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PR.EI!'ACE 

How well-known are the well-known finite simple groups? 

Thel."e are several apPJ.<oaches to this question~One leads 

tf) characterization theorems, and another to representation 

tneorYa A third approach, taken in these notes, concerns 

subgroups and permutation representat.ions. 

These notes record a series of lectu:res given at Oxford 

University i.n 1978. Part 1 is devoted to an extremely quick 

SUt'llmary of' the standard, basic facts concerning the classical 

groups, their geometries and their BN-pairs; i.t is 

essentially a long collection of exercises. Part 2 is the 

main part, and p:resants·some recent results and met.hods 

concerning these groups. Finally, Part 3 is devoted to 

the geometry of the not-so-class:i.cal groups ES(q). 

The background of the audience included the basic, 

elementa.ry propertles of groups J characters and BN ... pab:s. 

The goal was to present ideas, rather than complete 

proofs of the most general i:tnown results.. Consequently, 

only partial proofs of significant special cases were 

given, while more general results vJere merely described. 

References to the la.tter are given her.e~. However, no 

attempt has been made to give a comprehensive hibl:tography; 

/ 
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therefore, apologies are owed to those people whose 

important contributions have not been m£ntioned. 
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I am grateful to C. Ronse for his excellent notes, upon 

which the present account is based; to the Mathematics 
. . . 

Institute at Oxford University for inviting me. to give 

these lectures; and to Joyce 1<.:. Falkenberg for her 

excellent typing. 
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(A' ) The ,s.£.e~la1. line~r gro~ .. 1p ,. SL!.tb..<U 

All fields, vectors spaces and groups will be fipi~. 

Let F 0: GF(q) , and let V be an n-dimensional vector 

space. over Xi' with n ~ 2. 

SL(V) :.: SL(n,q) denotes the group of all 'linear trans­

formations on V of det.erminant 1, \llhile GL(V) = GI.(n,q) 

denotes the group of a.ll nonsingular linear transformations 

on V. Both groups are transitive on the set of i-spaces 

for each i:'7, 11 - 1. 

!l~.:'p!\ir.!. Fix a basis 81 $" H ,en of V. Set 

B =: stabilizer of {(e1 , •.• )e i > t i "'" 1, .•• ,n -lj J 

N=stab:U.izer of t<el~;t ... ,(en}J> 

with both stabilizers taken i.n SL (n)q). Then 

N &! (Ih't')n-l Xl Sn) where 3n is the Weyl group .. 

~x¥n'l!l...P1!ff!~o1..i.2-,..!ill?.8!.2~RS~ Each of those containing 

B is just the stabilizer of some (e1) ••• ,e t ') • 

lOa. 
conjugates of t ( 1 •• 0 ) \ U E F1 , and are isomorphic 

o -1 

to :r"'+. Thus) each consists of all transformations 



* v4v+af(v)a for. all C,fF and some a~V··{Oj, f E V -{O). 

Notice that each such transformation (called a transvection) 

induces the identity on both ker f and V/ (8) • 

~~. SL(V) is generated by its trartsvection 

groups. 

I~orem. SL(n,q)/scalars is simple, except for 

SL(2,2) and SL(2,3). 

See Arti.n [1] or Garter. [7]. 

We wIll now assume that V is also. equipped \dth a 

form ()): Vx V ... F; for the time being the form will 

be assumed bilinear, and subject to one of the following 

tt>10 conditions Vu, v E V: 

.§.YmP1&£*ti-£ .Q!:th.o&qr~1~£ 

(v,v) == 0, (u,v) =- ~ (V, lt) (u}v) "'" (v"u). 
~ 

If Xs V, set XL ~~ i v E V \ (v,x) =: 01. We then' 6.1rther 

assume that Vl':e 0 (so V is tt.£nsj.lla'd~!1.!). 

1ep:tm.!\. If W s V then dim V>:: dim W + dim. WJ and 

(W.t).l =W. 
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Thus t W nwl = 0 iff V >= W (fiW1; in this case W is 

called !!.~~:!:!!tlu~ar, and \<1e write V =W J. Wl.. 

~_~Fl: g ~ GL(V) satisfying (ug,vg).." (U~'l) 

VU s V c V. The set of isometries forms a group, called 

and denoted as follows in OUI.", tviO cases. 

symplectic group Sp(V) ~ Sp(n,q) orthogonal group O(V). 

(loC) §l'!!!El~~!=l*c. g~ome.!!..J!. 

Assume that V 1.8 symph:ctie. 

;~a@J.~. Take any 6 1 ~ 0 in V, and any f1 E V - e 1 
.1 . 

Then (el) f1/(e1,f1» ~l. Replace fl by f1/ (e l '£1) 

and deduce that 

(el,e1)=O=(f1,f1) and (e1 ,f1)==1=-(:f:l,el). 

Set WI "" (e1)f1), and compute that W1 1iWf!:I o •. ' Thus~ 

V =W11. W(l, and (,,) induces a nonsingular symplectic 

U gf:wmetryfi on W1l.. This yields the following. 

el~~··$e J £1'.·.'£ (where .m m 

(e i , ta j ) 0= 0 = (£1' f.) and 
. . j 

If (li'{:1P'Yi~()i E F then 

m~: n/2.) such that. vi' j : 

(f:~i,fJ) ~0:lj;t<; -(fj,e i )· 

(2:a i e i +l;Pifi' l~Yiei+ L:0if:r.) ""'i:(a.i~i - 13 1 '(1). 



there is a unique symplectic geometry for each q :lnd 

each l!.ven n. (Hert~, "unique". refers to uniqueness up 

to an obvl.ous notion of equiv.cllence of spaces and forms.) 

Here) g I:. GL(V) is an isometry iff det g =- 1, su 

" {2 '\ -. CI (2 ) 0P\ ,q/'- ,-,., ~q .• 

The proof of the thf.:'orem also yields severa.l 

transitivity properties: 

P(!r21j;l!F...Y~ Sp(V) is transitive on (the set of) 

symplectic bases. 

~2.1Jaa. Sp(V) is transitive on the ordered pairs 

of non-perpendicular l-spaces, as well as on the ordered 

pairs of district perpendic~lar l-spaces. 

(to i. ) if (W ,W) ::;: O. 

CO';"f.'lJ;.ar.,Y- Sp(V) is Lransi.tive on the t.}." sub-

spaces of dimension j for each j"" 1, .•• jm. The 

maximal t. L subgpaces hav'e dimensi 00 m «cp .' -.,em) 

is an example of one). 

Such traT,lsithrity propert.ies are all contained in 

the foU.o'9<dng bas:i.c result. 

• 



and assume that 

h ; 'W ... ~.iJ' :ts an invertible linear transformation such. 

that ''iv, 'iii E.W. Then ther{a exists some 

g E Sp (V) such that g \ W::' h. (Arttn [1] . ) 

If W-5.,V naturally inherits 

a. notlsingular symplectic geometry. '(Compute,'using 

w + wnw J., V + Wnw 1.) ~ (w) it) for w, v ,E W • ) 

!!~:: E.E!ir ~ B == stablltzer of {(E!l'." ,e i ) r :t""'l, •• 0 ,ro1 , 

N =: stEibil:tzer af L (e1> ~ ~ •• , (am>' (f1 \,~ .• ~ rirn) j. 

This time N::c."'; fK*)m ~." XI (2m)4 

elernentary abelian group of 

the Weyl group, of type c . 
m 

SJ L ) 

that. 

where 2m denotes an 

ortie!: and 2m)-\! " is b 
m 

Bare 
. " .. 

precisely the stabilizers of the t. i ~ su.bspa.ces 

Each 1.q.l11i.,;co<tt;_Arq~ is a transvection group 
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l v·+ V + n.(v,a)8 , 0.. F ~"'}, one for each I-space (a,). (Here 

and elsewhet'e ~ short root groups wi.ll usually he omitted 

from our discussi.on .. ) 

Ih~.p!,¥..m. Sp(V) is generated by its transvection groups. 

This fol1o~,:s from the .BN structure.J but can also 

be easily obtained directly by starting ~vith 

Sp(2 ,q) =" Sl.{2:Jq) and applying it1dtlcti.on~ 



Th S· I? .)/" l' ...... ~El· P\~~m'(i_ <. - . J is si.mph~ fcn 2m::> 2, with 

the single exception Sp(4,2)~~S6. (Art.in [lJ.) 

E..xaml?J.~ • Let VI be a 6 -'d imens ional vee tor space 

over F' = GF(2), and let v l ' •• ,v6 be a basis. Note 

that 36 acts as a subgroup, of 'GL(W) permuting 

[vl ,4,.",v6J. Define (,)! WxW'" F by (Vi'Vj ) =: l+oij" 

This yields a nonsingular symplecti.c geometry (compute!)., 

Clearly, WI := n~vi) is S6-invariant, so 56 acts on 

the space v;::;:~.;rll/t.Jl' whi.ch is itself nonsingular by a 

previous lemma~ The transposition (1,2) E 86 induces a 

transvection v ... v+ (v,v1 +V2) {vI +'\'2) on W , and hence 

1 V 'J'h· i Id I' (62 )" =< ,2'" - 1 a so on . "", .1.9 yes a ... transvections in 

Sp(V). Thus, S6~ Sp(4)2). 

An alternat.ive approach to part. of this f.dentification 

of Sp (4,2) is p·.r.ovided by the following 

2m . 2i 
\Sp(2m~q)!=qm : n(q wI). 

1 
, . ,,' 2m, • 

f.!.oof. There are q - 1 chc.H.ces for and then 

( 2m 2m-I)' I' "1')' 2m~1 h -c q - q . {q-."" q C oices ,a.or fl 

Now induction shows th.'iit the number of symplectic bases 

equals the stated produc t. 
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Since uni.tary geometry resembles symplectic geometl'Y~ 

we will discuss it before retu.rning to the orthogonal 

case.. Here,. F will denote GF(q.2), and hence admits the 

the involutory antomorphism a "'". act) rr. e F. This ti.me, the 

(hermitian) form ( , )! V X V ... F will satisfy the following 

( vu, v, W E V., "'if a. € F) : 

(u+v,w) ft; (u~w) + (v,w) 

(au,v) = a.(u,v) and (u,av) "" (;"(u)v) 

(u~ v) ;::: (v,u) 

VJ.. =: 0 (nonsingularity). 

Note that (v, v) :;;': (v,v), so (v, v) ~: GF(q). 

Once again, if W ~ V then dim V::: dim W + di~ WJ. and 

(WL)l =W, and W is called nonsingular if W· nW:l:: O. 

But this tLme, many I-spaces are not t.t.: 

TF~qE~. There is an 6rthonorn~1 basis. 

Proof. 1) :>iv:(v,v):fO if n>l. For, let --
(v,v) := 0"'" (~·;)w) with w;' v·L , Then we may assume that 

('V',w);:, 1) so that (v+a:w, v+ OJN)"" (v,v)+ cr.(w,v) +u(v,w) 

+ (a.:w, (tV]) :t'; (L + (i Is 0 for some Cf. f. F. 

2) V;'" <VI .l v l . and (~) induces iii unitary geometry 

on Vl~ Also). (v,v) E GF(q), so (v,v) =a.-(q+l)::.tllcta 



for some a. E F, and then (ov, Cl,'\7) ,... 1. Induction now 

completes the proof. 

8 

fQroll~*y. Each vector space over GF(q2) has a 

unique unitary geometry. If vl' .' •• ,vn is an orthonormal 

basis then (Y:CtiV i , n:\ivi) =r?'i~i~ 

IJ;1~.£~~. There is another basis of one of the 

following types: 

n ::;:: 2m + 1 : d, e 1 ,. • • , em' 

where (ei'e j ) "" 0 = (fi,fj ), 

( d , d) == 1 ~ (d , e .) == 0 = (d t it) . 
1. . 

(e.,f.) =6 .. "" (f.,e.), 
1. J :lJ . J 1. 

Proof. We may assume that n::.. 2m~ There is a J_ 

Ell + 0 with (e1,e1)=O (such as Cl.Vl + v2' where 

vector 

q+l == 1" (1 - ), and Some f1 ¢. e 1 
.L with (el,fl)=l~ Now 

proceed as in the symplectic case. 

This time the group of isometries (the unitary group) 

is denoted by GU(n,q), while SU(n,q) """ GU(n,q) Ii SL(n,q2). 

If a.ul.. == 1 for ~. '"" 1, •.. ,11, then with 
.. 1. 

respect to an orthonormal basis 

~trix diag(o,l)$'.tOn) is in 

the diagonal 

GU(n,q); its determinant 

. is nat ~ and hence is an element of F of order q + 1. 

More generally, GU(n,q) can be identified with the grou.p 
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of all n~,( n (unitary) matri.ces (I)0ij) satisfyin.g 

(tAij) (nij) = 1. Thus, (det g)q+l =: i ' for all g E GU(n~q). 

If S consists of all scalar transformations v ... (1.V with 

q+l a. ..: 1, then GU (n,q) =-: SU (n,q)" s~ 

Lemma. SJ}(n,q) is transitive on,nonsingular (reap. 

t.L) j-spaces for each j ~n/2. fA maximal t.i. subspace 

has dimension [n/2]. 

~.rt .. ws:t:.F.~sture ~ Let n. = 2m or 2m+ 1 as above and set 

B='stabilizer of l<el,~ .. )ei;'\i=l,.o.,mL 

N::;: stahilizer of £ (el'> 1 ~ •• , (em>' (f1 ),···) (fen> 1, 

with both stabilizers taken in SU(n,q) or in GU(n,q). 

~~ara_~.~~par~uEs behave as in the s~nplectic 

case, the Weyl group is as before, out the root system is 

of type "BC ft 
m (the union of a system of type 

Bm \41 th one of type em) • 

~'?.n1Lr.oot group~ again consist of transvections, a.nd 

can be described as follows • 'Fix cf c F with; cr:= -0 F o. Set 

(u:ov) , =o(u,v), sO(V,t:t)l~cr(V.,u) == -cr(U;V) == -(u,V)'. Then 

l v .... v + u(v ,a)' a \ a. f GF(q)l is a long root group for each 

t. 1. l-space (a) • These t:t'ansvectlons generate SU(n,q). 

1.heor,?rn..:. SU (2m t q) l! Sp (2m,q). 



f..!:?..Q'£. Wr.ite fit == -fil ri. Then 

<I:ui. e i + ~B i f t t, !:Yiei + 125 i fi f )'= 1.-: (IT! 51 - l3i=1 i) ) 

which implies the result~ 

10 

Note that the long root groups of Sp(2m,q) are also long 

root groups for su(2m,q) •. Also, SU(2,q) := Sp(2,q) "" SL(2,q) 

(compute!) • 

This time, sU(n,.q)/ scalars is simple for n >·2, 

with the e~ceptlon of 8U(3,2) (lluppert [141 or 

Die1Jdonne [13]). Also, I su(n,q) \1s computed as before. 

The orthogonal case is somewhat harder~ Since we 

want to include characteristic 2, we will need both Cit 

bilinear form and a quadratic form .. 

Let V be equipped with a nonsi'llgular, symmetric 

hili_near form (,). Thus, V is an.orthogon~l geometry 

in odd characte.ristic. A quadratic form aasoe iated with 

( ,) is a function Q: V ... F satisfying (Vu,v E V, 

'rJaEF): 

Q(aV) .., a 2Q(v) and, Q(u+v) :: Q(u) + Q(v) + (u,v)~ 

Rema~~. lj.Q(v) == Q(2v) == Q(v}+ Q(v) + (v ,v), so 

(v,v) := 2Q(v) • Thus, Eo'!:,' q odd) (,) and Q deter-

mine one another. For q even, this is false; however, 

• 
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In either case, v , equipped with Q, will be 

called an ort,hogonal geoJIl,e,!::ry. 

Note also that dim V iseverr if q is even. A 

modification of this definition. is needed when dim V 

is odd but q is even; this will be discussed later in 

(1. F) • 

An .!!9ln~~t~ is a linear transformation g E GL(V) such 

that Q(vg ):= Q(v) (and hence (ug , v g) = (u, v» for all 

U, v E V. The group of isometries is denoted by 0 (V) :; 

~lhile SO(V) == O(V) !i SL(V). There is also a normal sub~· 

group O(V) of index 2 in SO(V) which has yet to be 

constructed (and only will be in cha.racteristic 2); 

here, O(V) = O(V) , with only one e:xception~ 

. A Singular vectoJ; is a vector· VF 0 satisfying 

Q(v) == O. Any other nonz~ro vector is called !!£!,!sin&1.,lf!F.­

A tota1tx s!nsul~F (t.s~) subspace is a subspace W 

satisfying Q(W) "'" 0, and hence also ('W ,W) ... O~ Thus" 

if q is even then t.s. implies t.i., but the con­

verse is false. 

As before, a subspace W is called !!2p~!n~~;: if 

WnW 1 
=: 0 e (Note tha t Q is irre levan there .. ) ~1J1 iug! 

If q is even and v is a nonsingular vector, then 

(v) is n££ a nonsingular subspace. 
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L,efi'lnl..J.i .. If Ws:V then W1/WrlWl. acquires an ortho­

gonal geometry via the d.efinition Q(v+W}:it Q(v). 

Following the pattern of (l .. e) and (l.D) , we 

have to discuss the follmving topics for V and O(V): 

bases, uniqueness of geometry. types) transitivity properties, 

generation, simplicity, a.nd BN structure. 

~§\se~.. If q is odd, then V has an orthogonal 

basis (whose existence is proved as in (1 .D». However, 

we will aim at a different type of basi.s, which exists 

in ea.ch characteristic and is related to the BN structure a 

The orthogonal geometry V is called ~~~sot!£P~~ 

if Q(v) j 0 for all v f o~ 

LeIr~,!. If V is anisotropic, then diriI V ~ 2* If, 

moreover, dim V == 2, then V is of a unique type, and 

has a basi,s dtd t satisfying Q(d r) =: 1·:. (dtd'). 

, 

Proof. Assume that n:t2, take any e:/:O and any ,.-

d ¢ e 1
, . and consider W"" (d "e) • Set Q(e)'" t~ t .and adjust 

d so that (d,e) "" G. Set Q(d):= os for some o. Then 

. ) 2 (2), Q t a.e + d "'" Q. ,€ + ti f. + a. e :; e 0:. + 0, + a rfo 0 for all a. E F, so 

x2 - x + 0 1.8 an irreducible polynomial. Let a .be a root 

of this polynomial in GF(q2), and let bar denote the 

involutory automorphism of F(S) = GF(q2)~ Then 
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Q(a.e + f;d) == E (e1.. + pO) (rt + fle). This proves first that 

Q(W) "'" ~"" so we may take E: == 1; and then that W has a 

unique type. 

Finally, if n ~ 3 and v E (d"e) 1. - (01, then 

Q(w) ..., -Q(v) for some f;1 E W. But then Q(v+w):= 0, 

contrad.:i.cting the fact that V is ,anisotropic. 

!p.eore!:!!~ There is .a basis of one of the following 

types: 

(i) n=2m:e i '.'.jJem, f1, ••• ,fm with Q{ei)=Q(ft)=O 

and (e i ' f j) ;:6 6 i.j ; 

( i i) 11 """ 2m + 2 : 

and fi as above~ 

Q(d')=l~ (d,d'), 

(iii) n ::= 2m + 1: 

in (i.i) ~ 

d,d' ~ 6 1" •• ,em' f l' . C 4 fm' \/lith e i 
. (d, e i) =: (d, f i) == (d! ) e i) -= (d' , f i) == 0, 

Q(d) :/: 0, and (d,d') anisotropic; or 

d , e 1 ' • • -, em '. f 1 ; .... ) fm.' be having as 

?r~9.2.£~ By the preceeding lemma) l.~e may assume that 

there is a singular vector el • As usual, ther.e exists 

f w:f.th (e1 ,f)=1. Then Q(o.e1 +f)=Q(f)+n, so (e1,f) 

has a ¥.n!.9.l!t;; .. t.s~ I-spa.ce other that (a1). We may then 

assume that Q(f) =: o. Now set f :'J: f 
1. ' 

observe that 

po;:?}..lC\~.y> Q has one of the fol10\vi'ng shapes; 
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Q(f,(liei +~Bifi)::: rc:tlPi; (i) 

(ii) 

(iii) 

Q(yd+ "rd' +):o.i6i +):f'j,f i ) = 1:0.11'i + .,la + Vy' + y2; 

Q(yd+Luie i +Z~ifi) =l.:ai~i +'./0'. 

Cqrol,la.rX. For each even n ,there are at most two 

types of orthogonal geometries~ For each odd nand . 
odd q there is essentially just one such type .. 

f.E2()~~ Defining Q by (i.), c~y 1 ..... , or (iii) produces 

a quadratic form, and V.L:= 0 by a simple computa.tion. 

Uniqueness for (ii) is clear from the lemma. If 

n == 2m+ 1, replacing Q(v) by Q(v)/cr for all vEV 

does not change anything except in a tr,lvi,al manner, 

a nd hence the geometry is essentially unique .. 

P~J.!!!.ition!. In (1), (ii) and (iii), V is said 

to have tYEe O+(2m,q), O-(2m+ 2 ,q) and O(2m+l,q), 

respectively_ The corresponding groups ~re denoted as 

follows (where the last column remain.s to be defined): 

QJYl. SOOO~ .uill. 
+ o (2m,q) SO+(2m,q) + n (2m,q) 

O-(2m+ 2,q) SO - (2m + 2 , q ) it (2m+ 2,q) 

O(2m+ l,q) SO(2m + l,q) O(2m+ 1,q) ~ 

or 

) 



J<emaF~' The geornetriesof types O+(2m,q) and 

0- (2m,q) are, in fact, distinct. This. follows, for 

example, from the fact that they have different numbers 

of t.s~ l-spaces (see below). 

f_qFol!~ry. O(V) is transitive on t~s. i-spaces 

for each is~ dim V . (or i::;;~ d.im V - 1 in the case 

of O-(2m,q». Also, O(V) j.s transitive on the set 

of ordered pairs of distinct perpendicular (reap. non-

perpendicular) t.s. 1-spaces. 

The number of t~s. subspaces of e·ach dimension is 

easily counted (as is also true in symplectic a.nd unitary 

geometries). The method is elementary; two examples 

will be given for future use. 

r;!<,~E~.~ The ntunber of t.s. I-spaces 1.5 

(qffi_1) (qm.'l+l )/ (q-l) for a geometry of type- 0+ (2m,q). 

(This number is (qm+l) (qm-l_1)!(q_l) for an O-(2m,q)­

space.) 

~. Let !'pm denote the number. qf vectors ..., such 

that Q(v):= 0; this ls also the o1..lmberof solutions to 

LUiSi =: O. Clearly, t:pO == 1. I.st m:t! 1. If cr.1:/: 0 then. 

a1 =: -ail ~ a.i~i' and this provides (q ':'1)q2m-2 solutions. 
2 

If 0,1 == 0 then Sl is arbitrary, and we obtain qrpm-l 



solutions. S:tnce 

(tp -l)/(q-l) is the number of t.s.I-spaces, our 
m 

assertion is proved. (The case, O-(2m,q) is very similar.) 

.§~amplE!. 
m-l . 

For an O+(2m,q) georr~try, there are exactly 

2 n (ql.+1) 
1=1 

t~s. m-spaces •. 

E.roo.f.~'le will count the pairs «v) ,t1) with 

Of. v E M and Mat .. s. m-space. If am denotes the 

number of such subspaces M, then t.here are ~m(qm-l)/(q-l) 

such pairs. But each (v) determines an O+(2m-2,q) 

space vJ. / <v), whose t. s. m - 1 -,.,spaces corr(~spond to 
. ::' 

those t. s. m~~paces containi.ng (v) .' By the preceding 
. m m-l' I 

example" the number of pairs is also am~l(q ~·l) (q +1) (q-l). 

Since 01 == q)l c: 2, the result follows. 

~rat:ion; If Q(a) + 0, def:f.ne 

ra: v--tV ~ (Qt:t s. 

r by a 

Then ra induces the identity on al- and sends a to 

-a. If q is even, r is a traflsvectiol1. 
a 

odd, then ra is a reflectlono 

!.1!eoreE!- O(V) => <ra \.Q(a) :/: 0) 

This is proved by induction; 

Dietl.donne [13]. 

except for 

see Artin 

If q is 

+ , ' o (4,2):::: S3( 82" 

[1] or 

• 



illYl.. 
1'E~O!~. 0 (V) has a normal subgroup 

index ') .... in SO(V). 

'l(V) ~ , . havi.ng 

Again see Artin [11 (for q odd) or Dieudonne [13]. 

They use the preceding gtmeration'result, t:ogether with 

C:U.fford algebras v 

~!pgJ .f2~n .. S '.' £~.n.. 

£~~{.?m.2g). Lit .cI denote the set of all t.s. 

ro-spaces, so \d\=2m~ (qi+ 1 ). Let Q(a)10, and 
1 

consider the action of r = ret on ,). If Mr .::: 1'1 . for 

ME ./, then the definition of r a implies tha.t ei.ther 

a E M or M s a 1. • Since Q(a) 1: 0 =: Q(M) ~ 'the first 

possibility cannot occur; if M. s a J, then a E M.1. =:: M 
.1 

since M ~ H1. and d:i.m M == dim V - dIm t4,;:m, Thus, 1:' 

has \",,1'1/2 transpositions on .I, and hence induces an 

odd permuta.t:i.on there. 

+ Now simply define n (2m j q) to be the set of ~dements 

of + o (2m,q) inducing even permuta.tions on J. 

Se.t 
'" 2 V-V""" t:';F(- . ) 
'I - 'C" GF (q);.;t - q : and define 

~ ~ 

Q(v ® 1) = Q(v) $ I Then Q !~xt0nds to a quadratic form on 

v,..., a ~""d tu":'n~ V"~ i t O+('l 2)' (Tl· k f , oa ... _ n'o an t~m,q ,space. '. ll:n :.a..u 

terms of. the basia and the irreduc:i.ble polynomi,al used 

to define O-(2m,q):t but let ~,'y', cli~ l3i E GF'(q2).) 



Then O(v) ~ O(v) ~ 1 s o (V) • Define n(V) by 
,-.' 

O(v) 01 = (O(V) ® 1) fI O(V). If Q(a) f 0 then 

ra®l "'" ra. ® 1 ~ 0 (V}) and hence ra rI n(v). Thus, 

I 0 (V) : n (V) I = 2. 

~~':!!.E.liclli. See the table in (I.G). There, 

Pn(V) =n(V)/sca1ars, PSp(V) ='Sp(V)/scalars, and 

PSU (V) == SU(V)!scalars. 
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11~,-p'aJ!'. Let e1,.·.,em, f1, ••. ,fm be as before; 

d and d t are irrelevant for now. As in (l.C) and 

(1. D) , define the following subgroups of O(V): 

B == stabilizer of (e1 , ••• ,e i ,> Ii:.:; 1, ••• ,ml, 

N:= stabilizer of {<el " ••• , (em); <,fl >,···, (fro) J ~ 

This provides a BN-pair for O(V), with Weyl group of 

type B • m The maximal parabolic subgroups are simply 

the stabilizer's of t. s & subspaces. 

Similarly, n-(2m,q) and n(2m+ l~q), have BN-pairs 

of type Bm. 

~se 'Q+(7.~,gl. Here (e1, ••• ,em_1) is in exactly 

two t.s. m-spaces: (Ell' ••• ~em> and (CI ,· 4,_ ,em-l' fro>; 

and these are i.n different ~l (2m,q) -orbits. Thus, the 

stabilizer of (el, ••• ,em_1) is no longer a maximal 

parabolic subgroup_ When Band N are d.efined as above, 

the Weyl group has type Dm' of index 2 in Bm" 
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~~l:9t;lLL'2S?.ot 8E2.lf.P..!' Assume that t. s. 2 -spaces 

L == <a~b~ -exist. Then long root groups T(L) are defined 

as [g E O(V) \ g induces the i.dent1.ty on LJ·l. A 

computation shows that. r(L) consists of the transformations 

V' ~t- V - a.(v,a)b+ a(v,b)a. with cr. E F. 

A l!?!Yi_:;:p..Q!: ••. f)ement is defined to be an element of some 

sllch T(L). 

~~. If t.so lines exist then O(V)::: (T(L) I 
Lis at. s . 1 ine) • 

It Short" root groups are defined only y,1hen the Weyl 

group is Bm, em or BCm" However, as groups of linear 

transformation.s these also exist for Dm, Namely, let 

dim <a.h;=2 with Q(a)""O~ Q(b):r.:l and (a,b)=O~ 

Then the desired subgroup of O(V) consists of all 

V-I>V+o,(v,b-a.)(a+b)-(t(v,b)b with 0.0K. 

Moreover, G(V) is always generated by all long and short 

root groups. 

(1) Each r. is in O(V) - o(v). The group + 
(2 (2m,q) 

haa 2 orbits on the set of t.s. m-spaces of V. USlllg 



L.V 

the transfo-rrnatlons it is not hard to show that 

two t.s. m-spaces E and F are in the same orbit iff 

dim E/E n F is even. 

(ii) We have seen that Sp(2m,q) is a subgroup of 

SU (2m,q), generated by suitable long root groups of the 

latter. 

SU(2m+ 1,q) s 

0- (4m+ 2,q), with unitary transvection groups being 

long root groups of the orthogonal groups .. 

Start with a unitary space V over 

regard V as a GF(q)-space, and define Q(v)'= (v,v). 

This yields a quadratic:: form (over GF(q», and turns 

V into an orthogonal space. Thus, SU (n,q) :;;; l:~(2n,q). 

A I-dimensional t. L unitary space over GF(q2) becomes 

becomes a 2-dimensional t~8. subspace; this implies 

the last part of the resulto 

(iii) What about n(2m+ 1,q) when q:= 2 i 7 

Let V be a 2m+ 2-dimensi.onal orthogonal GF(q)-space. 

Take anynonsingular vector w, and aet W = ('iiI). 

Q£F~niJ::i2!!' O(2m+ 1,q) ""~ o(2m+ l~q) is the stabilizer 

of W in n(V). 

Iheo~££!. o(2m+l,q)!?:! Sp(2m,q). 
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,P.r.o.oJ.~ Since (w ,H) !%: 0, the space V =;= wJ'lit-J inherits 

a symplectic geometry from that of V. Each g E n(2m+ l,q) 

indttces a symplectic tra.nsformation g on v. We will 

show that, g -~ g is the desired ispmorphism. 

I-h If g == 1 then g induces the identity on W1/W 

and preserves Q.. It follows that g E (rwl, and hence 

that g;: 1 since rw ¢ n(v) .. 

.2.!!!:£ .. Each T«"w,a» with singular aEwl. (defined 

at the end of (I.E» induces a transvection on 

and hence also on V. All tral1.svection groups of Sp(V) 

arise in this manner, .and generate Sp(V). 

~: o(2m+ 1,'1) naturally has a . EN-pair of type 

Bm. Its long and short: root.groups correspond, respectively, 

to the short and long root groups of . Sp(2m,q)~ Moreover, 

the underlying space Wl. (equipped with Q) is !.'eadily 

seen to be essel1tially i.ndependent of the choice of the 

original space V. 

(l.G) 

Some properties of syroplectiG:t unitary and orthogonal 

groups are sur.nmar:tzed :tn the accompany:i.ng table and. the 

fi.rst 6 i terns on the following list.. Many of these 
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properties have been di.scussed$ and many will reappear 

later in these notes_ The reader may wish to regard these 

as a formidable exercise, with Artin [i]t Dieudonne 1:13] 

and Carter [7J available if rescue is needed from the 

hardest parts of them~ 

NotatJ2!l- G is the re l~mant group. A £oi;p.t is 

a t.i. or t.s. l-space, and a line :ts a tel. or 

t.s. 2-space. (In the orthogonal case, only t.s. 

subspaces are consl,tiered now.) 

(I) If points exist but not lines, then G is 

2-transitive on the set of points (with the exception of 

rt(2,q» . 

. If lines exist and geometries of type n+ (4,q) ,are 

excluded, then G ·is transitive on the set of lines 

and has rank 3 on the set of points.. If·· x is a point 

then the 3 point-orbits of Gx are lx), the set of 

points inx·l other than x, an.d the set of points not in 

Xi; their lengths are given in the last column· of the· table. 

Two points are perpendicular iff theyare collinear. 

(2) C/ Z(G) is usually simple (see the table) • 

. (3) G has a BN-palr, with corresponding root system 

in the table. The groups Band N are obtained as 

follows. There are li.nearly independent vectors 

• 
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el, ••• ,f1 , ••• , with (ei) and (fi ) points and 

(e t , fj) = 6 ij , such that (a l ,. •• , f1 p •• ) 1. contains no 

points. Then B is the stabilizer of t (e1) , (e1 ,e2>,.".1 

and N is the stabilizer of {(e1t, ••• , (f1), ••• J •.. The 

stabilizer of at. i. or t ~ s .subspa.ce is a maximal. 

parabolic subgroup of G, except in the case of t.s. 

m~·l~spaces when G::: n+(2m,q). 

(4) G is transitive on the t.l. or t.s. subspaces 

- h di' t ha ()+ '2 ) ot eac . mens~on, excep t rt •. ( m,q . has 2 orbits. on 

the set of t.s. m-spaces, which are interc:t"tanged by 
t-O (2m,q). 

(5) .Syt'f!Elec.tic Blld y!!it.ary" cases @ Each point 

x'" (a) yields a. long root group T(x), which consists 

of the q transvections 

v· ... v + a(v,a)a, o. E GF(q) (s}"l1lplectic case) 

v .... v + a(v ,a)a, Ci "" -(1. E GF(q2) (unitary case). 

Clearly, 
+ 

T{x) ~ GF(q) • Also~ G permutes the set of 

T(x)'s as it does the set of x·s, as a 2-transitive 

or rank 3 group (cf. (1»). 

If x' and yare distin(:t perpendi.cular points" 

then (T(x),T(y»..:T(x)xT(y); if x and yare 

non-perpendicular points, then <T(x).~ T(y) ~ 3L(2 ,q) 0 



(6) Qrthogonal cases, when. lines exist: each line 

L=(a,b) yields a long root group' 

T(L) "" [v~v·a.(v,a}b+ o,(v,b)a\0, t: GF(q») !!!!GF(q)+, 

which centralizes L.l. • 

24 

Let Land L f be distinct lines. If L t < r.-L
, then 

(T(L), T(L'» =T(L)xT(L 1
); if dim Lt OL.L=l, then 

(T(L), T(L'» has order q3 and is isomorphic to a 

Sylow subgroup of 8L (3 ,q) ; and if L t n L l. "" 0 then 

ZT(L), T(L'» :-~ SL(2,q). (This is provedbya straight­

forwa.rd calculatioh.) . 

(7) 1i~_S R!,opert,t'. If a point x is not on a line 

L, then x iH . collinear w itheither exactly one point 

of L or. with all points of L. (For, dim x,j. n L == 1 or 2.) 



'Group, 

Sp(2m,q) 

n(2m+l',q) ) 

SU(2m.,q) 
(m>i) 

"I Singular 
: point,s 

2m 1 q -

':::q""~ 

I t.s. 
m-spaces 

m 
~::: I ''I'T(q~+l) 

::,1 

;2)~'Sj 

Sp(4,2) e! $6 
.sp(2,~) .. SL(2,:3) 
n(3,3~, e!A
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:' 

I ,n, A-' q' _4f:(q~i-l+l):,INone :,:: 
1 " ' 

m "', " ," , 
SU(2m+l,q) I (9.:f'~"'tl) (;"'''''-,121 ~'!r(CJ;~i++:f-1>' SU:(3"i.)9:!31~~Q8::: 

1, '" ", (3,l.+2,:'.:denotes the~, 

.n.+(2m,q) 

It- (2m,q) 

q-l 

* Other ·'natural" . ..~.:. 

o(3~q) I!!PSL(2,q) 

".-. ~~ . 

. ex~a~pee~'l ,group 
: of-,order 27:and ", 
exPonent 3 ~;) , , 

.. , 

?(:21 rb+ll)-I~~~<I): Z(iq
q
- ~~/} d . 

: 'or ts: ' " 
·,of

1 
~~ual ~~ Q+{4',:q)*" 

,8, ze,' , 

m i ·".(q;.Tl) 
• ",2 

'Jo -(2,~) 2e Z'(~tH)/c1':" 

,t.s) , 
m-l,:-spaces' 

i'$'om6i-phisms betwe~n cla-ssicai~: groups: 

l'ct'(4,q)!Ii! PSL(2',q )xPSL(2,q) 

·PO~~4~q) 9!!PSL(2,-q~) 

Po - (fi ,q) ..:; Psu{4,q) 
pn+(6,q),~ PSL(4,q) , ' 
O(2m+l,2i ) ~Sp(2m,2i) 

n(S,q) ~PSp(4,q)," 

Order of Order of: 
n long" U short" 

Root root I root 
system groUps groups I Rank 3 subdegrees" 

em q ,§ 

.M 

J'; 
-,m 

" q";; 

(in>:i) 

q 
(m>l) 

:. ~ 

q 

2m-2_ l 2m .. l 
I qq., ,q 
'q-l 

"'., 

C' m 

,', 

~' §:' :,~2:~ 1 q
2(g2m-2_l)-(g2m-3+i) ,q4m-3, 

,~, q2_l ' 

':-.... 

BC **: I q" §:; 
m" , 

,', 2 
.. q 
"~ 

", 2 <g2m-2_1) (q2m-l+i), 4m-l 
l,q 2 ,q 

:-::. 

D' 
'm 

B: '­m-l,: 

q -: ' 

, I :,(m> 1) 

.- (m>l) q -,1 

(m>l) 

q l,q., " ,q , , ***'1' (gm-l.1 ) (gm-2+l ) 2m-2 
(m> 1)' q-l, 

(gm-l+l ) (gm-2..1) 2m-2 
l,q ,q 

(m>! 

", q,:: 

(m>2) , 

::q 

(~,>l) ;,,: q-l. 
." "(m>2) 

**" ,Union O("Bm and:' em . in-, 
'e.g., BOUrbakl f s appendix [5] 

***' . 
; These are· not root groups from 
, the BN viewpoint; ,they merely , 

i exist as linear t'ransformati()ns i, 

'~; l'ran5vect"ions . " ':, ' 



Part 2. Recent re~~lts 

(2.A) . !b-~Buekenh2.Et"'Shl:ll;t Theg..t!:!!. 

Consider a geometry consisting of a ·finite set of 

E.0i~!lt.?., together with a family of 'distinguished subsets 

called 1 ine~. Assume that th~ following axioms hold: 

(1) The set of lines is nonempty; each line has 

a.t least 3 points; 
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(2) No point is collinear with all remaining points; 

(3) If x if a point not on the line L, then x 

is collinear with either one or with all points of L. 

B}lel$.e:nr~9~~!:.::§llJ!lt Theoi:.em. If (1) - (3) hold, then 

either 

(I) The geometry is isomorphic to the geometry 

consis'ting of all t.i. or t.s. points and lines of a 

symplectic, unitary or orthogonal space; or 

(II) If x and L are as in (3) then x is 

collinear with exactly one point of L (in which case 

the geometry is precisely the sa~e as what is called a 

generalized~~~rang1~). 

For the proof, see Buekenhout·Shult [6], Shult [29] 

and Tits [30]. 

Note that axiom (3) is the basic one. That it holds 

in . (I) was already noted in (1.G(7». 



b2P1. ic,~ t j..o..n..~ .• 

1. Characterizing generalized hexagons (Yanushka 

[33], Ronan [26]). 

2. Characterizing classical groups via rank 3 

subdegrees (cf. (2.B». 

3. Aschbacher [2] used this theorem in his 

characterization of (more or less) simple groups G 

having an involution t such that CG(t) contains 

SL(2,q) as a subnormal subgroup for some odd q. 

4. Characterizing E6 and E7 geometries 

(Cooperstein [8J). 
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5. Further characterizations of classical geometries. 

(2. B) .Bank 3" c.Qariicterization!L. 

Let G be a transitive group of permutations of the 

finite set x. If xEX and Gx has exactly r orbits 

on X, then G is said to have !.,a_l'!!5. r on X;«the 

lengths of these orbits are the subdegree..! of G. 

!tt~.c.?t~. Assume that the subdegrees of a rank 3 

group are as in the last column of the table in (l.G), 

for some prime power q. Then there is a natural way to 

introduce lines so that the Buekenhout .. Shult Theorem 

applies. (In particular, if m is not too small then 
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X can be identified with the set of points of a classical 

get~etry, and G is a group of automorphisms of the 

geometry.) 

Remarks. 1. In each case where X corresponds to 

a classical geometry, the automorphism group of the 

geometry is known to be generated by all isometries, all 

field automorphisms, and suitable additional diagonal 

matrices. 

2. The theorem says nothing about G itself (cf. 

(2.e». 
3. There are general numerical conditions which 

guarantee that the Buekenhout-Shu1t Theorem applies to 

a given rank 3 situation (cf. [16]). However, only 

one special case will be proved here~ 

Theot:~.. Suppose ,G has rank 3 on X, with 

subdegrees 1, q(qn-2_1)/(q_l), qn-l for same £Fi~ q 

and some itlteger n ~ 5. Then n is even, and X can 

be identified with the set of all points of a11 Sp(n,q) 

or an O(n+ l,q) geometry, in such a way that G 

acts on the geometry as a group of automorphisms .. 

• 
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Proof. ... Step 1. 9F8Ph.:, 

x 

k = q (qn-2 -1)/ (q-l) 

There is an orbit (x,y)G c:: X x X of length Ix !k. Call 

xl ~ Yl iff (x1'Yl) E (x,y)G. Call' x +' z if x r z and 

X"""z is false. 

Note that Gx is transitive on the set of points 

y ~ x, as well as on the set of points Y t x. Thus~ 

since k>F lv, the ~ela:tion "" is symmetric. 

SteE ?,. Parameters. 

If x -y, let 1\. denote the number of points 

Z ...... X,y. 

If x f'/ y, let u denote the number of points 

Z ....,x,y. 

k-i., -1 

x 

k 



The number of indicated pairs (y~z) is 

k (k - A- 1) :: -tp ~ 

~-2_1 
q """'----

q-l. 

gn-2_J~ 

q-l 

Thus, 

n-l 
(k - " - 1) = q Il , 

. n-2 
(k - A-I) = q u, 

or 

so 

n-2 I· n-2 q . k - " - 1 < k < 2q .' and hence 

k - 'A- 1 = q n - 2 and u = (qn - 2 -1) / (q -1) • 

Step 3. !--!nes. (This step is independent of 'the 

particular k,.f., ",11.) 

Call xl.={y\y:::x or y-"'xl. 

Clearly y r:: x.L iff x E y.1. Let x ""y, and note 

that \x.1 n y.1 \ ;;::: 2 + >.. (the number 2 counting the set 

[x,y). Now define the lin~ xy by 
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Claim: If Xl fy' and Xl ,y' E xy, then xY=X'yf. 

Proo~. w E x.l n y1. ~ X t OJ Y t E xy £: w.l .. w E x t.l n y 11. • 

Use w=x' to see that x' E yfL. Then \x.l f1y.tt:. \x'J. ny'.l\. 

But xl. ny.L£x'.1 nyu-. Thus, xl. ny1. =xt.L nyll" and hence 

xy = x' y' • 

Claim: All lines xy have the same size h+l, say. 

(Use transitivity.) 
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. C!.~aim: The number of lines on x is k/h. O~br , 
- . 

these lines, with x removed) partition xl. -{ xl .. ) 

Ste.P..Jt- .q-GrouEs. Let x ,....y. Let P F Sylq Gxy 

and P< QE SylpGx • .' " 

Since 

Since \yGX \ =q(qu-2_1 )!.(q_l), we have\Q: P\=q. 

n-l Gx ls' transitive on the q , poi.nts not Joined 

to x, so is its Sylow subgroup" Q. 

Cla.im: P is, transitive on the set of k - A. - 1 , ..... " 

::;<>ints z such that z "'"' y and z f'x. 

P~oof. Note'that 

qn-2=k -,1-1 ~ \zP\=~ = ~~.~.q.~ ~.\Q\_. /q=. qn-l/q " 
. \ P z 1 \ P z I. t Qz \ ' 

Step 5. ~in Ste2 .. h:~q. (Thus, li.ne·sar.e Ubigf' • 

In'fact, it is unusual for ra.nk· J groups to have lines 

of size greater than' 2.) 

Proo~. Asstlmethat h< q~ 

Then P acts on the ,set:x·1 ny~- xy, whose· cardinality 

satisfies the condition - (i.. + 2) - (h+ 1):= ,,-+ 1. - h /; 0 (modq). 

Tt.., n fA ~ . f .' 1.' J. . uUS, '.~. J-~es some y- f X· n y - xy. 

If y1. ny'.l. 50; xl. n yl. then yJ..'fj y' ,J, =: xJ.ny.L (as both 

set have size >.. + 2) ~ and then y' E yyl = xy. 
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Th'lls, there exists a point z in y.l n yll. but not 

in x·t • Clearly, P acts on the set of all such points 
P . 

z. By Step 4, \z \ == k - A - 1. This yields the contra-

diction 
n~2 P , 

q "'" \ z \ ~ \ yl. n y t .t , >= A + 2 I> 

. 
. §.tep ,60 B-S s:ciOYl§.. The first two axioms in (2.A) 

are obvious. Consider the third axiom: if z .. 1:. L, we 

must show that z~ contains one or all points of L* 

We may assume that xE L' and z i. xl.. We must then 

prove that \ z.l n L \ =: 1.' 

Firstly, \zl. n L \ ~ 1.. For, if Yl~Y2 c z.l n L wfth 

Y1'& YZ' then x E L ";:YIYZ C z.l,. which' is not the case. 
. . n-2 .. 

'Next, there are IJ.:: (q -l)/(q-l) = k/q ~ k/h points 

of X,l which lie an lines through z. (Use the definition 

of ~l; together with Steps. 2 and 5.) But each of the 

k/h' lines on x has at most one such point (cf .. Step 3). 

Thus, each such line meets z.t , as required. 

SteE,_I. f~tp.21etioJ!. Since A + 2 >h+ 1, th,e$et 

x.tn yJ._ xy is nonempty, and hence case (II) o:f the 

Buekenhout-Shul t Theorem ca.nnot occw.r: ~ Comparison of 

the gi:ven k and t. with the table in (l.G) now 

comple.tes the proof of the theorem. 



... FurthEn:;*~.'femar}:t..§. 4~ Only a little more care is 

needed to handle thec'ase where q is a prime power. 

5. Clearly,the precise parameters' k and t 
. . . 

were not needed. 'What was neede~ was a large enough 

prime power divisor of .\"." suitabl.y related to k 

(cf. T 16J) . 

6 ~ The theorem. is also true for n = 4 when q 

is prke t but the prime power case remains open. 
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7. The above method of proof originated in the 

study of symmetric designs. It . has very recently also 

beenu~edby'Cameron in the study of distance-transitive 

graphs .. 

(2.C) Perin's Meth_~. 

The results ~n (2. B)still,leave open the question" 

of de term1ning G •. 

I~.2!'~. Let Cbe an automorphism group of a 

symplectic t unitary or. orthogonal geometry V. Assume 

that t •. L or.t.s. .1inesexist, and that G acts as 

a raIlk. 3 .p~;rmutation gr;oup .. on the se~ of all points. 

Then G contai.ns the corresponding group PSp(V), PSU(V) 

or PO (V) , . exce:pt for the case.· G=A6~ S6 !l!:!Sp(4,2) ~n(5,2). 
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The symplectic and unitary cases of this theorem are 

due to Perin [231, except for the case Sp(2m,2); the 

orthogonal case was handled by Kantor & Liebler [19], 

except for the case n(2m + 1,2), using Perin t s method; 
. 

and the excluded cases were settled very recently by 
'( , 

Cameron & Kantor using a different approa.ch. More. genera,lly, 

Cameron & Kantor determined all automorphism groups which 

are transitive on the ordered pairs of non--:perpendicular 

points~ 

We will only prove a spe~ial case of thetheorem t 

concentrating primarily on Perin's method for prov~ng such 

results. Further variations will thet? be discussed. 

We begin with a basic number-theoretic result. 

Theorem (Zsigmondy, 1892; see Dickson [12]). If 

q and n 
. . . . ~ '.-

are~ntegers greater than 1:t 'then there is 

a prime p dividing qn_l but not dividing qi_l for 

1 ~ i < n, ~>:~cept when either n = 2 anci q +1:= 2i , or 

n == 6 and q '=' 2. 

Let q ,~ >.' ·b , £ -, P e as above (and not an 

exceptiottsl case).· SUPf..:."' .. , that A ~ GL(k,q), =GL(V) with 

\A i == p. Then 

(i) Each nontrivial irreducible constitutentof··· A 

on V has dimension divisible by n; and 

• 
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(ii) If k == n then 

NGL(rt,q) (A ) ~GF(qn) *)<J Gal (GF(qn)/GF(q).). .. 

Pr.oof. (i) If k=Qn+R with O~R<n) .then 

'GL(k,q) and GL(k - R,q) have the same p-SyJ.ow orders ~ 

Thus,. A must centralize an 'R-:-spaceand act on a 

complementary .. Qn-:-space. (N.,B. - In fact, each nontrivial 

irreduc:ible consti~uent has. dimension n" as. is seen by 

an examination ofeig~nva lues.J 

(ii) By Schur's Lemma, CGL(V) (A) = GF(qn) *, so,we: 

may identify V withGF(qn)~ 

Let g E NGL(V) (A), where we may assume that. IS.=; 1 

(by modi~y'~ng g u~i.ng an element of CGL(V) (A)~. Write 

A == (a.). Then e'v~ry element ,of. ,_ GF(qn) has the form 
.~. -, 

f(a) with f(x) E GF(q,)( xl • Since 1 gO!:; l-~ f(a)g:= f(ag)· 

and g is in the indicated Galois group. 

Theor~m. Let 'G ~ Sp(2m,q), where':m:t 3 and q:> 3. 

If G has rank 3 on the set of points, then G =: Sp(2m,q) . 

fFo,qie'?j:ep.l' Since k.=q(q2m-2_1 )/(q7,1),; there 

is a . p dividing q2m-Z.1 as in Zsigmondy's The orem 0 

Fix A <. G with \A \ = p. 

Step~. A is completely reducible. By the lemma, 

s:tnce 2m - 2:> 2 we must have dim CV<:A) = 2. S,at T= CV(A). 

Now complete reducibility tmplies th~t TL is nonsingular 

and an irreducible A-space. 
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..... 1. 
By the lemma (p,art (ii))~ the group NG(J\)·l induced 

on T·t is metacyclics But also, Nci(A)T ~Sp(T) == SL(2,q). 

~_t.eJ?_3 ~ NG(T)T = Sp(2 ,q).. For NG(T) acts 

2-transitively on the set of poini'sof 'T.. (Any two such 

points are not perpendicular,. and span " T ..An element 

of G" exists mapping 'such a pair to any given pair of' 

this type,' and must senQ T to itselfo-) Then' NG(T)T 

contains one SylO'.Y' group of orderq, and hence 'all of 

them .. : 

Also, NG(T) == CG(T) (NC(AJ fl NG(T» by the Frat,tini , 

argument. ' Thus, NG(A)T = ,Ne (T) T is SL (2, q) • 

St~.P.. 4. 9~Rl~!ion. The secc)I}.d conmutator group 

NG(A)" induces the identity on, .]:.1. and SL(2,q) on T. 

Since V = T .1 T.L, ,NG(A)" contains a transvecti.on group 

of order q. From the transitivity of G it follows 

thatG contains all transv,ection groups. " Thus, 

G ::eSp(2m,q)«, 

~.~IiJaF~. The case q= 3, requires, ju,st a little more 

care, since NG(A)" merely contains an invol~tion 

centralizing T~ and inducing -ion T. 

Qe~~~ition •. The procedure in the·above proof will be 

called Perin: s Me'thad. 
_'1'1. 1 
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We will outline several other uses for this method • 

Example l.· If G~SU(n,q), n>6, and if G is 

transitive on both the set of all points and the set of 
. . 

. all lines, then G:::: SU(n,q). 

~roof. The number of lines is 

(qn_e) (qn-l+€) (qn-2_€) (qn-3+e )/¢!_1) (q2_ 1), 

n-3 
Use a prime p\q +~, as in 

precisely, if n is even, use 

Zsigmondy's Theorem. (More 

p\q2n-6~1.) Then CV(A) 

is a nonsingular 3-space, and NG(T)T is transitive 

on points. Except for some difficulties with small values 

of q, Perin's Method yields the result. 

EX~21e~. Subgroups of orthogonal groups having 

rank 3 on the set of points are handled similarly. 

. . 
~a!ll21f.:'l.~1· If G is itlside Sp(V)" SU(V) or n(V) 

with dim V~9, and if G is transitive on points, 
... 

lines and planes (t.i~ or t.s .. 3-spaces), then G 

is Sp(V), SO(V) or O(V), respectively. This and 

many similar results are found in Kantor & Liebler [19]. 

E?tftmpJ~ l.~ (Perin [23]). Let G ~ GL(n,q) with 

q>2 and n>4. If G is transitive on the ordered 

tri.ples of lndependent points (i~e.,f. .. spaces), then 

G ~ SL(n,q). 
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This time, use p \qn-2_l~ where qn-2_1 divides 

the number of such triples. Then V=CV(A) 0[V,A] by 

complete reducibility (where [V ,A] = (va - v \v E V) a E A> ) • 

Here, dim CV(A) = 2 and NG(A)" contains a transvection 

group (unless q::: 3, where a further argument is needed). 

It follows readily that G contains all transvection 

groups, and hence contains SL(n,q). 

~~~~~. Stronger results are now known. Suppose that 

G s GL(n,q) and that G is transitive on i:"'spaces for 

~ i with l~i~n-l. The cases 1=1 or n-1 

remain open. Suppose that 2 ~ i s; n - 2. Then it can be 

sh~~ that G is 2-transitive on points, unless 

G ~ 2:31 >4 Zs' ins ide GL (5 ,2) • 

These 2 ... transitive groups have been studied by 

Wagner, Higman, Kornya, Orche~ and Cameron & Kantor. 

They were recently all determined. More generally, 1n 

unpublished work Cameron & Kantor determined all subgroups 

of GL(n,q) which are transitive on the pairs consisting 

of an n - I-space and a point not in it; although the 

basic ideas are qui.te different from those presented here, 

Perin's method is eventually required. 

Rela..~.:i result~. I. Suppose that G is a Chevalley 

group, and B is a Borel subgroup. Then Seitz [27] 



has determined all subgroups K transitive on t:he 

~o~Jugates of B., (In the case of cl~ssical groups, 

this means that the group K is assl.1llled transitive, ,on 
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the sequences V 1. <: .. e .<: V m of t .,i. or t .. s. subs paces, 

where dim Vi= i and m is as large as possible~ . Thus, 

in the case of classical groupsof,sufficieqtly l:arge. 

dimension, Example 3 contains this result; however 

Seitz's result was required 'for the stronger result.) 

2. Let G ~ GL(n,q), 'n> 3. Assume that G induces 

a primitive rank 3 group ot! the set of'po1nts of the 

underlying vector space. In unpublished work, Perin 

showed that G must preserve a symplectic geometry (and 

hence G~Sp(ntq) or G=A6 <Sp(4,2), by the first 

theorem s'tated in this section) '. 

(2.D) qe.a.eratJon 

~'f'0blem (*). Determine all irreducible ,subgroups 

K of SL(n,q):= ,SL(V) generatec;i by transvection,s" 

No~atio!!~ Let a == (lt1} , be a point (I-space) and 

A = ker f a hyperplane (n - ,I-space), where O:f f E V* • 

Set T(a,A) ~ [v-+v+a.f(v)w\,o, E GF(q)J whenever a '!!.A. 

Then T(a,A)~GF(q)+~ and T(a,A)is~ precisely one of 

root groups for SL(V). 

./ 
/ 



~ema:rk_ If t E T(a,A) - [11 and if W is a 

t-invariantsubspace of V, then either a ~W or 
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W ~A. '-(This' follows immediately from the definition of 

T(a,A)'.) . 

McLaughlin [20,21] '. answered (*) when Kis 

generated by full transvection groups T(a,A). He even 

handled infinite fields .' 

. 1J~eorem (McLaughlin)... Suppose that G is an 

irreducible,subgroup of SL(n,F) generated by root 

groups ... Then one of the follow,ing holds! 

(i) G= SL(n, F); 

(il) . G == Sp(n,F); or 

.(iii) \F\ -= 2 and G is + ().!.(n,2) or Sp.+2 with. 

n even, or Sn+l with n, odd. In each case, G is 

embedded in a "ns tural't manner. 

We have seen each of these e~amples: (i1) in (l.C) 

and "o±(n, 2)' - in (I.E)', '\\lhile the case of symmetric 

groups occurs a.s in the example of S6 in (l .. C)~ 

More can be said in. the finite case. 

TheC?re"!, . (Piper [24 J 25 J, \'liagner [31] ). Assume that 

G 'is anj:rreduciblesubgroup of SL(n,q), it ;?! 3, and 

thatG' is generated by transvectioll's. ThenG is one 

of the following: 

• 
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( i) SL (n, q , ) , sp (n , q , ):t SU (n, q i ) , q = q , i; 

(ii) + i o.:-(n,q'), q=q' , q and n even; 

(iii) i 3.A6 < SL(3 t 4) (a central extension of A6 by 

Z3); 

(iv) S :i n+ e < SL (n, 2 .) , s = (2, nJ ; or 

(v) 3.PSU(4,3)·2< SL(6;4 i ). 
n-l . i i 

(vi) (Za) .">1 Sn .< SI.(n.,2) with 1 {:: a \2 -1.. 

In each case, G is embedded in a 1f1latural~' manner. 
We will not prove this, but will give one application 

of it in (Z.E). Applications of McLaughlin's result 

are given in (2.F,G)~ Some versions were ~plicitly used 

in (2.C). 

~marks. 1. o (G) = Z(G) p . and Cv(G) <>: 0 can be 

su.bstituted for irreducibility here, with only slight 

modifications [17]. 

2. Similar results exist for grouE~.B~perated 9Y 
!£p.g .F90t eleU!.entJ~ of the t'emaining classical groups [17]. 

3 ~ The. exceptional examples (j.ii) and, (v) are 

intimately related to the existence of some sporadic g't'Otlps. 

4. For n:;: 2, fur thet' examples occur: 

8L(2,5) < SL(2, 91) ,and. dihedral groups if q is even. 

5. If G is merely an irreduci.ble group £2!.l~taining 

* a nontrivial transvection, let G denote the subgroup 

* generated by all transvections in G. Then NGL(n,q)(G) 

is simply a wreathed product, by Clifford's Theorem. 
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(2 .E)~:rmutation :r;~.Eresentati~ns,: .•. g,_e.srees 

In 1832, Galois stated the follmqing result. 

Ti1~or~m4 If K<G=SL(2,q) and q is prime, then 

\ G :K \ ;:: q + 1 except when q s; 11; and equality holds iff 

K is a Sylow q -normalizer. . 

The corresponding result was proved for q a prime 

power more than 50 years later (the only further exception 

occurring when q == 9; cf. Dickson [11, Ch. 12]). So 

were the analogous results for SL(3,q), SU(3,q), and 

(when q is odd) Sp(4,q), by enumerations of all 

maximal subgroups. 150 years after Galois, SL(n,q) was 

handled in an unpublished Ph.d. thesis by W. Patton [22]: 

Theorem 1. If K< G == SL(n,q), n ~ 3, then 
.. - --':** ' 

\G : K \ ~ (qn:"l) I(q ·,1), except for the case 

K=A7<AS"'" SL(4,2). Moreover, equality holds iff K :i.s 

the stabilizer of a point or a hyperplane. 

Pr9.9.~' Assume that \C:K \ s(qn-1)1 (q-l). Note that 

the latter number is hoth the number of points and the 

number of hyperplanes, and is greater than the number 

of i-spaces whenever 1 < i< n - 1. We may thus assume 

that K is irreduc ible .. 



If K contains a nontrivial tr.ansvection, then 

the results of the last section determine all 

possibilities for K, and none satisfies the desired 

bound. 

We may thus assume that K has no nontrivial 

transvections. We must show that K is A , 7 inside 

SL(4,2). 

'. Take any hyperplane H~ SetP ='CG(V/H) and 

Q =CC(H) 0 CC(V/H). 
1 * . . . * '0 . * . . . * 

1 
P : •... SL(n,q) Q: o 

• 
O· 

o 

Thus, . Q consists entirely of trStlsvections, arid 

\Q\ = qn-l. 
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Since for all g E G, 

on the cosets of K. Thus, '\G:K\::O 

Q acts semiregula.rly 

(mod qn-l). But 

Thus, \ G : K \ == \ Q \ ~ so \ G : K \ ;<;; (q n -1) / (q -1) < 2.q n -1 • 

IG \ == \QK \ and hence G = QK. Since Q fixes an i-space 

for each i, it follows that K is transitive on i-spaces 

for each i! Results in (z.e) now apply, and we deduce 

that K is either SL(n,q) or A7 inside SL{4,2). 

The same general idea produces significant improve­

ments if n is not too small. 
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Theorem 1. Let K< SL(n,q), tvhere q is odd and 

q;>-ll. If K is irreducible, then either \G: Kl >q%n(n-l) 

or Gt! Sp (n,q). 

We will use induction on n~ However, when we reduce 

to a smaller dimensional situ?tion, we will no lo~ger be . 

able to guarantee the irreducibility of our group_ For 

example, if K == Sp(n,q) then the stabilizer of any 

hyperplane acts reducibly on the hyperplane. Therefore, 

we will prove a modification of Theorem 2. Recall that, 

by McLaughli.n 's results (cf. (2 .D», i.t suffices to 

proves that K contains a full transvection'group. 

Theorem 2'. Let K ~ SL(n,q). == SL(V) ,. - where q is 

odd and q> 11. If \G: K\ s; q~(n-l), then K. has .~ 

subgroup S go:: SL(2 ,q) generated by two transvection groups; 

moreover, V == L eCV(S), where L is a 2-space on which 

S acts in the natural manner • 

.fEoof. . The case 1'1 == 2 is handled us lng Dickson 

[11, Ch. 121, so suppose that n ~ 3. Let H,P and Q be 

as before. Let (K n p) H denote the group induced by 

K n P on H. 

Case .1. K n Q == I for some choice -of He 



No;te that 

q~n(n-l) ~\G : K \ ~ 
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\p : K n P \ = \p : (K n P)Q \ • \ (p n K)Q : P (i K! 

=: ,PI Q : (K n P) QI Q \ • 1 Q : P n K n Q \ 

== \pH: (K n p)H\qn-l 

since K n Q:= 1. Thus, . \pH : (K n P)H\ ~ q~(n-l) (n-2). By 

induction, (K n p)H contains. a subgroup gH of the 

desired type, where S ~ K fI P ~ 

This group S may not meet our requirements, but 

we will show that a suitable. subgroup of S does. We 

may assume that S = Sf. Then, since S centralizes 

both ViR and MIL,. it centralizes V/L. 

Let z be an involt~tion in S .. Then S=Ns«z»)CS(H) 

by the Frattini argument. We may thus replace S by 

C~(z), and assume that Z E Z(S). Since, S centralizes 
i:I 

V/L., L = Cv( -z). Now S preserves the decomposition 

V == L eCV(z) t and centralizes V/L, so V 0= L $CV(S) ~ 

as required .. 

Case ~. K n Q:f. 1 for everLchoice o~ H. 

Here, induction does not apply, but there are enough 

transvections to generate the desired SL(2,q). Let W 

be a minimal K-invariant subspace ~ If H -J. W, then 

K f\ Q does not move Wi so that dim W> 1 and KW 

contains a nontrivial transvection centralizing W n H. 
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The results of the preceding section imply that 

KW~ SLeW) or Sp(W) ~ There are thus transvectiou. groups 

T(a,A) and T(b,B) inside K such that the group 

S = (T(a,A), T(b,B)\ induces SL(~,q) on W. Then 

V=: L C:B eVeS) vdth L <= (a, b) and Cv(S):= A n B. This 

produces the desired S, and completes the proof of 

Theorems 2' and 2. 

R~mar1.£?. 1. 

for arbitrary q 

There are analogues of Theorem 2 

[18]. The main difficulty is not the 

case n = 2, but rather the last paragraph of Case 1. 

For q even $ there might not be a subgroup S generated 

by transvections of V. This is tied up with the first 

cohomology groups of the classical groups. 

2~ Cooperstein [9] has obtained the precise minimum 

value of \G: K\ for proper subgroups K of Sp(n,q), 

SU(ntq) and Q!(n,q). The methods are similar to the 

preceding ones. Analogues of Theorem 2 have also been 

obtained for all the classical groups [18J. 

34 Suitable modifications of all of these results 

exist when G is obtained from a classical group by 

adjoining outer automorphisms. 

4. The case of the remaining Cheval ley groups remains 

open. This would, however, be settled if all their 

• 



subgroups K were determined such that 0p (K) = 1 and 

- K is generated by (long) root eleme,nts. 

5. It seems very likely that IG: Iq ">-\G :, B \ 
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in Theorem 2. The corresponding type of results for the 

other classical groups should also be tt."ue. 

: (2. F) PermutatioJl Representation~:. Ar~bitr8.F.l RaI!!s 

The next two topics concern permutation representations 

of classical (and Chevalley) groups~ In this section the 

permutation rank will be arbitrary; in the next one, ranks 

2 and 3 'will be considered. The following result was 

conjectured by TIeter M. Neumann in 1973. 

The0f.~. Given B,n integer r ~ only finitely many 

presently knoTAn fin1.te simple groups have. presently 

unknown primitive rank r permutation representations~ . ' 

Here, "unknown" essentially means that the one-point 

sta.bilizer i.8 transitive for An' irreducible for 

classical groups, and non-parabolic for the remaining 

Chevalley groups. (However, a little more care is needed 

in the case'of symplectic groups in· characteristic 2.) 

This theorem follows immediately from the next three 

theorems. 
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(Bannai t 4] ) ~.. Given r > 1, if G = Sn or 

An has a (faithful) primitive rank r permutation 

representation onG/K, where: K Is transitive on the 

original n points, then n ~ 6r+,z. 

Theorem (Seitz [Z8]). ,Given r :> 1 and t > 1, there 

there is a number Q(r,t) with the following property: 

if G is a rank of. Chevalley (or twisted) group defined 

over GF(q) with q,> Q(r,~), and if G has a rank r 

permutation, representation on GIK, then·' (UP) ::2 Kg"~' P for 

some parabolic subgroup P and some . g E G . (where U e. Sylp G 

for the prime p\q). 

Theorem [18]. Given r > 1, if an n-dimensional 

classical group G (other then Sp(2n,q) with q even) 

has a faithful primitive rank r permutation representation 

on G/K with K irreducible, then ns16r. 

A modification of this result also holds for the . ... 

exclude~ s~plect.ic glfoUPS,. The problem is that. Sp,(2q.1Q) 

hasprimitive.,rank .·.r permutation representationslfith 

r independent "f n.. (For example ,we wt1l see in the 

next section that Sp(2n,2) has 2-transitive re.pre,$en-:­

tattons.) Such representations arise because 
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Sp(2n,q) ~n(2n+ l,q) . forq even, and K can leave 

invariant: a subspace other than VJ., where V is . the 

2n + I-dimens ions 1 space for 0(2n + l,q) (cf. (1. F». 

We will prove versions of these results in the . 
case G == SL(n,q) . 

Theorem l~.~ Given r> 1 and an odd q with q >' 11, 

if G has a primitive rank r representation on G/K 

with K irreducible, then n ~ 4r - 3. 

• 
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I:,e fl!!!!l .. l. If G is a primitive rank r permutation 0 

group on X, and if n t is the length of an orbit 0 of 

Gx on X - [x 1 (where x EX), then \X\ ·~2ni r-1. 

traof . Let Gx have orbit lengths 

1 =nl ~n2 ~ OH ~nr. Then n1+1 ~n2ni (Wlelandt [32, 17.4]), 

tx
O

, - ~ r-1 i 0 r-l r-1 
so 0 - "ni s B n2 < 2n2 ~ 2ni • 

Lemma 2 (Maillet, 1895, and Bannai [4]) • If G 

is a primitive rank r permutation group on X, and 

if 1 F g E G, then \x\ ~2\G: CG(g)\r-l. 

Pr9G£· Let Xg:f x, and let 
g Gx r =:; (x ) .. If y~r 

then some conjugate of g sends x to y. Thus, 

\1' \ ~ \G : CG(g) \, so \x \ ~ 2 \1"\r-l s; 2 \G : CG(g) \r-1 by 

Lemma 1. 

Proof 9; Theorem 1. In (2.E) it was shown that 

\G : K \ ~ q~(n-l) or K~ Sp(n,q). In the latter case, 

the rank r is easily found to be large. Thus, by 

Lemma 2 we must have q~tl(n-l) $ 2 \G : CG(g) \r-l for 

any g not in the kernel of the permutation representation. 

Choose g to be a nontrivial transvection. Then 

\G : CG(g) \ is the number of pairs (v)H) with H a 

hyperplane and v a nonzero vector in· H, so 

\G : CG(g) \ = (qn_l) (qn-1_1)/ (q-l). Use of arithmetic now 

yields n s4r - 3. 
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~mar~.. The proof of Bannai's bound n s 6r + 2 

proceeds in a·very similar manner. In his case, G is 

or An' and. the bound \G:K\~%[~(n+l)]! was used; 

this i.s essentially just a familiar bound due to Bochert 

(in 1889) • 

S 
n 

. Th~ore11!' 2. (Seitz). Given r"> 1 . and n, suppose that 

that q> 16[ r(n-l)! + (r-l) «n-1)! )2)2.. If G = SL(n,q) 

has a rank r permuta.tion representation on G/K, . then 

K contains a full root group (i.e., a transvectiongroup). 

Remark~. 1. Theorem 2 is much harder than Theo~em 1. 

2. McLaughlin t s result (mentioned in (2.D)j deter­

mines all irreducible K here. None meets the stated 

bound for r; hence, the subgroup K must be reducible. 

If the -permutation representation is primitive, then . K 

must be a maximal para.bolic subgroup .. 

3. Our proof is part of Seitz's proof of the much 

more general theorem; only slight modifications are 

needed to prove the general result. 

The proof of Theorem 2 consists of two parts. 

Part I uses elementary character th~ory to bound the 

number of U-orbits on G/K. Part II is geometric and 

inductive .. 



Notation. G = SL(n!'tq). 

W ~ S 1 is the Weyl group_ n-

UE SYlpG (where p !q). 

B = NG (U) := UH with H abelian of order 

(q_l)n-l. 

fp.rt I. We will shoW that the number of U~orbks 

52 

Q!l O=G/K j.s at most r\W\,+(r-l)!W\2; or, equivalently, 

that 

(l~, 19) s: r \W \ + (r-l) \\01\2. 
Recall that B -consists of uppertr.iangular matrices 

of determinant 1, while U consists of those having lis 

on the diagonal. Since we are assuming that q '> 2, we 

have B' = U. 
G · d 

Write II{ 'B = mlB + t ttlj + i:-r it 
" ' j=l, 

where the"~jts and "'I"i' s . are non~principal irreducible 

characters of B, the Ci'jfS' are linear,and the 

so 
G d 

(lK \U' 1U>= m+ • t (CPU\U' 1U) + t(rr. \U,lU)" 
J=l i 1 

, 
'1"1 s 

The desired inequality for (li1u,lu) is 'then an 

immediate consequence of the following four assertions: 

• 



(1) 

(2) 

(3) 

(4) 

(tpj\U,1U)=1 

(1' i \U' lU) "" 0 

m 5: r \W \ , and 
d 

d:= • L (Q) U \ U' lu) ~ (r -1) \ w \ 2 
• 

.1=1 
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?roof of (~). Since CPj is linear andB' =: U, we 

have ep j \u'" 1U' 

1 B is 
U 

the regular character of H5!:! B/u. Since H is abelian, 

each irreducible constituent of luB is linear, and 
. B 

hence ('f i ,1 U ) = o. 

N.otati~n. li=lG+l:aiXi' where the Xi's are dis­

tinct non-principal irreducible characters of G. 
G G· .... 

Since r:: (lK' lK) == I + r:8tl.., we have r ... 1 ;:: Ea i · 

G c. lG) f;-qof of (31· By definition, m = (Ii\s' IB) == (Ii{, B' 

:=: l+z::ai(Xi,l~) sl-tr.ai(li!li)=l+L:ai\w\~r\w'. (Note 

that (Xi,l~) is at most the norm of l~, which is in 

turn the number of (B,B) double cosets.) 

Statement (4) is harder. We will need the following 

fact. 

~e~. Suppose that ~ and ware linear characters 

of Bo If c:p and ~ are both constituents of X \n 
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for some irreducible character X of G, then 

(~\H)w::: l:P\H for some w EW. (As usual, we can identify 

W with NG(H)!H.) 

rroof. 0 < (1), 'X I B} ::: (qJ G , 'YJ • 'By Mackey's subgroup 

theorem, 
'-1 

0< (X,-x) ~ (l:pG,$G)'=E (q,w \ ',$ \ w)' 
wEW BnBW BnB 

But B n BW 
:: (U n UW)H since B =: UH and HW;:,: H. Since 

-1 
O:/: (~w l ">1 W \ ~.J) for some wE W, it follows that 

BnB~' BnB 

(Note that U is in the kernels of cp and $ , so 

Un UW is in the kernels of 
w- 1 

and $.) But 
-1 

cp 

cpw \H and ~ \H are linear characters, and w· normalizes 

H, so the lemma follows. 

P~?of 2l. ,'{4:1· Ii:= IG + ESi'X.i ~ Write 

'Xi'B =l.:mf~ji + (some linear combination of IG and 'f i's), 

where now these CPji I S are distinct and each mj :> O. 

We will prove that 

(4 1
) For each i, the number of r:r>ji here is at 

most \W \ , and 

(4") Each mj S \W \. 
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For then the total nunlber of non-principal linear 

constituents of Xi IB will be at most \w \2!1 and hence 

the total number d 

Ea i ltv \2 ~ (1"-1) \W \2., 
of ~j 's will be at most 

so (4) will hold. 

Proof.'Mc:!f . (!t~' ). The 1en:ma implies that Xi \B 

involves at most \W \. linear characters. 

This ends Parts I. 

!!!..t...!!4 .E.!!2e.pse_~ G == SL(n,q) > K, ~~nd_t1:!t$.t: U 

has at mo~t t orb~t:~ ot} elK. If q> 16.t 2 , then K 

E.0n~f!~n.s .~_ .~-q!L root_~~oup ~~~~, tral1pvecti.C?~_ gr(lilf!i. 

Note that this, together with Part I, will complete 

the proof of Theorem 2& 

Prg.pf. We will use induction on n, the case 

n == 1 being vacuous. 

Let E be a hyperplane. Set P =: CC(V/E ~ and 

. Q"'" Cp (E) • Then Q cons:i.sts of transvections, and 

P = QR with R g: SL(n-l ,q).. We may assume that Q ~ u~ p 

and NC(U) =: UH. 
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With respect to a suitable basis, P, Q and R are as 

follClli1S. 

( 10) with det A 
n-l p -= all "" 1, v E GF ( q) ., vA 

o :: (0, ... ,0). 

Q= all such matrices with A := 1. 

R == all such matrices with v "'" o. 
U = all lower triangular matrices. 

H = all diagonal matrices. 

Write n = G/K, and let aEn with 

Write 
QR m 

cr, =U~., 
1"-'=1 ~ 

where the q; f S 
i 

G .., K 
Cl. • 

are Q-orbits 

and 

in 

Clearly, R. is tr.ansitive on {~ls ••. ,.pm). Also, Po:::QR 

implies that U == Q(U f) R), 

£~1' ..• '~ J arises from a rn 

so every un R-orbit on 

U-orbi.t on a.QR • Thus, 

un R has at most t orbits on [ CP1 11 • • • , q;m 1 • 
By induction, there is a root group X ~ R 

stabilizing some ~i. (If 

assume that X ~ Z (U n R) • 

n =2, take X:= 1.) We may 

k 
Let !3 E P. C \3U =/\ l' and write I3 UH = U Ai with 

1- ~1 

each 1\{ a U-orbit. (Here, H is defined as above • .) 

a QR • 

By hypothesis t k:£ t < (Jij' + 1)/4. Let HO be the stabilizer 

of 1\1 in H. Then \H: HO \ = k <: (v'q + 1)/4. 

Note that HO fixes some point y=f,u El\1' where 
. ..L 

u E U. For, both U and 000 are transitive on J\ l' so 

UHO := U(UHO) 13 • Since H 0 is a Hall subgroup of the 

solvable group URO' i.t must be conjugate to a subgroup 

of (UHO)B' and our assertion follows. 
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Now (HO'U~> 5cGy ' so flO normalizes Uy .... u~u. 

At this point we must stop to deal with the case 

n= 2. Here, Part II" requires that ql \K\. To see that 

this holds observe that 2(~q - 1) ~ \HO \\ \G
y 

\ :; \K \. It is 

then easy to use the list of subgroups in Dickson [11, Ch. 

12], along with the assumed bound on the number of 
I 

U-orbits, in order to obtain q I !K \ • 

Now suppose that n ~ 3, so \X \ =' q. Since both 

Q and QX are transitive on {, i' we have QX = Q(QX)f3 

Thus, U + 1. 
V 

Not;,1 Uy is a nontrivial p-group normalized by HO. 

Let Y be a minimal HO- invariant subgroup of U. 
. y 

The group U is a product of root groups, each 

normalized by H.Moreover,·· H acts irreducibly on 

each such root group, inducing a fixed-point-free group 

of order q - 1~' Since \H: flO \< (J(i + 1)/4, HO acts 

irreducibly on each· such root group. 

Thus~ HO acts on 

* 
Y as it 'does on some H-invariant 

root grOtlp X == T(a,A). 

and a iaa I-space of 

(A s in (2. D) ~ A 

A. ) But CH(X*) 

is a hyperplane 

decomposes 
'j{; 

A/a into the direct sum of n - 2 inequivalent CH(X)-

modules, while a and ViA are CH(X*)-isomorphiC. 

The same must also hold for CHO(Y). Since CHO<Y) is 



a group of diagonal transformations 1 Y induces the 

identity on some n - 2 - space of V and acts on a 

complementary 2-space. Thus~ dim CV(Y) := n - 1) and 

Y is a :full transvec tion group (in fae t, Y == x*) • 

This completes the proof of Theorem 2. 

Open Problem.. Signi.ficantly decrease the bou,,"1ds 

on 11 and q in Theorems 1. and 2. 

The crudeness of the bounds in Theorems 1 and. 2 
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of (2. F) is already seen when r e 2 or 3. For, in 

those cases,. if n:= 2 then q ~ 11, while if n> 2 then 

n s 4andq ~ 3.. More prec ise answers are) in fac t, 

knm~1n. Curtis-Kantor-Seitz[ 10] contains the det~rmination 

of all the 2-transitive pel:'t1lutation representations of 

all the Chevaliey groups G' . , Kantor-Liebler [191 does 

the same for the rank 3 representations of ·the classica.l 

groups. (The corresponding result remains open in the 

case of. the exceptional Cheval ley groups.). More,ovel.°,. 

in both papers the group G1.s replaced by any subgroup 

of Aut(GlZ (G»containing G/Z(G) • 

. There are three basic tools required for these 

results: . 



(i) Properties of l~ (compare the last half of 

(2.F». 

(II) Cha.racterizations of "largeH subgroups. 

(III) The Pigeon-Hole Principle. 

We will only discuss the first two of these. 

(1 -). 1GB. b h h .. f G Let pet e'c aracter~stLc 0 • 
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Theor.e.m (Steinberg, Green, Howlett, Hoefsmit, Liebler., 

Benson, Grove, Suro't<1ski; cf. [10, pp. 57-58J and [19, §4]). 

Every irreducible constituent of has degree 

divisible by p, except when G has type Sp(2m,2)1 

G2(2») G2(3), 2F4 (2) or F4 (2). (Moreover, in each of 

these cases all offending characters have been determined.) 

~~mEle 1. The permutation character for the action 

of Sp(2m,q) on points splits as 

q(qn_l) (qn-l+1) 
p (1) = ------ and 

2(q-l) 

In particular, p(1) and a(1) 

IG+ 0 +0" with 

q(qtl+l) (qu-2_ 1) 
(J (1) := -- -~. W~_. 

2(q-l) 

are odd in the case of 

Sp(2m,2); there is exactly one further offending 

character in this case. 

EX~2~~~ • .1. Let f) i denote the permutation character 

for the action of G == SL(n,q) on i-spaces. Then 

a 1 == IG + Xl with Xl irreduc ible, since G is 2-trans:i.tive 

on points. 



91a.~. If 2 $ i:5: n/2 then (i i- 0 i-I = Xi is 

irreducible and 9 i = 1 + Xl + ..• + Xi' Moreover, the 

characters 1, Xlt X25"" are all distinct. 
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Proof. Let 1 ~j :<; i ~ n/2. Then (04'0') is the 
.;;..,;;...;;.....;;....... J,.. J 

number of orbits of G on or,dered pairs (V. ,W.) with 
1. J 

dim Vi = i and dim W j == j ~ Since i + j s n) dtm Vi n W j 

can be any number from 0 to j.. Thus, (8 1,e j) = j + 1. 

In particular, (81-8i_1,8i-8i_1) = i+1-2(i-1 .... 1) + (1-1+1) ~ 1. 

Also, e i (1) ~. e 1-1(1) . is the number of i-spaces miuu's 

the number of i-I - spaces, which is positive. (and a 

multiple of q). This proves both the claim and the 

following 

(II) Characterizations. 

(a) Seitz [27] determined all K < G for which 

(1~, Ii> := 1. This, and t"elated results, were mentioned 

in (2.C). 

(b) Tits' Lemma. If U ~ K < G (where U E Sylp G):J 

then (UP> ~ K ~ P for some parabolic subgroup P. 

S~~r.lt;. In the cases SL(n,q), Sp(n,q) and 

SU(n,q), U conta:i.ns transvection groups, and much 

stronger results are available (cf. (2.D» •. However, 



this h~mma holds for all Cheval1ey groups, and even 

remains valid in the case of infinite fields. 

)',F.9?J. Io"the usual BN notation, 

G= BNB= UHNHU= UHNU. Let hnE K '(hE H; nE N), so 

tl =tn ' represents some wE \41 = NIH. Suppose that w . 
\~=wisl with .t.(W1 ) <-t(w) and 81 a fundamental 

" reflection. If 0-1 is the root corre,sponding to 
w -1 

then at 1 > 0, and hence 

8 1 w1 - l w w ~ roN hn 
U=(o: ) ~ D, -:U ,~U ~ K. 

0.1 'a'l ' 
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Thus, (U , U(:1) '~K .. ' But there isa c'oset repr~serit:ative 
,9'1 ",1 s ' 61' , 1 

§'l of s1, in (U{"fl'U"-l>· (:rhat is, 81 E (Ua'l'Uo;/ and 

and This process 

can clearly be continued, graduall)'r~ducing .t(w)~ If 

P is generated by B and all elements ~1 arising as 

above, then P is p~t-~bolic"'and KH:= P • 

. f~Tr'W~wit:AY~ Re'pre~en!:fttionl!. ,Suppose that G acts 

2-transiti,tely on the set of cosets of K, ,where K < G. 

Write l~ =: 1 + X with ,x irreducible. 
. G G G 

~leal" 1y (lB, lK) =.1 + (la' X). 

If xJ l~J .. then Seitz';s theorem lists all. potential 

subgroups K* . . ,.' 



tf then \G : K \ := 1 + X(l) , where p\X(l) 

for most of our groups G (cf. (I». Therefore, 

assume that p \ X(l). Then ! G : K \ :; 1 (mod p), so 

Kg ~ U for some g E G, and Tits t Lentna. implies that 

Kg ,is parabolic. 

Thus t the determination-of all pairs (G,K) is 

reduced to. the checking pf specific potential pairs, . 

except in the case of specific groups G defined over 

small fields. 
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~ Sp(2m t 2). This is the most interesting case 

~n wh,ich offending character.s appear:, 2-transitive 

representations occur, and fit .. nicely' into'the framework 

of the above argument. We first prove the existence 

of these permutation representations, and' then prove' 

a version of uniqueness~ 

Exis ... tenc!! •.. G= Sp(2m,2)=:: O(2m+ 1,2) acts on a 
, 

2m+ 1 ... dimensional vector space r.t, fixing a nonzero 

vector r ,as in (1. F). There Is a quadratic form 

Q available, and we may assume that Q(r):= 1. 

If v E 1.'.1. - <r), "then Q(v) =1 iff Q(v+ r) =0. 

Thus, the permutation character e· of the 'action of G 

ori vectors v:f:. r ~ithQ(v) =- 1 coincides with that of 

G on the points of the symplectic space rL/(r). 
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Moreover, the character of G on r1. - (r) is 213, 
" " 

so that of G on the i-spaces of' rJ. is 1 + 28. 

Then the character of the action of G on hyper-

" planes' of rJ. is also 1 + 29. (In Example 2, 

91 =< en - l since (el~en_l) == (9 1 ,9 1):: (B n -'l,$n"'l) = 2.) 

The character on the set of hyperplanes containing <r> 

is also e. 

Hence, the character on the set of hyperplanes not 

"cant~ining(r> is 1 + e .... (1 + C) + (1 + a). Each such 
< ~ , 

+ hyperplane has stabilizer ~(2mJ2). Hence, G must 

act 2-transittvely on the hyperplanes of each type, 

with permutation character 1 +. p or 1. + (1. 

Q'niqueness. Suppose that cp= l~ = 1 + X is 1 + p 

or 1 + 0' .We must show that K is o±(2m 2) embedded , ." 
in G as above. We will regard G' as Sp(2m,2). 

Let g be a nontrivial transvection in G. Count 

the pairs (K1,gl) for which Kl is a conjugate of K 

~ontaining the conjugate gl of g~ 

\p(l) \gG (\ K\ == \G : CG(g) \tp(g). 

(Here, ep (1) is the number of conjugates K1 , and 

q.;(g) is the number of such conjugates containing g.) 

The numbers ~(l) and ~(g) are computable 
." 

using the ~n 2-transitive representation wi.th 



... 
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character ~ (whose ~xisten(~e was proved above). Thus ~ 

\gG n K \ is the number of transvections in o±(2m,2) 

(for a suitable choice of sign). The result of 

McLaughlin [2]] mentioned in (2.D) now yields the 

required determination of both K and its embedding. 

Remark,s., l. All the' other offend ing characters 

arising in (I) must be dealt with separately, by 

ad hoc me thods. Only one yields a 2-transitive 

representation; this arises because of the isomorphism 

Gz (2)' s= PSU(3,3). 

2. The bulk of the 2;"transitive case was handled 

using a very short, simple argument, based upon the' 

difficult results in (I). It is this simplicity which 

suggested the possibility of attacking rank 3 pe~u­

tation representations. 

Rank 3 repre~n;:ati.ons;,~ Suppose that G acts as 

a pr~itive rank 3 group on the cosets of K~ Set 
G 

q>:: lK- Then qi'" 1 + x+ ( . for irreducible characters 

X and r .,. . 
If 'X. , 

G 
C ¢ IB' then Seitz's theorem again applies. 

If x, \: E. l~, then Tits' lemma applies, if we 

ignore a few possible groups G • 
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This leaves th~ possibility. X E l~ but c.~ Ii .. 
In [19], all subgroups K of classical groups are 

determined for which l~ = 1 + X + (; with X irreducible, 

XE l~,and ("l~) =0; that is,. the irreducibility of 

, can be dispensed with. For ex~mple: 

Theorem. Let G= SL(n,q) with n;;;o; 8 and q:-> 2, 

and let K -< G. Suppose that l~ =' 1 + x+' with X 

G G irreducible, X E In and (t;;, In) :: O. Then K fixes a 

subspace of dimension 1. or n- 1. 

Partial ?!'.2.2i. Recall that 91 denotes the 

permutation character·of G on i-spaces,. Let Gij 

denote the permutation character on the pairs (Vi,Vj ) 

of subspaces with dim Vi == i, dim Vj := jand Vie Vj 

(of course, i <: j here). 

S.t~2 1. If X ~ 93 then (1~, 6.3) == 1, so Kis 

transitive on 3-spaces •. By one . of Perin I s results 

(2.C), K == G. 

Thus, in the notation of Example 1, X must be 

qt:e 2 ?-. Suppose that X == Xl • 

Compute (8 1 ,CP) =: (a l 'S1) == 2 

(94 ,rp) :II:: (94 ,°1) := 2 

(e14'~)'" (8 14 ,9 1) == 3. 
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(The stabilizer of the pair (V1 )V4) has 3 point-orbits: 

[VI)' the rerllaining points of V4 , and the points 

outside V4 • ) There are thus 2 orbits each of points 

and hyperplanes, and 3 orbits of pairs (V1 'V4). 

By the Pigeon-Hole Principle, there is a point x 

such that Kx is transitive'on the 4-spaces through 

x. Then Kx is transitive on the 3-spaces of V/x. 

By Perin's results, Kx' induces at least SL(n-l,q) 

on V/x. 

If K is irreducible t it is now easy to show that 

K == G.. Thus, K is reducible, and fixes either. a point 

or a hyperplane, . as required~ 

§.~~E .. ~." Suppose that X = X3' 

This time (e 12 ,ep) =1+ (6 12 , 63 -13 2) =1+4 -4, so 

K is transitive on the pairs (Vl,V2)~ Also, 

(03'\€» == 1 + (S3'X3) = 2~ while (6 34 ,1'.9) 0: 1 + (034' '13 3 - e2) 

=1+ 7 ~ 5 == 3. By the Pigeon-Hole Principle, there is 

thus a 3-space E such that ~ is transitive on the 

(qn-3 -1)1 (q-l)4-spaces containing E. Now Perin t s 

Method (2eG) can be applied, and produces the 

contradiction K == G. 

2!=eQ 4. If X=X2' the argument is similar, 

but somewhat more invoived; cE. [19]. 

• 



Re~!~s. L The. omitted cases (n ~ 7 or· q == 2) 

are handled similarly •. However, examples arise when 
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n"" 4: K can contain Sp(4,q), SL(2,q2) or (if q =: 2) 

A6 as a nornml subgroup. 

2. The determination of the rank 3 permutation 

representations of the. classical groups follows the same 

pattern, but is much more involved. .In particular, 

much more information is required concerning l~: there 

is no longer a nice nesting of characters as in Example 1. 



Part 3.~ The root group geometry of Egigl' 

The prerequisites. for thi.s part are.Carter [7, 

§§3.4,3.6,S.2,6.3,8.5,12.1]. 

(3.A) TJ1e _~qot ,system. 

Notation. Fun~amenta1b~se u1, .•• ,nS" 

. Fundamental reflections sl' ... , s8· 

Height of: l:8 i (1i is ta i • 

68 

Highest root:~. This is related to the 

root system as in the following lUttt":lndesI Dynki!l_diagram. 

1 3 4 5 6 7 8 -p .. .. u .. - I 
. .. . • . ~"~ e----- • 

2 

For all roots a.,f3 J we have 0;90.::::: 2) and a..~:::::: 0 or 

±l, when 13 f ±Ct. 

a.oo.
j
· :::::: 0 or -1 • 

. 1. 

Since is the reflection in 

8 i v.cI,i 
v -= v - 2 - 0,1." ::::: V - (v· Cti) rti • Thus, a. • a. • 

i 1. 

-rti if j = i 
s. 

0j 
1,,.,. 

Ctj if (1i oa.j ::::: 0 

OJ + 0.1 if a.i·nj =: -I, 
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Write When 

applying s1 to th:ls, onlI 8.1 is changed; namely, to 

-a.+(sumof a. with i and j Hadjacent" in 
. 1. " .< , ,J 

the Dynkin diagram). 

Starting from nl' the entire root system can be 

computed; fortunately> however, lists in Bourbaki [5~ pp. 268-

270] and Aschbacher-Seitz [3,PP4 5-8J are availabl.e . 

in order to frequently'save time. 

~xamples. 

o 1 11 0 0 0 8 1 1 1 1 1 0 0-0 84 1 1 2 1 0 0 0 
1 )0 1 .:.. _ ... ~ I 

p = 2 4 6 5 4 3 2 s8 2 4 6 5 4 3 1 s7 2 4 6 5 4 2 1 
3 __ •. ~~ 3 ___ ~~ 3 

The coordinates of p are taken from [5]. Note that 
s ' ' . 

f} 8 <= p - 0.8 is the next-to-the-highest root. 

(3 .. B) ~ommutat9r re,la,tioQ!. 

Each, root a. yie.Ids a root .. .sro~..e X e: GF(q) +. The 
a. 

Chevalley commutator relations assert that, if e'" ±n, 
then 

{ 

1 if a. +!3 
[X ,XQ ] == X .If +c 

a. p, o.+~.I, a. p 

1s not a root 
is a root. 



Moreover, (X ,X ) 2:::! SL(2 ,q). 
("/. -0.. 

G = E8 (q) is generated by all these X
tt

• 

u = (X \0..>0) 
0-

is a Sylow subgroup of G. 

\u\ := q120 since there are 120 positive roots. 
. ok'8 

B == UXI H with H~ (GF(q) ) • 

X" ~ Z(U); for, since p is the highest root, 

p +0. cannot be a root for any root GL> O. 

involves (or 

More notation. If Ie { 1, .... ,8) ,. then 

51 == l 8 i \ i E I), and 

WI == < S j \ s j i: 8 I ) 

PI = BW1B 
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Q1 = (X
n 

\0. "> 0 and (t involves some member of 51) 

LI = (X ,X \j i I) . 
Uj -OJ 

We will write Lij ••• in place· of Lfi· j.' - .. ) and so on~ 
t , ,e. ~ ! 

Levi qecompositi9..n. PI =: QI'><3 LIR. The -structure 

of LI is determined by delet lng the nodes in I from 

the Dynkin diagram. 

D,o-qble cosets. The number of. Wt, W J double cosets 

in W equals the number of PI' PJ double C05et5 in G, 
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for all I,J£ [1, ••• ,8} (Bourbaki [5, p. 83]). Thus, 

the number of orbits of WI on the set of WJ-cosets 

equals the number of orbits of PIon the set of PJ -

cosets. 

E,?(smple._ QS == (X,.,,~ \0. has 0.8 -coefficient 1) , 

while Lg has type E7(q). For the following discussion, 

a list of roots u is helpful [5; 31. 

\Q \ "" ql+S6. If 0. has a8-coe.fficient 1 then 

1"1 - 0. is also a root and (X X > is special of order. 
'" 0,' 1"-0. 

q3 with.center Xp. If ~ has as-coefficient 1, 

but 13 r/: p - a., then 

is special of order 

0.+ e is not a root. Thus, 

ql+56, with Z(Q) = Q' == X . 
p 

This produces a 56-dimensional module for LaH over 

GF(q). (Scalars are obtained from a cyclic subgroup HO 

of H which ce~tralizes L8 and acts fixed-point­

freely on Qa!Xp.) 

LaH preserves the alternating bilinear form on 

Qa/Xc defined by (uXp ' VXp) == [u, v]) where Xp is 

identified with GF(q) • 

Remark. Here, and elsewhere in Part 3, the 

finiteness of the field is irrelevant:· analogous 

results exist for infinite fields. 
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(3~C) Root groups 

~efinition. n = (Xp
g \g E G) is the set of root groups 

of G. This will be used as the set of points of a 

geometry. 

First Suborbit Lemma. Ghas rank 5 on O • 

. Representatives of orbits of G on 0 x n and the groups 

they generate are as in the following table • 

Pai.!..~2 Xi) 

X ,X· 
P f> 

X ,X 
p p-o.S 

xP,Xo,l 
X ,X 

f:l -p+ 0.:8 

X ,X 
f) .'p 

..s!a,~t3.2. 
X 

p 

X x X 
P p -0.8 

X xX 
p (11 

Sylow in 
SL(3,q) 

SL(2,q) 

Remark 

a,=t3 

a. - ~ = root· 

0.+ ~,(l - f3 not roots 

a + \3 = root 

0. = -~ 

DefiIiiti,ons. If x,yEO and (x,y) is conjugate 

to (Xn ,X ) , we will write· y E b (x). If 
,.. ,,-U.S 

(x, y) e! SL(2 ,q) , x and yare ca lIed opposi~. 

Proo!& sl,···,87 fix tIt so Ne(Xp) 2: BWaB == Ps • 

Since Ps is a maximal parabolic' subgroup, we have 

NG(X,,) == Ps· T1;tus, G acts on n preC?isely as it 

does on the cosets of PS" Since the number of 

• 
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double cosets 1n W equals the number of PS,P8 double 

cosets in G, it suffices to consider Wand WS. 

Thus, consider the action of W8 on roots. Its 

orbits are as follows: 

·0 

(a., a'S -coeffic ient is 11' 

{a.., (I'S-eGe fficient is 01 

{a.\aS-coefficient is -11 

-I' • 

The third set is an orbit because the Weyl group of type 

E7 is transitive on the roots for E7- The second set 

arose at the end of (3.B); that it is an orbit can'be 

readily proved by computing as in (3~A). 

This prove's the lemma, except for the generation 

part. But that follows from the commutator relations, 

the standard fact that (X ,X '; ~ SL(2 ,q) " and the 
Cl -a. 

fact that p and eta determine an A2 ,.subsystem. 

Remar}4;.The Weyl group ~(ES) ~ 2" 0+ (8, 2) (a non­

splitcent:ral,extension of .0+(8,2) by Z2). It acts 

on the 120 pairs tn" -nl as a rank 3 group, just as 

on the . (28 - 1) ... (24 - 1) (23 + 1) = 120 rionsingular vectors 



of an O+(8,2)-space. The stabilizer of 0 is 

W(E7) == 0(7,2) x Z2 (compare (I.E»; the stabilizer 

of f 0 -p 1 t.' . 

Lemma. NG«X ,X » =P7" Moreover, the group 
p p-aS 

L::: <Xp ,Xp -0,8) contains q + I. root groups, each 
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nontrivial element of . Llying in exactly one of these 

root groups. 

Proof. Since 

normalizes L. Thus, NG(L) contains. P7, and hence 

equals P7. Also', L is normal in the special group 

(X ~X '> • 
0. • P -a. . 8 8 

Thus, has q conjugates under 

Together with Xp ' these provide us with. the des.ired 

q + 1 root groups. (Note that the last p~rt of thi.s 

argument. sfmply takes place in an SL(3 ,q) .) 

Definition. Point: eiement of n. 

x . 
aS 

Line: conjugate of (X",X p-a,) in G. 
8 

We will identify lines with their q + 1 points. 

Points will be denoted x,y, ••• , and lines by L,M, •••• 

The stabilizer of the point x is Gx =NG(x) , and so on. 

Second Suborbit ~mma. FS == NG(Xp ) induces a rank 

4 group on the set of lines through X. The stabilizer 
p 
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of the line IX ,X ') has the following orbit 
'p P-Ug 

representatives on the lines through Xp. 

'X X ) ( p' ~tl-o.8 
IX X ) 
... p.' p -n. 7· ('1'8 

where 

(X tX \ where n t'V"} 

'·'·8 

where X ,and X are. 
. P-~8 p-a 7-a g 

collinear 

'f = 23t.a:321l 
2 ' so Xp- as and 

X commute but are not collinea.r 
'T 

[ X X J=x. 
A -,., '" ,.. 
!-' "·8 "'8 '.' 

Pro_o.!. Once again, "le reduce to W78 and l.vS = W(E7). 

Clearly, . W78 . leaves invariant the following sets of 

roots: 

(0.> 0 \0.8 -coefflc ient 1, a,7 -coefficient 3j =[1' - 0.81 1 

{o,> alaS-coefficient 1, Cl.7-coefficient 21 27 

root 

roots 

{a> O\a.8-coefficient 1, ('l7-coefficient 11 27 roots 

(0. > 0 lag-coefficient 1, 0.7 -coefficient 01 =( 0.81 1 root 

Each of these 56 roots yields an X collinear with 
a 

x 
" for lists of (that is, p - ('f. is a .root). (See [5; 3J 

roots, which show that these are all the roots X with 
Ct 

P - (1 a root, and that the stated numbers 1,27,27.1 

are correct.) Each of these sets is found to be a 

j!~rk~~. 1. Wa is 2-transitive on the pairs 

; ~::a~:~ ti::t:e p:~~:: :~=!:~:~~]t~~!f~~~G£~~~!;)b' 
conjugates of O· (6,2) (cf. (2.F»,. 
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2. The roots just considered also occurred in our 

discussion of Qa in (3.B). In fact t it is clear 

that the lines thro ugh Xp gener~t~ .. tJ].e group Q8' 

3. By a unpublished lemma of Borel and Tits 

[10,(2.4)] , transitivity assertions such as the ones 

we have been considering can be proved effortlessly, 

without computation. 

(3.1) Root group gepmetry. 

We now present some properties of the geometry of 

points and lines just introduced. These are special 

cases of work of 'rits 1 Stensholt and Cooperstein. 

Recall that X and 
(1-

X are collinear iff 0,-6 
e; 

is 0 or a root. 

(I) If z = [x,y] is a point, then z is the 

unique point collinear with x and y. 

Proof. If z' is a point collinear with x and y 

then we may assume that Z' =0 X • 
p 

Then (x, z! '\, (y, z I '> ~ Qa' 

so [x,y] == 1 or x 
p 

(since is special). Consequ~ntly, 

z == X :I z'. (Remark: (x,z\ is a line since (x,y) is 
p 

special; cf.(3.C).) 

(II) If x and x' are opposite points, then 

acts on the lines through x exactly as G does. x 

I 
! 

1 
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Prgg! ... We may assume that x=x p' x' = X Then 
-I' 

Gx = Q8LSH, where LS and H both fix X If L -p 
is any line through Xp then [L,.Q8] .,; [Qs,QaJ == Xp ' so 

fixes every line through X. This proves our 
p • . 

assertion. 

There iss natural grapli on two points are 

adjacent iff they are collinear and distinct. 

(III) This graph has diameter 3. 

rroo~. By the First Suborbit lemma~ it suffices to 

consider the following pictures .. 

x 

xpr 
(Recall that X and o. 

x -p 

are collinear iff is a 

root. Recall also that J if x and y are collinear 

with z then [x,y] ='1 

cannot be distant <3 

or z, so that X p 

from one another.) 

and X -p 

(IV) If x and x' are opposite points, and if 

x E L, then there is' a unique shortest path from x' 

ending inside L. 

Prpo.f.. By (II), we may assume that x=X 
p' 

x' =: X and L == (x ,y) wi.th y= X • The above -p p-o'8 
picture then gives us a path x' y'=X ,yo It remains , 

-0.8 
to prove uniqueness. 
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Consider a path x! ,Z,u with xt and z, resp. z 

and u, collinear, and u c- L. 

If u=y then z 1.8 collinear 

with both x' and y, so 

z=[xt,y] is uniquely deter-

mined by (1)0 

So suppose that ufy~ Since {x,y') 

to a Sylow subgroup of SL(3,q) (cf. (3.C» 

g E y' with :It:= ug• But g certainly fixes 

is isomorphic 

we can find 
, 

x, so now 

zg is collinear with both x and x', which we saw 

(in the proof of (III» is impossible. 

~emarks. Property (IV) 

of the B - S property (l.G). 

The pic tur;...:;.-.... rf' ...... 
x 

is strongly reminiscent of 

~ now sets 
£'1~ x 

up a bijection between the lines L through x and the 

lines L' through x'. We will show that this is, in 

some sense, an isoI11orphism (cf. (VIII»., 

Definition. A ~~bspace is a set of points which 

contains each line meeting it twice. An ~belian subspace, 
i 

is a subspace in which any two points commute. 
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General example. If K is a subgroup of G generated 

by root groups, then n n K is a subspace e (For, if 

x,yEK and (x,y) is aline then <x,y)~K.) 

~?Campl.!E.. Set E"'" tX ,X ,X ) • Fromthe \ P o-n7 p-a7-~8 

extended Dynkin diagram we se~ that E lies in the 
" " 

subgroup of type SL(4",q) generated by the groups 

with" a= 1', p - ('17 and n-a.7-aS. 

el~mentary abelian of order q3, 

It follows that Eia 

and contains" q2 + q+ 1 

root groups (which are transvection groups for the 

SL(4,q». There are also q2+ q + l lines inside E t 

and hence E n n has the natural structure of a projective 

plane. 

The usual proof shows that NG(E) == J?6- Moreover, 

(X+a, ,X+o, \ ~ SL(3,q), and acts on E in the natural 
~"7 - 8 " 

manner. " 

.Q.efin.~tion._ A p"ls11.e is any subspace of the form 

(En 0)&, & E G. Of course, we will identify (E n n)g 

with Eg. 

(V) Three pairwise collinear points are coplanar. 

f!92£' This follows immediately from the Second 

Suborbit Lemma. 

./ 
/ 
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The entire building of E8(q) can be seen in terms 

of abelian subspaces. First, note that, if PI is any 
PI 

parabolic subgroup, then (Z(Qr) ) ("'! \l is an abelian 

subspace. 

Examp'le.~ • Each maximal parabolic subgroup p. 
~ 

occurs as NG(Si) for a suitable abelian subspace Si 

on which Pi acts "nice.1y" e Specifi~ally, the following 

table 1 i s t s eae h Pi, t--he-d:ee-s-s ~ir~e:!-(d:t----1h-_____ ---&l!lG.----t£le-~GWt)------8 i , aad the group 

induced by the Levi factor Li and Si-

\Si\ Induced on S1 

--+-----------------t----t-,-----

Pt , 

P6 

Ps 
P4 

P3 

P2 

PI 

(X X - X > 
p' p-aS' P-u7-a9 

(point) 

(line) 

(plane) 

{ X X X X > 
. 'p -0'8' p -(.'1'7 -0.8' P -(16 -0.7 -as 

(X ,X , •• ~,X , 
P A-n A-a. -0 -a. -n ' ... ·8 1-' 5 -6 7 -8 

(X \0. involves 40:3) 
0. 

(X\a. involves 
a 

{X to, involves . a I 

q 1 

q2 SL(2,q) 

q3 SL(3,q) 

q4 SL(4,q) 

qS SL(5,q) 

q7 8L(7,q) 

qS 8L(S,q) 

q14 n+(14,q) 

• 
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Th.is table is readily checked using the roots listed 

in Bourbaki [51 or Aschbacher-Seitz [3]; we will return 

to the PI case soon. 

then 

,Et9_Q!. The equality follows by forming various sums 

{1.k + 01<.+1 + · · . _ in order to obtain the roots 21 + (:: j . 

The stru.cture of D is proven by looking at the extended 

Dynkin diagram 1 3 4 5 6 7 8 i'I .. • . 
I .-- .. .. -..... -- ... 
2 

and using generators and relations (Carter [7, 12.1]). 

be an orthogonal vector space of type (t (2m,q), 

m ~ 2, and let x be.a singular point. + Call K'" n (2m,q) 

and Q => ()p(~). Then Q is abeli.an -and Kx == QXl I.. with 

L _~ o.+(2m-Z ,q) t . where L centralizes x and acts the 

same on x~/x and Q~ 

Proof, - "' .. 
(l.E), where 

Use a basis 

x == (e ). m-

-el ,.· ~ ,em.' f 1 ,··· ,fm as 1.n 

Then Q consists of all 
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for i< m. If .t E L, compute tha t 

Remark. Kx is a parabolic subgroup (see (I.D». 

If !:-..~ ---< is the Dynkin diagram of K, then 

Kx = PI = Ql Ll H with Ql'" Q' and Ll:1 L. 

We now return to the geometry of ES(q). 

(VI) Let x,y E 0, with x and y not collinear 

but (x,y) abelian. Define 

A(x,y) =l1(x) fiA(y) 

'I.: (x) y)= ('). fi <x ,y, A (x, y» • 

Then t(x,y) is an!!)(~11all subspace. It can be identified 

with the set of points of an O+(14,q) space (r.(x,y». 

The group induced on it: by its stabilizer has a normal 

subgroup n+ (14s>q)} acting on it in the natui."al manner. 

By the First Suborbit Lemma, we may assume 
2343210 where r.r =: 2 • Then that x == X and' .y "'" X , p (j 

(l.:(x,y» contains Y "" (X In involves' 2n1 > = (X +X li:f. 8). 
. .0 ~8- ~i 

As usual, since NG(Y) ~Pl we have NG(Y)=P1 • 
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Similarly, Gxy ~ P18) and it is easy to check that 

Gxy;,PltPS' Thus~ Gxy~P18. But PlSl:i:, (Xa,/a involves 

20'1 and laS):= (6.(x,y) ~ Thus, O::(x,y» =Y. 

Now note that r.(x,y) is contained in the group D 

defined before the digression. Thus, the digression 

complet~s the. proof. . 

~~~~~. Thus, any two distinct commuting points 

x,y are either contained in a unique line (x,y) r"1 0 

or a unique "hyperl ineH L: (x) y) • The uniqueness is 

further clarifi.ed in the next results. 

(VII) If xl and 11 are distinct: points of ~(x)y), 

and are collinear in the subspace i-: (x,y) 

if and only if they are collinear t.s. points of the 

orthogonal space (!:(x,y». If xl and y1sre not 

collinear, then L: (x,y) = f(x1'Yl). 

Proof. The first statement fo1.10;48 from the 

digression and the embeddi'ng in D. The second is a 

consequetlCe of the transitivity of n+ (14,q) on pairs 

of non-perpendicular points. 

(VIII) 

opposite x' , 
Given four points 

y opposite t Y , 

I t X,X ,y,y with x 

and the groups (x,y) and 

commuting, there Is a Hnique subspace D(xtx' "y,y') of 

type DS(q) containing all four of them. 

, t \ <.x,y f' 



~oo!:. First we may assume that g == X and 
(j 

x I :: X and then that y:: X and y.;:.: X • -p' (1 -IT . 
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For existence, use the group D:: (X+o:. , ••• ,X+a. ,X+ >. 
- 2 - 8 f.) 

Now assUme that X+p and X+cr are in a subspace 

DS (q). Consider D8 (q) n A (Xp"Xo ) ' which is contained 

in A (X ,X,,) and hence in D. But there must be equally P (J 

many points in D8(q) collinear with" Xp 

there are in D. Hence ~ A (X
p 

,Xa ) C DB (q). 

and X a as 

It follows 

similarly that 

requirede 

< D8 ( q) > "-'!: (L~ (X , X ), ?~ (X ,X IT) > =: D, p a -p- as 

~e~r1. The same proof shows that each orthogonal 

subgroup of G generated by root groups is conjugate 

to a subgroup of D. 

the v_i~w fr,om .J~~·r.{gl~ 

y y' 

In this diagram, every line on x' produces exactly 

one point y and one point y', by (IV). 
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(VIII) Theorem. Suppose that x and x' are 

opposite points. Let lJ and (9 l be the set of points 

y resp. y' as in the diagram; set C-= CG«x,x'» no. 
(1) 9,9' and C- are subsp~ces. 

(it) y--ty' is an isomorphism, sending lines of 9 
to lines of 9'. 

(iii) Each ~(x;w) contains a unique point wl of 

C, and A(x,wl) C ,~. 

(iv) (!. is the set of root groups of a group of 

type E7(q). 

_
Proof. We may assume too t x:= X and x t == X • 

P -p 

Then Gxx ' ""'LSB with 1"8 of type E7(q). As in (II)t 

La centralizes x and x'. 

(iv) This is now clear, since Xo is in L8" 

(i),(i1) Let y and z be distinct collinear 

points of 9. By the Second Suborbit IJemma, we may 

assume that y=X 
P-0.8 

and z,.,. X • 
p -o.7-u 8 

Thus, (y,z) n n 

is a line (compare (VI». But Xo. fIxes x x' and , 
7 

and acts transitively an the points FY of (y, z) • 

(Note that (Xc, ,z) is isomorphic to a Sylow subgroup 
7 

y, 

of SL(3 ,q); cf .. (3 .C).) Since X stabilizes 9,· it 
(17 

follows that (y,2) nne 9. 

' .... 



Since y' - X and z' "" X with. ,y' - -p+u8 . -P+o.7+C1S 
collinear, (IV) completes the proof of (i1). z' 

(iii) By (VI), NG(L:(x,w) is transitive on the 

points of r. (x ),w) • It follows t~t Gx is transitive 

on the subspaces :r:(x,w) contai.ning x; by (II), so 

is Gxx t. We may then assume' that l: (x tW) := l: (Xp ,Xcr
) , 

and then clearly X Er;(x,w)nc... Moreover, generators cr 
for (A (Xo,X ) > were found in (VI) , and all belong 

, (J 

to 9. Hence, each A(x,wl)C$ for w1EC,. 

It rernains to prove the uniqueness part of (iii) . 

Let v E r: (XCI ,X
cr

) n c,. As in the suborbit lemmas, we can 

use L8 to H.;'~ve the pair (X ,X ) ~ 
('\' ('{ 
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and 

Then also ~{ E 1, (X ,X ) n c. si.nce L8 fixes x and x'. 
0: p e 

Of the 14 roots t3 yia lding points Xe in z: (Xp 'X(j) , 

only one of them (namely 0) produces an XB collinear 
I-

with Xp' Thus J X = X and hence also v = X • 
a 0" cr 

~~~r~. The Xals insidet(Xp'Xa ) form a generalized 

octahedron (cross-polytope). 

The isomorphism y -+ y' preserves more than just the 

collinearity of points, .ss the next property shows. 

• 
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be as in (VIII). 

Let y,zE 9, y # z. 

(1) If Y and z are collinear, then so are y' 

and 
, 

z ) and (y,z') is abelian but not a Ii re. 

(ii) If (y, z) is abelian but not a line, then the 

same 1.S true of (y' ,zt), and [y,z'] "" [y' ,z] is 8 point 

of {~. 

(H.i) If [y,zl =x then [y' ,Zl]::; x', and 

(x,x' ,y,y' ,z,z'> e!SL(3,q). 

Proof. By (II), (IV) and the Second Suborbi.t 

Lemma, we may assume tha t y = Xu and z == Xs 

a. = p - as 
Then y' == X 

~nd Q ( 2 3 4 3 2 1 1), , 
Q t-' = P - (17' 'r = 2 

-a.
8 

and z! = X .• -p+/S 

l-iith 

(i.) Here 11 ~ ",. " ~ 0'7 - a 8 and a. ± (p - !3) are not 

roots. 

(i1) 

the root 

Here, 
s8 

"f • 

a='f 

(iii) Here, S::: as' 

(-p+ a.) + (-p + 13) =-p • 

and Ct + (-p + e) =: .. 8+ (- p+ a) is 

so and 

Horeover, (x,x' ,y,y. ,z,z' > =:: <X+u ,X+ > 
- 8 _P 

is isomorphic to 

. Dynkin diagram. 

SL(3 ,q) , ;lS is seen from the extended 
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Geom~.trj.esof tYE!:. £7 (q), F 4 (q), 2E6 (q) • 

For each of these groups, use (long) root groups as 

points. Then analogues of the two suborbit lemmas can 

be proven, exactly as before. The,se geometries arise 

as subspaces of the ES(q) geometry. From this fact, 

or proofs similar to the onei just given, versions of 

properties (I) - (IX) can be obtained. 
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