs of_ngnjgerpegdicqlgr
bonts. o ‘ R ‘A_ o8 | e

We wxli only prove a spe§1a1 case of the theorem, o
voncentrating primarily on Perln 8 meﬁhod for preving such
results. Further variations will then be discussed.

We begin with a basic number~theoretic result.

Theorem {(Zsigmondy, 1892; see Diékéon fié]j;vvlf‘
q and nu are integers greater than ‘1, ‘then there is
a prime p dividing qn-l but not dividing qi~1' for
l<i<n, c¢ucept when either n=2 v‘,and‘ q+1l= 2i‘,v or

n=6 and q=2.

Lemma. Let ¢, v = 7 p be as above (and not an
exceptional case). Supr.c. that A <GL(k,q)=GL(V) with -
Al =p. Then R

(i) Each nontrivial irreducible constitutent of A

on V has dimension divisible by n; and




35

(ii) ‘1f k=n then
Nop (a, q)(m— GF(q™)” \aGal(GF(q )/GF(q))

Proof. (i) '-.‘_I_f k=Qn+R with 0sR<n, ‘then
CL(k,q) and GL(k -R,q) have the; same . p-Sylow §fders.
Thus, A must centralize an "R-space and act on a |
complementary . Qn-space. - (N.B., - In fact, each nontrivial
irreducj.ble ccnstit;}uenft: has. dimensipn ‘n, as ,is. seen by

an examination of eigenvalues.)

(ii) By Schur's Lemma, CGL(V) {(A) =GF(qn)*, 50 we’
may identify V with GF(q"). _

Let geN L}(V) {ay, where we may assume that 18=1
(by modifyi.ng g using an element of CGL(V)(A)) Write
_A= (). Then ev:ery elemem: of (‘F(q ) has the form
£(a) with £(x) EGF(q)[x} Since 18=1, f(a)ngcag)
and 8 is in the mdlcated Ga.lois group. '

Theorem. Let -G =<Sp(2m,q), where m23 and q>3.
If G has rank 3 on the set of points, then €=Sp(2m,q).

Proof. ‘Step 1. Since kﬁq(qzmwz-l}/(qj}.), : there
2m~2

is a p dividing q -1 as in Zsigmondy's Theorem.

Fix A<G with |Al=p

Step 2. A 1is completely reducﬂ:le. By the lemma,
since 2m-2>2 we nust have dim CV(_A) =2. Set T= CV(A).
Now complete reducibility implies that T' is nonsingular

and an irreducible A-space.
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: ent
By the lemma (part (ii)), the grcup'.KG(A)‘ - induced
on T+ is metacyélic. ‘But also, Né{A)T::Sp{T)==SL(2,q)°

Step 3. NG(T)T¥=Sp(2;Q);"Fcr /NG(T)‘ acts
2~-transitively on the set of points of T. {(Any two such
points are not perpendiecular, and span T. An element
of G exists mapping ‘such a pair to any given pair of
this type, and must send T to itself.) Then ‘Né(T)T
contains one Sylow group of order g, and hence ‘all of
them. - .' - : : ;

Also, NG(T)==CG(T)(NGQA)f}§G(T)).by the Frattini
arg‘ament.u CThus, Ng@)T=m (DT 1s sL@,q).

| Steg f Cangletxon.‘ The seccnd commutatcr group
EG(A)" 1nduces the ldentity on T+ and sL(Z,q) on T.
V‘Siﬁﬁce VmTi T N (A)" corzta:ms a transvectmn group
of order gq. From the traﬂs;tivity cf ¢ it fallows

that G contains all transvection groups. Thus,

o 6=5p(2m,q) .

- Remark. The case g=3 requires just a little more
care, &ince ‘NG(A)", merely contains an involution

centralizing T' and inducing -1 on T. .

Defianition. The procedure in the -above proof will be

called Perin's Method.
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We will outline several other uses for this method.

Example 1. If G=SU(n,q), n>6, and if G is
transitive on both the set of all points and the set of

"all lines, then G=SU(n,q).

. Procf. The number of Ilihes is .
(q™~e) (@™ M) (4% 2-0) (@ P+e) Mg-1) (q-1), where o= (-1)™.

-

Use a prime plqg “+e, as in Zsigmenﬁy's Theorem. {(More
precisely, if n is even, use p\qzn's;i,) Then  Cy(A)
is'a'nnﬁsiﬁg“ular 3-gzpace, and NG(T)T is transitive

enbpsint.s. Exéept for some difficultieé with small ifalues

of q, Perin's Method yieids the result.

Example 2. Subgroups of orthogonal groups having

rank 3 on the set of points are handled similarly.

Example 3. If G is inside Sp(V), SU(V) or (V)
with dim V29, and if G is transitive on points,
" lines and planes (t.i. or t.s. '3-gpaces), then G
s “Sp{‘;?),‘SU(V) or Q(V),. respectively. This aﬁd

many similar results are found in Kantor & Liebler [19].

Example 4 (Perin [23]). Let G <GL{nyq} with
g>2 and n>»4. If ¢ is transitive on the ordered
triples of independent points (i.e., 1l-spaces), then

G = SL(n,q).




n-2 n

This time, use plq° “-1, where q “2.1 divides
the number of such triples. Then V==CV(A)<§[V,A] by
complete reducibilvity (where [V,A}=(v®- vivev, acA)).
Here, dim Cv(A)XQZ and NGCA)" Fontains a transvection
group (unless q=3, where a further argument is needed).
It follows readily that G contains all transvection

- groups, and hence contains SL{n,q).

gggggg.‘ Stronger resu1ts are now known. Sup?ose that
G}sGL(n,q) aﬁd that' G is transitive on irspaces‘for
some i with l<isn-1. The cases i=1 or n-1
remain open; Suppose ;hat 2<isn-~2. .Then it can be
shown that G 1is Zntransitivé on poiﬁts, unless
G25231>425, ‘inside GL{(5,2).

These 2-transitive groups have been studied by
Wagner, Higman, Kornya, Orchel, and Cameron & Kantor.
They were recently all determined. More generally, in
unpubliished work Cameron & Kantor detérmined all subgroups
of GL(n,q) which are transitive on the pairs conéistimg
of an n-;1~space and a point hot in it; although the
basic ideas are quite different from thosé presented here,

Perin's method is eventually required.

Related results. 1. Suppose that ¢ is a Chevalley

group, and B 1is a Borel subgroup. Then Seitz [27]
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has deﬁermined-all subgroups K transitive Qn the
pquugatesﬂof, B. (In the case of classical groups,
this means that the group K 1is assumed transitive on
the sequeuces Vi<eeosV of t.i. or t.s. .subspéces,
where dim V,=1 and m is as large as possible. Thus,
in the case of classical groubs-pf4sufficientlyvlange;
dimension, Example 3 contains this result; however
Seitz's reSuitvwas réqﬁiredﬂfdf thé’Sﬁibngef‘re9ult.)

2. Let GE&GL(n,ﬁ);‘h:>3. AsSumeﬁﬁhat AG }iﬁduces
a primitive vank 3 'gréuﬁ‘oﬁ the set of points of the
underlying vector space. In unpublished wétk;‘?érin
showed that & nmust pxeserve a s&ﬁ?léétic geaméﬁry (and
hence G&Sp(n,q) of G=Ag<Sp(4,2), by the Eirst

theorem stated in this séction);

(2.0} Generation

~ Problem (*). Determine all irreducible subgroups

K of S5L{(n,q)=S8L(V) generated by transvections.

Notation. Let é==(w); beva éeint/(i4spaéé) and
A=ker £ a hyperplane (n-1l-space), where 0 #fc Ve,
Set T(a,A)={vevtaf(v)wla € GF(q)} whenever asA.
Then ;T(a,ﬁ)éﬂGF(q)+, and T(a,A) 1is precisely one of
root groups for SL(V). |
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Remark. If t€T(a,A)-{1} and if W 1is a
t-invariant subspace of V¥, then either a<W or
WsA. (This follows immediately from the definition of
T(a,A).) " | - | | |

- MeLaughlin [20,21] answered (*) when K is
generated by full transvection groups T(a,A). He even
handled infinite fields. ) |

|  .Thaprem H(MCLadghliq),__Sﬁppqse that G 1is an
_ irredugible‘éphgrouﬁ' of SL(n,F)_ generated by.root
.grgﬁpsz'Then{qne of the‘felioﬁing holds:

. (1) 6G=8L(n,F); |

() G=Spm,F); or o

"}(iii) !F‘=&2 aﬁdeG  isiji(n,2) or Sn4g Wwith
n éven; or Snéii with“g ipdd,vwln éaéh case, G}_is

embedded in a "natural" maoner.

We have seen each of these examples: (ii) in (1.C)
and'ﬁdt(ﬁ,ﬁ)*'in"(lnE);‘ while the case of symmétric
groups occurs as in the example of Sg inm - (1.0).

More can be said in the finite case.

Theore@,'(?iper [24,25], Wagner [31]). Assume that
G ' is an irréducible subgroup of SL(n,q), n=23, and
that G is generated by transvections. Them G 1is one

of the following:
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(i) SL(H’Q‘}S SP(“:»q'): SU(n,q’), h qsé'lx
(ii) Oi(n,q'), 'q=q'i, g and n even;

(iii) 3.A6<:SL(3,41) (a central extension of A6 by

2g)3
(iv) Sn+e«:SL(n,2i), e=(2,n); or
(v) 3-PSUL4 3)~-2<SL<6,‘41).~
wi) @)™ las < snm,2d) with 1 # al2i-1

In each case, G is embedded in a naturai” manner .
We will not prove thls, but Wiil glve one application

of it in (2 E} Applications of McLaughlin s result | |
ars given in (2 F G) Some versicns ware implicitly used

‘nxn (2 Cy.

Remarks. 1. (G) Z(G) and CV(G) =) can be
substituted for irreduc1bllity here, with only sllght
modifications {17].

2. Similar rnsults exist for grougﬁ‘generated by

long root elements of the xemainlng classical groups [171.

3. The exceptional examples (iii) and (v) are
intimately related to the existence of some sporadic Zroups.

4, For n=2, f[urther examples occur:
SL(Z,S)-:SL(2,91), and. dihedral groups if q 1is even.

5. If G is merely an irreducible group containing

a nontrivial transvection, let G* denote the subgroup
o
: ' cE: . ¥ G
generated by all transvections in G. Then mGL(n,q}( 3
is simply a wreathed product, by Clifford's Theorem.
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(2.E) Permutation representations: degrees

In 1832, Galois stated the following result.

‘Theorem. If ‘K<£Gﬁ=SL(2,q) and q is prime, then
§G:Kizc;+l. except when q:gll;k and equality holds iff
K 1is a Sylow g-normalizer. .

The corresponding result was proved for g a prime
power more than 50 years later (the only further exception

:accurring when' q==9?' cf. Dicksén {11, Ch. 121). So
were thé'analégous regﬁlts‘far' SL(3Qq}, SU(S}q); énd
(when :q ‘isjod&). Sp(4,q), by:eﬁumefétions of all
A@éximai subgfoupé. 156 yéarst%fter Gélbis, SL(h;q) was

handled in an unpublished Ph.d. thesis by W. Patton [22}:

‘ﬂ@mmﬁly‘if K<G£$Knm);nz3, ﬂmﬁ
iG:Kl2 &fh4jf(q~1)s excépt for the case '
KH=A75458==SL(4,2). Moreover, equglity holds i{ff K ié

the stabiiiiericf a point or a hypéfpléne.

Proof. Assume that - |G: K| <(g"-1)/(q-1). Note that
the latter number is both the number of points and the
number of hyperplanes, and is greater than the pumber
- of 1i-spaces whenever l<i<n-1. We may thus assume

that K is irreducible.
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- If K contains a nontrivial transvection, then
téé results Qf.the last ée:ticn determine all
pogsibilities for VK, and ﬁone'satisfies the dasired
bound. |

We may thus assume that K has no nontrivial
" transvections. We must show that K is A, ingide.
SL{4,2).

. Take any hyperplane H. Set .?¢rCG(V/H) and
Q= Cy(H) N C(V/H).

[ IS U L%, . .
P - SL(n,q) - Q3 . 0
. : 0o -

Thus, 'Q consists entirely of transvections, and
lal=q""t
s Since Qg nk=1 for all g¢G, Q acts semiregularly
on the cosets of K., Thus, |G:K|=0 (mod qn“;}.: But
l6: Kl = (q®-1)/¢q-1) < 2¢®" L. Thus, |¢:K|=|Ql, so
|Gl =|QR| and hence G=QK. Since Q fixes an i-space
for eaeh‘ i, it follows that X 1is transitive on i-spaces
for each il Results in A(Z.C) ﬁew apply,.and we deduce
that K is eitheﬁ ’SL(n;q) or A~ inside SL(&,Z).,

The same general idea produces significant improve-

ments if n  1s not too small{
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Théorem 2. Let K< SL(n,q), where gq is odd and
o ) i
q>11. If K is irreducible, then either |{G: K1 >q'§“(“’fi 1)

or GeSp(n,q).

We will use induction on n. However, when we reduce
to a .smaller dimensional situation, we will nc longer be
able to guarantee the irreducibility of our group. For
example, if K= Sp(n,q) then the stabilizer of any
hyperplane acts reducibly on the hyperplane. Therefore,
we will préve a modification of Theorem 2. Recall that,

by McLaughlin‘s results {(cf. (2.D)), it suffices to

'proves that K contains a full transvection ‘group.

Theogerﬁ 2'. Let KsSL(n,q)=SL(V), where q is
odd and q>11. If 1|G: K| sq%n(n"}“), >then K has a
subgroup 8=SL(2,q) generated by two transvection grdups;
:ﬁoreover, V-—-L@CV(S), where L 1is a 2-space on whiéh

S acts in the natural manner.

Proof. The case n=2 is handled using Dickson
[11, ¢h. 121, so suppose that n=3. Let H, P and Q be
as befén:e. Lett (Kn P)H denote the gr_bup indizced by
KNP on H. " o o

Case 1. KnQ=1 for some choice of H.
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Note that '
@D L (k) > P KnP]= [P (RNP)Q|- | (B NK)Q: B AK]
| | ~ =1P/Q: (RaP)/Q|*|Q: P K Qi
o = l?H: ®np)q™t
since KNnQg=1. Thus, .XPH: (KnPiH\ gq%(n-»l)(n-Z)ﬂ By
indticti_on, (K nP)H contains. a ‘subgroup st of the
desired type, where S ;«,K..rsP, | | | |

This group § may not meet our f’eqﬁirements; btiﬁ
we will show that a suitable subgroup of § does. We
may assume that S=8'., Then, since 5 centralizes
both V/H and H/L, it centralizes V/L.

Let =z be an involution in 8. Then Smﬁs((z}),cs(ﬂ)
by the Frattini argument. We may thus replace S by
Cs(z), and assume that z¢ Z(S). Since S centralizes '
“V/L, L= CV("Z)" Now S preserves the decomposition
V=L@Cv(z), and centralizes V/L, so V#L@CV(S),

as required.

Case 2. KnQ#1l for every choice of " H.

Here, induction does not apply, but there are enough
transvections to generateuthe‘ desired VSL'(Z:,q). Let W
be a’minimal- ‘Ke-invariant‘ éubspace.' 1f H,{eW, then
KnQg does not move W, so that dim W1 and ‘Kw

contains a nontrivial transvection centralizing WnH.
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_Ihe xeéults of the preceding section imply that

K

& SL(W) or Sp(W)a There are thus transvection groups
T(a,A) and T(b,B) inside K such that the group
S=(T(a,A), T(b,B)} inddcés SL(2,q) on W. Then
V%L@CV(S) . with Lﬂ.(a,b) and ’CV(S} =A nB. This
produces the desired 8, and completes the proof of

Theorems 2° and 2.

Remarks. 1., There are analogues of Theovem 2
for arbitrary q [18]. The main difficulty is not the
case n=2, but rather the last paragraph of Case 1.

- For ¢ even, there might not be a subgroup § generated
by transvections of V. This is tied up with the first
cohomology groups of the classical groups.

2. Cooperstein [9] has obtained the precise minimum
value of |G: K| £for proper subgroups K of Sp(n,q),
SU(n,q) and Qt(n,q). The methods are similar to the
preceding ones. Analogues of Theorem 2 have also been
obtained for all thé clasSical'groﬁps {18].

3. Suitable modification% of all of these results
exist when G is obtained frcm a classical group by
adjoining outer automorphisms.

4._‘The case of the remaining Chevélley groups remains

open. This would, however, be settled if all their
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subgroups K were determined such that %}(K)==l and
~K 1is generated by (long) root elements, L

5. It seems very likely that [G:K|»|G:B}
in Theorem 2.  The corresponding type of results.for.ﬁhe

other classical groups should also be true.

-2 (2.F) Permutation Representations: Arbitrary Rank

The next twe topzés concern permutation representationa
| af classxcal (and Chevalley) groups¢ In this section the
permutation rank will be arbltrary, in the naxt one, ranks
2 and 3 will be consldered The f0110w1ng result was

conjectured by Heter M. Neumann in 1973

Theorem. Given an integer =¥, only finitely many
presently known finite simple groups have. presently

unknown primitive rank r permutation representations.

Here, "‘unknown' gssehtially means that the one-point
stabilizer is transitive for A,s irreducible for
classical groups, and non-parabolic for the remaining
" Chevalley groups. (However, a little more care is needed
in the case of symplectic groups in characteristic 2.)
This theorem follows immediately from the next three

theorems., -
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Theorem  (Bannai [41): 'Given r>1, if G==Sﬁ or
A, has a (faithful) primitive rank 1 ~ permutation
representation on G/K, where K is transitive on the

original n polhts, théen n<6r+2.

Theorem - (Seitz [28]). .Given r>1 and 4>1, - there
there lS & number Q(r &) thh the follow1ng praperty
‘ 1f G is a rank K’ Chevalley (or thsted) graup deflned
over GF(q) with q«»Q(r L), and if G has a rank r
permutation representation on G/K then (U ) 4 Kg 4 P for
some parabalw subgroup P and some gﬁ G (where UG Syl G

P
for the prime p&q)

Theorem flS] Given r:si: if an n- dimensional
' classical group G (ather then Sp(anq) with q even)
has a faithful primitive rank r permutation representation

‘on G/K with K irreducible, then n<16r.

A modification of this result also hplds for the -
.excluded symplectic groups, The problem is thatvﬂSp(Zg;q)
has primitive rank r permutation representations with

r independent of n. (For example, we will see in the
next section that 8p(2n,2) has 2-transitive represen-

tations.) Such representations arise because
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Sp(Zn,ti)&ﬂ(Zn+ 1,q) for q even, and K can leave

invariant & subspace other than V', where V 1is the

2n+ 1-dimensional space for Q(2n+1l,q) {cf. (1.F)).
We will prove versions of thqse results in the

case G=SL(n,q).

Theorem 1. Given r>1 and an odd gq with gq > 11,

if ¢ has a primitive rank r representation on G/K

with K irreducible, then nsér -3,




50

’ Le;mna____fg_. If G is a primitive rank r permutation
gréup on X, and if n, is the length of an orbit of

G, on X-{x} (vhere xcX), then |X|=2n"".

Proof. Let G, have orbit lengths

1 =Ny sy £... 0. Then N,y £0y0, (Wielandt {32, 17.4D),

: r=1 - - -
so |X| =Ing = g nzi .<:2n2r 1 gzni‘? L
Lemma 2 (Maillet, 1895, and Bannai [4]). If G
is a primitive rank r permutation group on X, and

if 1#ge@G, then ‘X\sZ\G:CG(g)\r'l.

Gy
Proof. Let xg%x, and let I“z(xg)”. If yerT
then some conjugate of g sends x to y. Thus,
Irl=l6:cole ), so Ixj<2|ri™ s2ie: co(e) F7h by

Lemma 1.

Proof of Theorem 1. In (2.E) it was shown that

16 : x| 2q-’§n(n-l) or Ko Sp(nm,q). In the latter case,

the rank r 1is easily found to be large. Thus, by
‘Lemma 2 we must have q%n(ml) $2{G: Cu(g) \r-l for

any g not in the kernel of the permutation representation.
Choose g to be a nontrivial transvection. Then

|G : CG(g)\ is the pnumber of pairs (v,H) with H a
hyperplane and v a nonzero vector in. H, so

G CG(g) | = (qn-l)(qn'l-l)/(q-l). Use of arithmetic now

yields nsé4r -3,
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M. Thé proof of Banmai's bound 'ns6r+2
proceeds in a very similar manner. In his case, G is S,
or Aﬁ,' and the bound |G: K| z%[%(nkl)]! was used;
this is essentially just a famiiiéf bound due to Bochert

{(in 1889).

‘Theorem 2~ (Seitz). Given r>1 and 1, suppose that
that q>16{r(a-1)!+ (z-1)((m-1))%31%. 1f G=35L(n,q)
has a rank r permutation repfesentation:on G/X, ~ then

K contains a fuill root group (i.e., a transvection group).

Remarks. 1. Theoﬁem 2 is mucg har&ér than‘Théoremyi.n_

2. McLaughlin’é‘resﬁlt {ménfioned in (Z.D)) détér;
mines all irreducible K here. None meets the statgd |
bound for r; hence, the Suﬁgfbuéf*K must be reducible.
I1f the permutation representation is primitive, then K
must be a maximal parabolic subgroup. |

3. Our proof is part of Seitz's proof of the much
more general thebrem; only slight modifications are
needed to prove the general fesult. ”

The proof of Theorem 2 consists of two parts.
Part I uses elementary character theory to bound the -
number of U-orbits on G/K. Part II is geometric and

inductive,
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Notation. G= SL{n,q).
- W=S5 4 1s the Weyl group.
:IIE_SylpG (where plq).
B==NG(U)==UH with H abelian of order

(g-1)*°t

Part I. We will show that i:he nurﬁber of U-orbits

on =G/K is at most riW|-+ (r—l)lWizg ~or, equivalently, .

that . :
(13, 1g)s eri-&(r-l)\W}zz
Recall that B consists of ubper~triangular,matrices
of determlnant 1, whlle U consists of those havmg, 1's
on the diagoﬁal, aane we are assumlng that q »? we
have B'=U. - .

1 d -
“ml +z fgj%-ﬁ'jvri,

Write \B

where the ¢ 3 s and R 's - are non-principal irreducible
characters of B, the _cpj’s “are linear, and the «;'s
are non-linear; the. @j's; -need not all be different,

v S G d
nor need the vriﬂs be. HNow 11(1 -ml +j21 o lﬁ-%:-rilu
so

d
G ,
(IKEU’ I-U}#' m+ jEl (wU‘US I'U‘) + ?(Ti IU,IU} ©

The desired inequality for ‘(1%”,1{}} is'theﬁ an

immediate consequence of the following four assertions:
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(L) ((Dj \U’ }'U) =1
(2) ('f gua U) = {
(3) ms réWﬁ and

(4) d= ¥ (Q,H\U, g s (e-1) W wiZ,
=1

Proof of (1). Since 9 is linear and B'=U, we

have © 4 iU*‘lU,

Proof of (2). (»rilu, U’ {«rl,lu)g where IUB is

the regular character of H=B/U. Since H 4is abelian,

each irreducible constituent of 1{}5 is linear, and

G_ . R -
Notation. lK 1G+E‘aixi’. where the xq 8 are dis
tinct non-principal irreducible characters of G.

Si.x_xgg r=(1§, lg)#l+§“;ai'£, we ha\fe r»léﬁai.

Proof of (3). By definition, m=(1$|,, 15) = (1g, 13)
= 1+>"ai(xl, B) sl‘rTai(lﬁ 1G) 1+zai\W\ fr{W{ {(Note
that (xi, B) is at most the norm of lg, which is in

turn the number of (B,B) double cosets.)
Statement (&) is harder. We will need the following

fact,

Lemma. Suppose that ¢ and ¢ are linear characters

of B. If o and ¢ are both constituents of 'X‘B
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for some irreducible character ¥ of €, then
(Qsiﬁ)w-“= cﬂﬂ for some weéW. (As usual, we can ldentify

W with NG(H)/H,)
Proof. 0< (w,%| B} = (ch,x), By Mackey's subgroup

theorem,
-1

O0< (XaX) ES (WG"'JG)'”E (CPW \ w,\H W‘) .
. weW BNB BNB

But' BNBY = (Un UW)H since B=UH and HY=H. Since

0# (o T gl o) for some w¢W, it follows that
BnB"*® BNB - ' :
-1 . -1
BN CA R T A D N CA P W
(ont®ya,  (unu™yH H, H
(Note that U is in the kernels of @ -and §{, 8O
» -1

Unt¥ is in the kernels of cpw and §.) But

-1
o7 ‘H and ‘HH are linear characters, and w normalizes

H, 8o the lemma follows.

Proof of (4). 1{%“1(;4“2&317‘1‘ Write

Xi\Bmﬁjmjcpji+'(‘smne linear combination of Ig and Ti's)ﬁ

where now these cpj.i‘s are distinct and each my > 0.

We will prove that
{4') For each 1, the number of P51 here is at

most |Wl, and

(4") Each my = Wi,




For then the total number of non-principal linear
constituents of XitB' will be at most ‘{wgzs and hence
the total number d of qej's will be at most

za, 1% < (e-1)W(%, so (4) will hold.

Proof of (4'). The lemma implies that x,l,

involves at most |W| linear characters.

Proof of (4"). By definition, my = (M!B,“{in)

‘ G
(Xlﬂq{m}}‘ ) = ((:P.‘i ,Cle )-, ‘But |
G : w-1:
@y %0y, C) = >~€w | cp;,)siwi
JL T ey 3T g 31 ¥
W 1§ N ] 4
since and. Pse . are linear. Thus, m = |Wi.
' LES BGBW q:’j L pap” A 5

'i‘his ends Pa'rts I.

Part II. Suppose that G=SL(n,q)>K, and that U

has at most 4 orbits on G/K. If q>16.¥,2, then KX

contains a full root group (i.e., transvection groiup).

Note that this, together with Part I, will complete

the proof of Theorem 2.

Proof. We will use induction on n, the ‘caée

n=1 being vacuous,

Let E be a hyperplane. Set P=C {V/ﬁ) and
»llP(E);‘ Then Q consists of transvecti,ons, and _
=*:QR with R‘*SL(n l,q) We may assume that QgU”sP

and NG(U) = UH | N
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With respect to a suitable basis, P, Q and R are as

i

follows.
P = all ¢ 3; g
0= (0,...,0).

Y} with det A 1, v€ GF(q)n"l, and
G = all such matrices‘ with A = 1.
R = all such matrices with \; = 0.
U = all lower triangular matrices.
H = all diagonal matrices.
 Write 9=G/K, and let c€q with G =K,

4

m
write o =u s, ,
i=1 %

Clearly, R 4is transitive on { i?”._..,ém}. Also, P=QR

whlere‘ the ¢ i

implies that U=Q(UNR), so every UnR-orbit on
{f@l,,..,ém} arises from a U-orbit on oS, Thus,
UNR has at most ¢ orbits on {@1,“.,%3«

By induction, there is a root group Xs R
stabilizing some byo (If n=2, take X=1.) We may
assume that X sZ(U NR). 3

Let p&¢,cBU=A;, and write a"mﬂigl’/\i' with
each A, a U-orbit. (Here, H 1is defined as above.)
By hypothesis, ksi< (Jg+1)/4. Let Hy be the stabilizer
of Ai in H., Then fﬂ:Hb&ﬂk«(»ﬁf-ﬁ»l)/&.

Note that Hy fixes some point y* ﬁué,ﬁl, where
u€U., For, both U and UH; are transitive on Ay, S0
UHOzS(UHG)S. ‘Sim‘:e H, is a Hall suﬁgroup of the
solvable group UH,, it must be conjugate to a subgroup

of (UHO)Q, and our assertion follows.

s are Q-orbits in R

6




ﬂow (HO, g‘;gcva 50 HQ ncrmé*‘zas Hyﬂ=Ugj

At this point we must stop to deal with the case
n=?2. Fsre, Part II requxres that qfiK . To see that
this holds observe ‘that °(Jq 1)4:\HO\§\G l= k|, 1t is
then easy to use the list of subgroups in Elckson {11, Ch.
121, along with the assumed bound on the number of
U-orbits, in order to ébtain qi?Ki;

Now suppose that nzB 8o |X|=q. 8ince both
Q and QX are transitive on é\i, we have (}Q'X=Q‘(Qg}<:)8
with 1# (QX)Q‘S US' Thus, U’y% 1.

" Now GY is a nontrivial p-group normalized by H .

‘Let Y be a minimal H(’f" invariant subg.'roup of U‘Y.- °

The group U 1is a product of root groups, each
normalized by H. Moreover, -H acts irreducibly on
each such root group, inducing a fixed-point-free group
of order q~1. Since |H: Hyl < Wa+1)/4, Hy acts
irreducibly on each.such root group. -

" Thus, Hy acts on Y ass it does on some H-invariant
root group x* =T(a,A). {(As in {2.D), A 1is a hyperplane
"and a isa l-space of A.) But CH(X*) decomposes
A/a into the direct sum of n -2 inequivalent CH(X%) -

modules, while a and V/A are CH(X*%isamorphic.

The same must also hold for Csy (Y). Since CHO(Y) is
0




a group of diagenal transformations, Y induces the
identity on some n -2 - space of V and'acts on a
camplementary Z-space. Thus; dimycv(Y}¥=n-41, and
Y is avfuil transﬁecticn grdup (;a fact, Y==X*). |

This completes the proof of Theorem 2.

Open Probliem. Significantly decrease the bounds

on n and g in Theorems 1 and 2.

(Z.G) Pgrmutation RepxeSGatatiéns: Ranks 2 and 3.

The crudeness of the bounds in Theorems 1 and .2

of (2.F) 1is alrsady seen when r=2 or 3, For, in
those cases,. if 'n==2-'then q:;ll,-whiie if n>2 then
n=4 and qs3. More precise answers are, in fact,
known. Curtis-Kantor-Seitz [10] contains the determination
of all the 2-transitive permutation representations of
all the Chevalley groups G; Kantor-Liebler [19] does
the same for the rank 3 representations of the classical
groups., {(The corresponding result remains open in the
- case of the exceptional Chevalley groups.) Mereover, .
in both papers the group G is replaced by any subgroup
of Aut(G/Z(G)) containing G/Z(G). |

- There are three basic tools required for these

results:
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(1} Properties of 1% (aompare the last half of
(2.F)).
(I1) Characterizations of ""large' subgroups.
(I11) The Pigeon-Hole Principle.
We will only discuss the firét two of these.

(1) 1%. Letv r be the characteristic of G.

Theorem (Steinberg, Green, Howlett, Hoefsmit, Liebler,

Benson, Grove, Surowski; cf. [10, pp. 57-58] and [19, §41).

G _q

Every irreducible constituent of 1B C has degree

divisible by p, except when G has type 8p(Zm,2),
Gy(2), G,(3), *F,(2) or F,(2). (Moreover, in each of

these cases all offending characters have been determined.)

Example 1. The permutation character for the action

of Sp(2m,q) on points splits as 1.4p+o with

G

q(q"-1) (¢*"L+1) a(q™1) (@ 2-1)
= ——  and o(l) = .
2(q-1) 2(q-1)

In particular, o0{(ly and o(l) are odd in the casé.of

o (1}

Sp(2m,2); there is exactly one further offending

character in this case.

Example 2. Let Qi dencte the permutation character
for the action of G€=SL{m,q) on i-spaces. Then
8, =1p+x; with x; drreducible, since G is 2-transitive

on points.
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2 - 2 = i = r (‘ . G . = s
Claim. If 2=is2n/2 then AL P )

irreducible and 9, =1+ Kyt oo +%;. Moreover, the

is

characters 1, X1» Xgs+.. are all distinct.

Proof. Let 13 < i <n/2. Then (81""3) is the
niumber of orbits ¢f G oﬁ. ordered pairs' {Vi’wj) with
dim Vi=1 and dim Wj =j. Since i+js<n, dimV, r‘;Wj
~can be any number from 0 to j. Thus, {Si,ﬁj) =5+1.
In particular, (Gi-'& j.128570 i-1) = i4+1-2(i-1+¢1) + (i-1+1) = 1.
Also, 8,(1) =~f’3i__1‘(1) is the number of i-spaces minus
the number of 1 -1 - spaces, which is positive (and a

multiple of ¢). This proves both the claim and the

- following
Corollary. q}-xi(l) for 1s1is=n/2.

(I1) Characterizations. _‘

(a) Seitz [27] determined all K<G for which
(lg,lg) = 1; This, and related results, were mentioned
in (2.C). | | |

(b} Tits' Lemma. If U=K<G (where Uc¢ Sylp G),

then {%JP) ¢ K¢g P For some parabolic subgroup P.

Remark. In the cases SL(n,aﬁ, Sp(n,q) and
SU(n,q), U contains transvection groups, and much

strnnger' results are available (c£. (2.D)). ' However,
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thlS 1emma bolds for all Chevalley vraups, and aven

remains valld 1n tha case ﬂf 1nf1n1te fields.

Proof. In'the usual BN notation,
G=PBNB= UHNHU= UHNU. Let bneK -(he¢H, neN), so
n=n’ represeénts some WEW = N/H. Suppose that
W=w;8y with &(wl);ta(w) “and 31 a fundamental .-

“reflection. If 'ai*'is'the root corresponding te s,

. -1
then 11 1 =0, and hence
,'U~ L3 .(3:1 » )__Wﬁ i m-,'lll.mtq,‘,=‘ ﬂh{l = K.
Thus, '(Ud“, U¢1>:5K; " But there is a coset représentative
;-:’1‘ L I, . . S
. ST g Sy
¥, of s dn (U_,U Y. (That is, )¢ <u ULy and
| AT N A TR % MR * 01’ Toy"

H§1_.is,,sl.), Thus, ‘SLQ‘K,_ and},hn?leK, lh;s process
can clearly be continued, gradually reducing 2(w). If
P is generated by B and all elements §,; arising as

above, then P is parabolic and KH=P.

2Z-Transitive Representations.  Suppose that G acts

2-transitively on the set of cosets of K, where K<G.
Write 15=1+4y with x irreducible.

| G -
Clearly (1, 1) =1+ (15, x). -
2£&:x§vla,_ then Seitz's theorem lists all potential

subgroups.. K.




62

1If %¢ lg, then {G:Kl=1+y(1), where ply(1)
for most of our groups G (cf (I)}. Therefore,
assume that pb{,(l). Then |G : 4 éif(mbﬂvp), so |
K8 >U for some g€¢G, and Tits' Lemma .implies that
k& 1is parabolic. . k

Thus, the determinatiom of all pairs. (G,K) is
reduced to the c:hecki.ngv of specific potential pairs, ‘
~except in the case v-of;specivf;ic groups G defined over

small fields.

Case Sp(im,‘zk)’.k’i: This is the 'mést; i‘nteresting case
. in which offending characters appear: );,Z-tran;sitive )
‘represéntations occur, and fi@nicely" int:é’ the fi'anie{aork
of> the above 'ai'gumént;‘ We firs’-ﬁ préire V"t‘:he existence
of these permutation representations, and then prove

a version of uniqueness.

I;«I:erist:enc:e_° G=8p(2m,2)=> ﬂ(2m+ 1,2) ‘actéﬂ on a.
2m+ 1 -~ dimensional vector space 1, fi;:ing va ﬁ&nzero
vector ¥, as in (L.F). There is a quadratic form
Q avallable, and we may assume that Q(r)=1.

If vert-{(r), 'then Q(vl)v =1 41iff Q(v+r)=0.
‘Thus, the permutation character ¢  of the ‘action of €
‘on vectors v#r with 'Q(v)'=="1 coincides with that of

G on the points of the symplectic space r'/{r).
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Mareovéf, the character of G on ‘- (r) is 28,

30 tﬁét bf G on the l-spaces of ' is 1+428.
Then the character of the action of G on hyper-

‘planéé” of r' is also 1+ 20. (In Example 2,

0, =8, _; since (84,8, ;) =(8,87)=(8, 1,8,.9)=2.)

The character on the set of hyperplanes containing (r)

is also 8. j ‘. | |
Hence, the character on the set of hyperplanes not

(congainingw_(r} is 14~9ug(;ﬁ~g)4{(14*s). Each such

hyperplane has stabilizer Oime,Z). Hence, C must

act . thransitively on the hyperplaues of eaah'type,

with permutation character 1+p or 1l+o.

Uniqueﬁessl. Supposévthat* mé=1§==14-x is 1+p
or 1+¢. We must show that K 'is Ot{Zm,Z), embedded
in ¢ as above., We will regard G as Sp(2m,2).
. Let g be a_ngntrivial,txansvection in G. Count
the pairs _(gl,gl) for whichl;Kl. is a.ccnjugéte of K
qqntaining the conjugate gy 6f B: |
p1) 1% K| = 16: Colr) lula).
(Bgrgs o (1) is the number of conjugates Kl,‘and
w{g) isvthebqumber of such cohjugates containing g.)
| The nﬁmbefs p{l) and @(g) are computable

using the known 2-transitive representation with




64

character ¢ (whose existence was proved above). Thus,
{gerK\ is the number of tramsvections in Oﬁ(Zm,Z)
(for a suitable choice of sign). The result of
McLaughlin [2]] wentioned in (2.D) now yields the

required determination of both K and its embedding.

. Remarks. 1. Ail the other offending characters
arising in (I) must be dealt with separately, by -
ad hoc methods. Only one yields a 2-transitive
reéréseﬁtation; this arlses because of the isomorphism
'02(2}’ = PSU(3,3). |

2. The bulk of the 2-tramsitive case was handled
using a very short, simple argument, based upon the’
difficult results in (I) It is this 81mp11citv which
suggested the possibility of attacklng rank 3 - permu-

tation representations.

Rank 3 representations. sup§33e that € acts as

é'primitiVe rank 3 grbﬁpfen the cosets of K. Set
»=15. Then @=14x+¢ for irreducible characters
x and ¢, | b
If x, ¢ 1g,“ then Seitz's theorem again‘appiiesa
1f X,gG.iG; then Tits' 1emma'applies, iflﬁe

ignore a few possible groups G.
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This leaves the possibility x €15 bur ¢¢1%.
In [19], all subgroups K of classical groups are

determined for which Lg =1+ x% ¢ with x dirreducible,

G
B’

§ can be dispensed with. For example:

x€1§, and (¢,15)=0; that is, the irreducibility of

Theorem. Let G-=vSL(n,q) with n= 8 and q ~2,
and let K<G. Suppoée ‘that 1;% =1+ 3;\:+ ¢ with ¥
irreducible, ¥x¢€ 1B' and (C,lg) =0. Then K fixes a

subspace of dimension 1 or n-1.

‘Partial Proof. Recall that ¢, denotes the

permutation character of G on 1i-spaces. Let 'Qij
denote the permutation character on the pairs (Vi’vj)
of subspaces with dim V, =i, dim 'Vj =4 and - VicVy

(of course, i< j here).

Step 1. If x¢93 ~then (lg, 6,3) =1, - 80 K is
transitive on 3-spaces. By one of _Pefin’s resui!:s _
{2.¢}, K=6G. o

Thus, in the notation of Example 1, x must be

Step 2. Suppose that x= Xqy-

- Compute = (84,9) = (31,91)7* 2
(94‘9!‘@) = -(9[‘_,81) ”‘f“_vz

(ala:cﬂ) = (814’91.) =3,
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(The stabilizer of the pair .(Vl,Vé) has 3 point-orbits:
{Vl},’ the remaining points of 'Va, and the points
”‘6u6side 'VA.) There are thus‘ 2 orbits each of points
“and hyperplaneés, and 3 orbits of pairs (Vy,V,).

By the Pigeon-Hole Principle, there is a point x
‘such that Kx is_transitiveﬂqn the 4-spaces through
X. Then. K_ is tran#itive;on the 3-spaces of V/x,
By Perin's results, K. . induces at least SL(n-1,q)
on V/x. |

If R is irreducible, it is now easy to show that
K=G. Thus, X is reducible, and fixes either. a point

or a hyperplane, as required.

Stegkz, Suppose that X = Xg
K is transitive on the pairs {VI,VZ),, Also,

'”(93';‘49)' = 1*"3(939"&3) =2, while (9343@) =1+ (9343 9 3° 92)
= 14+7-5=3, By the Pigeon-Hole Principle, there is
thus a 3-space E such that KE is transitive on the
(qn"z-i)/(q-l) 4-spaces containing E. Now Perin's
Method (2.C) can be applied, and produces the

contradiction K=G.

Step 4. If X‘*Xﬁ}' thé argument. is similar,

but somewhat more invoived;:'af. [19].
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Remarks. 1. The omitted cases (ns=7 or q=2)
are handled similarly. However, examples arise when
n=4: K can contain Sp(4,q), SL(Z,qz) or (if q=2)
Aé as a normal subgroup. “ | '

2, The determination of the rank 3 éermntatian
representations of the classical groups follows the same
pattern, but is much more involved. In particular,

B

much more information is required concerning 15t there

is no longer a nice nesting of characters as in Example 1.
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Part 3. The root group geometry of Esﬁﬂlf

The ﬁférequisites:for this part are Carter {7,

'§§3a4’306, 5¢2,6va3,8¢5,12‘-1} .

(3.A) The root system.

‘Notation. Fundamental base ¢y,...,0g.

-Fundamental reflections 8;,...,8g.

Height of taga, . is za, .

‘Highest root: .p. This is related to the

root system as in the following extended Dynkin diagram.

1 3 4 5 6 7 8 “p

E -
2 A

L3
E ]

For all roots o,B, we have a-a=2, and g-B==O' or
+1, when. g #+a.
"'i“"‘j =0 or -1.

Since 8y is the reflection in a.t

1 b4
Si V.o ,
v =v~2a'm %=v-\waﬁar Thusg,
i7i
.. ’ﬂqi if j = i
1 = s ¢ s =
Gl (I,J if Ly aJ 0

s
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4173949568728 vhen
a2

Computations. Write fi‘.aiaia

applying S4 to(this, only aiv is changed; namely, to
' : 7ai4;($§m,9f 53 with i éqd j ‘"adjacent” in
the Dynkin diagram). |
Starting from «;, the entire root system can be
computed; fortunatelﬁ; however, lists in Bourbaki [5,pp. 268-
270] and Aschbacher-Seitz [3,pp. 5-8} are available .

in order to frequently save time.

Examples.
6111000 s, 1111000 s, 1121000
1 T4

p= 2465432 g 2465431 84 2465421
3 e 3 i3 3
?he ¢o0rdinates of p are taken from {5}. Note that

p 8==p -ag is the next-to-the-highest root.

(3.B) Commutator relations.

Each reot o vylelds a root group VXQEfGF(q)+. The
~Chevalley commutator relations assert that, if B8 #+q,
then

[ } 1 if o+8 1s not a root
X ,Xi=4¢.,
at R Xc”_B if o+p 1s a ?oat.
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Moreévef, (xﬂi,xua) = SL{2,q).
G = ES(q) is generated by all these Xa.
U= {Xalu'%()) is a Syl‘bw subgrou@ of 6.
Ul = q

i since there are 120 positive roots.
B=UxH with He (GF(q)")°.

prsZ(U); for, since p is the highest root,
n+o cannot be a root for any root « > 0.

We will say that o involves a5 (or s,) Iif

8 3
aﬂii a0 with ajf-O.

More notation. If Ic{l,...,8), then
>sla[si\ieﬁ', and ' o
WI_ = <3j‘sj é SI} .

PI = BWII? | |
Q = (XJ@»G and o dinvolves some member of s;)
L, = (X ,X_ |j¢D. - o |

We will write Lij'” in place of 'L{‘i’,j;;...i" and so on.

Levi decomposition. Py= QI » LyH. The structure

of Ly is determined by deleting the nodes in I from

-~ the Dynkin diagram.

Double cosets. The number of Wi, WJ' double cosets

in W equals the number of Py, PJ double cosets in G,
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for all I1,Jc{l1l,...,8} (Bourbaki {5, p. 831). Thus,
the number of orbits of WI on the set of -Wj-coSets
equals the number of orbits of Py on the set of P,-

cosets.

Examgle.: Q8==(Xp,xa\ﬂ has ‘a8¥éoefficiént~v1),
while Ly has type E;(q). For the following discussion,
a list of roots « is'hélpful {5; 31.

o} = q'*28. |
p-a is also a root and (Xa,xﬁ’&> is special of order
q3 with center Xp. If B8 has a8~coefficient i,

If o has aswcoafficient :1 then

but s#p-a, then a+p is not a root. Thus, Qg

is special of order q1+56, with Z(Q)*fr==X5.

This produces a 56-dimensional module for Lgh over
GF(g). (Scalars are obtained from a cyclic subgroup Hy
of H which centralizes Lg and acts fixed-point-
freely on VQB/XQ.) |

L8H preserves the alternating bilinear form on
QS/Xp defined by (uXp,vXp)==[u,v], where Xp is
identified with GF(q).

Remark. ' Here, and elsewhere in Part 3, the
finiteness of the field is irrelevant: analogous

results exist for infinite fields.




72

{3.C) Root groups

Definition. Q=={ng\gEEG} is the set of root groups

of G. This will be used as the set of points of a

geometry.

AFirgt.Suborbit Lemma. G has rank 5 on (.
_Representatiyes of orbits of G on QX and the groups

they generate are as in the folléwing table.

| ?air XXy Xoa¥g) Remark
X X » X B o= B
N P
, Cx e
xb’xp"&g Xp XE“QB a -~ B =root
: xp,xul | Xb><Xa1 at+g,2 ~8 not roots
X ,X - Sylow in a+ B =root
o -pt g SL(3,9)
x ‘X SL 2 ‘."x“"
g) -.p . . ( ’Q) & s

Definitions. If x,y€qn and {(x,y) 1is conjugate

to (Xp;xﬂ-ds},

(x,yy=SL(2,q), % and y are called opposite.

we will write yéa(x). 1If

" Proof. 81s+e+38y fix ¢, S0 Ng(X§);zﬁwsB==P8.
Since Pg is a maximal parabolic subgroup, we have
NG(XG)*=P8. Thus, G acts on ( precisely as it

does on the cosets of Pg. Since the number of
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double cnsets in w equals the number of Pg,Pg double

cosets 1n G lt suffiues to consider W and W8

Thus consider the action of W8 on roots. Its

orbits are as follows:

. |
{o]ag-coefficient is 11
fo.lag-coefficient is 0}
falag-coefficient is -1

-C\
x
*

The third set is an orblt because the Weyl group of type

E7 is transitlve on the roots For E7. The second set

arose at thp end of (3 B), that it is an orbit can be

readxly proved by computing as in (3.4).

' This proves the lemma, except for the genefation”

part. But that follows from the commutator relations,
the standard fact that"{x ,X_'Sa:SL(Z,q)," and the -

fact that p and og determine an Az subsystem.

‘Remark. The Weyl group -W(E8)552.0+(8;2) (a non-
split central ‘extension of ‘Of{S,Z)l by 22).. It acts

on the 120 pairs {n,*m) as a rank 3 group, Just as

on the (28 1) (24 1)(234-1) 120 nonsingular vectors




74

:of an 0 (8 2)- space.- The 5tab11izer ef n' is '
W(E7)==Q(7,2)x Z2 (compare (I.E)), the stabillzer

Lemma. NG({XD,XQ_Q83)==P7. Moreover, the group
L=«(X ’Xp~a8} contains q+ 1, root groups, each
nontrivial element of L 1lying in exdctly one of these

root groups.

8
Proof. Since o 8. g‘ng, d7—-(sl,...,36,88)

normalizes L;.‘Thua, N (L) contains P7, and hence
eﬁuéis P?. Also, L is normal in the Spec1a1 group

S , ’
<Xa ’vaagf’ :Thus, Xﬁ'&g has q congugates under XOL8

Together with Xp, these.prOVlde us with the desired
q+1 root groups. (Note that the last part of this.

argument simply takes place in an SL(3,q).)

Definition. Point: element of Q.

Line: conjugate of <xg,xp-a8> in G.
We will identify lines with their q+1 points.
Points will be denoted %x,¥,..., and lines by L,M;....

The stabilizer of the point x is Gk=*Né(x),v‘and SO on.

Second Suborbit Lemma PS N (X ) 1ndugésya rank

4 group on the set of 1ines through x . Thé stébilizer
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of the line <X@’Kp-a8} has the following orbit

representatives on the lines through X .

SRS S |
(X ,X ) where X = ,and X  are.
A7 Pragtog - PT0g Pa7™%g
collinear ,
(X,X 5> where r 232321,1, so X _ -ag and
X}l commute but are not covllinear
<x@,xm8> where [xﬁ_ﬂﬂs,xag} =X_.

Proof. Once again, we reduce to Wsg and W8==W(E7).

Clearly, Wyg leaves invariant the following sets of

roots:

{33‘0\a8~coefficient 1, u7-coeffiCient t3}=j~=.{a -agl 1 root
{cﬁvﬁ‘aa-coefficient 1, a7~coeffiéient 23 27 roots
{a3>01a8'coefficient 1, ay-coefficient A 27 roots
{a:>0§a8-coefficient-'1,_q7-coefficient 01 = {ag} 1 root

Each of these 56 roots yields an X collinear with X
(that is, p~o. is a root). (See [5 31 for lists of

roots, which show that these are all the roots .Xﬁ with
P-4 a root, and that the stated numbers 1,27,27,1
are correct,) Each of these gsets is found to be a

W78—0rbit.

Remarks 1. Wy is 2~transitive on the pairs

2-transitive representation of Sp(6 2) on the 28
conjugates of 07 (6,2) (cf. (2.F)).
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2. The roots just considered also occurred in our

discussion of QS in (3.B). In fact, it is clear

that the lines thnoughv X0 generate the group Qg.

3. By a unpublished‘lemma of Borel and Tits
{10,(2.4)] , .transitivity assertions such as the ones
we have been considering can be proved effortlessly,

without computation.

(3.D) Root group geometry.

We now present some properties of the geometry bf
points and lines just introduced. These are special
cages of work of Tits, Stensholt and Cooperstein.

Recall that Xy and ‘XB are collinear iff u3-B 

. is 0 or a root.

(I) If =z=[x,yl 1is a point, then z is the

unique point collinear with % and vy.

Proof. If =z' is a point collinear with x and vy
then we may assume that z'==xp. Then (x,z'V,{y,z's = Qg,
so [x,vyl=1 or Xp {(since Q& is special}. Consequently,
zzxp=z'. (Remark: (x,z% 1is a line since (x,y) is

special; cf. (3.0).)

(11) If x and x' are opposite points, then

G,,' acts on the lines through x exactly as G, does.
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Proof. We may assume that X=X x'==X_p. Then
Gx==Q8L8H, where L8, and H both fix X*pf: If L
is any line through X,k then {L,Qs}e;{QS,Q8]==Xp, S0
Qg fixes every line through X . This proves our

o _

‘assertion,

There is a natural graph on : two points are

adjacent iff they are collinear and distinct.
V(IIX) This graph has diameter 3.

Proof. By the First Suborbit lemma, it zuffices to

consider the following pictures. -

X -~ -
Q (18 0v8

P -p

X
a1+a3+m4

(Recall that Xa' and XB are collivear iff o-8 1is a
root. ‘Recall also that, if x and y are collinear
with z then {x,y]=?i or z, so that X0 and X_b

cammot be distant <3 from one another. )

(IV) If x and x' are opposite points, and if
x €L, then there is a unique shortest path from x'-

ending inside L.

Proof. By (II), we may assume that _x==Xp,
x'=X_, and L=(x,y) with y= xc;“ﬂg' The above
picture then gives us a path x', y’==x_a8,y. 1t remains

to prove uniqueness,
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t

Consider a path x',z,u with x' and =z, resp. z

and 'u, collinear, and uc<L. ; ; : : vf'

If u=y then 2z is collinear u
with both x' and ¥y, 8O o
z=[x"',y] is uniquely deter- //

mined by (I). ; "f

So suppose that u#y. Since (x,y'y 1is isomorphic
to a Sylow subgroup of SL(3,q) (cf; (3.C)) we can find
gey' with x=u®, But g certainly fixes x', so now
z® is collinear with both x and x', which we saw

(in the proof of (II1)) 1is iwmpossible.

Remarks. Property (IV) 1is strongly reminiscent of

of the B-S property (1.G). |
The picture wn/’:/ ;«3 now sets

X

up a bijection between the lines L, through x and the
lires L' through x'. We will show that this is, in |

some sense, an isomorphism (cf. (VIII)).

Definition. A subspace is a set of points which

contains each line meeting it twice. An gbelian subspace

is a subspace in which any two points commute.




79

General example. If K is a subgroup of G generated
by root groups, then QnK is a subspace. (For, if

x,y€K and (x,y) is a line then (x,y)=<K.)

Example. Set Ew:<xp,xe_n7,xp*a7_as>. From the

extended Dynkin diagram we see that E 1lies in the

subgroup of type SL(#;q)}}generated by the groups ’X+ﬂ

S e Ry

with a=p, p~n, and p-dy-og. It follows that E is

3 2

elementary abelian of order ¢, and contains q " +q+1

root groups (which are transvection groups for the -

2+q+1 lines inside E,

SL(&,q)).’ There are also q
and hence Er\é has the natural structure of a proja¢tive
plane.

'Thé usualiproof shows'that NG(E)==36. Moreoﬁex,
ZX&F7,Xig8\szSp(3,q), andiacts on E in the natural
manner.,

Definition. A plane is aﬁy subspace of the form

En8, geg. Of course, we will identify (En )8
with E&,

(V) Three pairwise collinear points are coplanar.

Proof. This follows immediately from the Second

Suborbit Lemma.




80

The entire building of Eg(q) can be seen in terms
of abelian‘subspaéés. First, note that, if Py is any
, _ , P
parabolic subgroup, then (Z(QI) I}ﬁcz is an abelian

subspace. .

Exahglés;' Each makimal pérabolic subgfdup Pi
aééurs'as" NG(Si) for a suitable'abelian'subspace Si

on which P, acts "nicely'. Specifically, the following

: - ‘ : PR .
table—tists—each Piy—the desired S and—the—grouj
induced by the Levi factor Ly and 8,

. Py Si : o | o | |8;1 | Induced on S;

Pg Xp (point) | q 1

Py L ,X@ "“é | (1iﬁe) | q? SL(Z:‘??

P6v <Xp’xﬂ~aé’xﬂ*m7 “”8> (lane) R

Py | & ?xafas’xﬁfu7fa8?xp"as*a7ja8) qé SL(&,q)

By | BpKyo s X goag magmimng) q$ SL(5,q)

Py (Xa‘a involves  4aq) q7 SL(7,q)

By | (Xala involves 3o,y , q8 SL(8,9)

Py (Xaig involves  2a,) N " qlé ‘d+(14,q)
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This table is readily checked using the roots listed
in Bourbaki [5] or Aschbacher-Seitz [3]; we will return

to the PI case soon.
%tqs?a..,xids,

Example. If D=(X
D= mi@g_i@j li#3> and D has type Dg(q).

+a2’ XiQS, thep

Proof. The equality follows by forming various sums
“kdﬂak+1*f’f‘_ Lg Qréetﬂto qbtaln the roots aij;aj.
The structure of D is proven by looking at the extended

Dynkin diagram 1 3 4 5 6 7 8 -

[

énd‘ﬁsing generators and felations (Carter [7, 12.11).

Digression concerning orthogonal groups. Let V

be an orthogonal vector space of type d+(2m,q),

m=>2, and let’ x be 3 singular point. Call Kﬁ=g+(2m,q)
and Qai)b.(lg(), Then Q is abelian and K, = Q« L with
ILafﬁIZm~2,q), ~where L. centralizes =z and acts the

same on x*/x and Q.

Proof. Use a basis Bsvee €y fl,.,.,fm as in

(L.E), where 'x==(em}, Then ¢ consists of ail
.trgﬁiformagi?ns By ues(em,£m>x3 Wh&fg
w=% y,e,+% 5, £, and

jmp t 1 ogey U1
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(o
gu : 1 ;Em«t- fm+u
7 i€ "Fity
| VB R iy |
for il<m. Call L#QK({em,fm>). 1£ 2 GLv,‘ compute that
gu£==g L | | B ‘ |
u , N . .
M, K, .‘ | ﬁ.s a ?arabolic subgroﬁgﬁ (see (1.D)).
‘Z{f B g;w . _< is‘ the Dynk.in d_iagram of lv(,' then

We now return to the geometry of Eg(Q>~

(VI) Let =x,y€q, with x and y not collinear
but {x,y). ébéliaﬁ. Defins B o -

Alx,y)=tx)Nb(yy

L(x,y) =00 {x,y, 8(x,¥)).
v ’I‘hén Z(x,y) 1is an abelian subspace. It can be identified
with the zet of points of an 0+(ll+,q) space  (Z(x,¥)).
The group induced on it by its stabilizer has a normal

subgroup §'2+(14$q), acting on it in the natursl manner.

Proof. By the First Suborbit Lemma, we may assume
that ix“){b and Yy =X, where g= 2-3 g 32 ’1,0. “Then
(5(%,y)) contains Y= (X lo involves < 2a.)=(X_+X 1i#8.

A A : "1 cg= €4

As usual, since NG(Y) =Py we have NG(Y) =Py
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Similaxly, ny:zFlg, and it is easy to check that
ny%Pl,Pg. Thus, nywPlg, But Pyg® (Xalcx involves
Zal and lm8)==(ﬁ(x,y}), Thus, <(Z(x,y)) =Y.

Now note that ¥T{x,y) 1is contained in the group D
defined before the digression. Thus, the digression

completes the proof.

Remark. Thus, any two distinct éomﬁuting points
%X,y are either contained in a unique line (x,y)nQ
or a unique "hyperline” Z(x,y). The uniqueness is

further clarified in the next results.

(Vi1) 1If xlband yl- are distinct points of T(x,v),
then xq and y, are collinear in the subspace £ (X,¥)
if and only if they are collinear t.s. points of the
orthogonal space (5(x,v)). If Xy and yy are not

collinear, then Eﬁ(x,y)==2(x1,y1).

Procf. The first statement follows from the
digression and the embedding in D. The second is a
consequence of the transitivity of Q+(14,q) on pairs

of non-perpendicular points.

(VIII) Given four points x,x',y,y’ with x
opposite x', v opposite vy', and the groups (%,y} and {(x,y')
commuting, there is a unlque subspace D(x,x',y,y') of

type Ds(q} containing all four of them.
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Proof. First we may assume that x=X and
froot 7 " %
% =X_,» and then that y=X_  and y! =X_ ..

t = b b
For existence, use the group D <X+“2"°"X+“g’xi@"

Now assume that X+¢ and x;c are in a subspace
Dg(q). Consider Ds(q)TiA(Xadxg)T' which is contained
in A(Xp,xﬁ)v and hence in ﬁ, But there must be equally
many paintsvin Ds(q) collinear with- Xp and XrJ as
there are in D. Hence? ‘A(XQ,XO)CrDS(q). I; follows
similafly that (Ds(q)) z(E(XQ,XG),X(X_g,X“G)>==D? as

required.

Remark. The same proof shows that each orthogonal
subgroup of G generated by root groups is conjugate

to a subgroup of D.

The view from E?(q).
y , ¥y

e = Co(ix,x")) n0

In this diagram, every line on x produces exactly

one point y and one point y', by (IV).
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4

(QIII) Theorem. Suppose that % and x' are
opposite points. Let g and @' be the set of points
y resp. y' as in the diasgram; set 64=CG(<x,x')}flﬁ.

(1Y g,8' and C are subspaces.

' is an isomorphism, sending lines of §

(iL) y-=y
to lines of g'.
(iii) Each Z(x,w) contains a unique point Wy of
¢, and A(x,wl)aga |
{iv) ¢ 1is the set of root groups of a group of

type E.(q).

'_ Proof. We xﬁay assume that ’x-“-'Xp. and x’ =X_pe
Then Gxx‘:gLSH with Lg of type }E7(q)q As in (I1),
Lg centralizes x and x'.
(iv) Thié is now clear, since XO ‘is in Lg.
(i),(ii} Let y and 2z be distinct collinear
points of g. By the Second Suborbit Lemma, we may
assume that y==Xp”a8 and Z==Xp~a7*a8' Thus, (y,z)NQ0
is a line (compare (VI)). But Xa7 fixes x,x' and vy,
and acts transitively on the points #y of (y,z).
(Note that {Xa7gz> is isomorphic to a Sylow subgroup
of SL{(3,q); cf. (3.C).) Since Xa stabilizes g, it

7
follows that (v,z2>Nqcg.
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Since y'==X“Q+“8' and z' =,X_p+a7+a8 with y' and

z' collinear, (IV) completes the proof of (ii).
(iiiy By (VI), .NG(E(X,W) is transitive on the

points of ¥ (x,w). 1t follows that G, is transitive
on the subspaces I(x,w) containing x; by (II), so
is G,.¢. We may then assume that E(x,w) =2(X,,X ),
and then clearly XU(SX(X,W)f]au Moreover, generators
for <A(XD¢XG)> were found in (VI),‘ and all belong
to #. Hence, each A(x,w1)<:g for w1€<3.

It remains to prove the uniqueness part of (iii).
Let v<EX{XO;XG)r16u As in the Suborbit lemmas, we can
use Lg &o move the pailr (xg,v) to a pair (xn,xm),
Then also xﬁeaz(xp,xb)rwa since Lg fixes x and x',

Of the 14 roots B yieldihg points X in E(Xb,xd),

. , 8
only one of them (namely o) produces an X collinear

with X . Thus, X =X , and hence also v=X .
g o o) Lo

Remark. The 'XS's inside -z(xp,xa) - form a generalized
octahedron (cross-polytope).
The isomocrphism y-+y' preserves more than just the

- collinearity of points, .as the next property shows.
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(IX) Let x,x',$,8',¢, and y+y' be as in (VIII).
Let vy,z¢€ g, j}?’*z. | o | | o

(i) If y and z are collinear, then so are vy'
and =z', and (y,z') is abelian bui: not a lire.

(ii) CIf (}{,z} is abelian but not g line, then the
same is trﬁe"of <y‘,z'),l and [y,z'}=1[y',z] is (a point
of 2. o | |

(iii) If {y,zj =x then {[y',z'l= x’;‘ and
(x,x' ,y,v' ,2z,2") =8L(3,q).

Proof. By (IL), (IV) and the Second Suborbit

Lemma, we may assume that y=X, and z=X_  with

_ 2343211,
T (=

a=p-ag and B=p~ay, 9 ), or ag.

LR L .

Then y X-”Gg and =z X—p**'B

(i) Here, B8=gp - oy -ag and o+ {p ~8} are not
T0ots.

(ii) Here, g=7 and a+ (-p+B)=-p+ (-p+a) 1is

s
the root 7 8.
(ii1) Here, B =ag, Sc a+§=p and

(-p+ )+ (-p+B)=-p . Moreover, (x,x',y,v'.,z,2')= <Xi‘18’xiﬁ>
is isomorphic to S8L{3,q), as is seen from the extended

Dynkin diagram.
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Geometries of type E7(q}, F4(q), ZEG(q).

For each of these groups, use (long) root groups as
points, Ther analogues of thé two suﬁorbit lemmas can
be proved, exactly as before. These gécmetries arise
as subspacéslof the Eg(q) geometry. From this fact,
or proofs similar to the ones just given; versions of

properties (I) - {IX) can be obtained.
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