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1. Introduction 

Baer involutions are big nuisances. They are frequently the major 

obstacles to the study of collineation groups of finite projective 

planes. Several years ago it was standard to rig hypotheses so they 

would not occur. Recently, attempts have been made to deal with them. 

We will describe a few such attempts. 

Probably the most important and successful attempt was the Ostrom-

Wagner theorem [18]. Other related results of this sort are discussed 

in [4], 4.4. More recent trends have been to apply deep classification 

theorems concerning finite simple groups. The results most used are 

the Feit-Thompson theorem, the Alperin-Brauer-Gorenstein-Walter theorem 

[1], the fundamental results of Bender [2] and Shult [21] on permutation 

I 
J 

groups, along with the extension of ShultIs result by Hering [6]. We 

note that all but one of the major classification theorems concerning 

finite simple groups involve involutions. That exception is Thompson's 
i 

theorem on quadratic pairs [22], and that theorem essentially contains l 
; 

as a special case the recent powerful results of Ostrom and Hering [7] 

on elation groups in translat'ion planes of characteristic J 2,3. 

Several talks in this conference deal with planes using very deep 

group-theoretic results. Some comments on the necessity of this sort 

of approach is, perhaps, worthwhile. It is not unreasonable to feel 
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that the use of group theory is a crutch which could be eliminated by a 

sufficiently detailed geometric study -- and there are, indeed, instances 

where this may eventually be possible. 

For such results as the Ostrom-Wagner theorem, only elementary 

group theory is ever needed. However, the minute one wishes to study 

the structure of more general collineation groups (such as an arbitrary 

simple collineation group) group theory seems unavoidable at present. 

For example, in his very important characterization of PSU(3,q) , O'Nan 

[16] implicitly has a projective plane of order 
2 

q available (this 

is described, somewhat more explicitly, in [131). Moreover, he has a 

group looking very much like PSU(3,q) , acting on the plane very much 

like PSU(3,q) acts on 
2 

PG(2,q ) • Nevertheless, there does not seem 

to be a geometric way to show the plane is desarguesian, although a 

geometric proof would be very nice to have. 

If it is difficult to show a group is PSU(3,Q) given a great deal 

of information concerning its structure and action on a plane, how can 

we expect to obtain the structure of a collineation group given compara-

tively little information (such as, for example, the structure of a 

Sylow 2-subgroup)? 

2. The well-behaved case. 

Throughout our discussion, P will be a projective plane of order 

nand r a collineation group of even order. 

In this section, we will indicate how nice things are when all 



involutions in rare perspectivities. For the sake of simplicity, we 

will assume that r is generated by its involutions, and that r has 

no nontrivial solvable normal subgroup of even order. Finally, assume 

r j r(x,x) for any x,X Let ocr) be the largest normal subgroup 

of r of odd order. and set f = r lo(r) • 

If n is even, the structure of r is known by [19] and [2]. In 

particular, r is PSL(3,2e) , A6 ' PSL(2,2e) , Sz(2e) , or PSU(3,2e) 

for some e. Moreover, o(r) is the center Z (r) of r • 

We will thus assume that n is odd. The following is the most 

basic lemma known in the study of involutory homologies. 

Lemma 1. ([17], [15], [11].) Let cr and,. be cOIlDlluting invo1-

utory homologies of a finite projective plane having different axes. 

(i) cr,. is an involutory homology. 

(ii) cr is the only involutory homology having the same center and 

axis as cr. 

(iii) A co1lineation group containing (cr,,.> has no elementary abelian 

subgroup of order 8 generated by 3 homologies. 

Suppose r has no cr and ,. as in Lemma 1. Then again by [2], 

So suppose cr and ,. exist. 

Then r has no elementary abelian subgroup of order 8. Now group 

theory takes over. By [1], f is PSL(2,q) , PGL(2,q) PSL(3,q) 

PSU(3,q) , ~ , PSU(3,4) , or MIl. Actually, MIl can be shown not 

to occur, PSU(3,4) is an unlikely possibility, while r = ~ occurs 

147 
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!! 

~ 

for P = PG(2,~) • More information is obtained from the following 

technical lemma. 

Lemma 2. Let P be a projective plane of odd order, and ~ a 

collineation group of P. Suppose ~/O(~) is isomorphic to the alter-

nating group ~ of degree 4 , and that ~ contains commuting involu­

tory homologies cr and ~ having different axes. Then (cr,~) centra 1-

izes O(~) • 

In our situation, r contains many ~'s. It follows readily that 

oCr) = z(r) • From this we get the following possibilities for 

r : PSL(2,q) , a non-split central extension of PSL(2,9) by a group 

of order 3 , PGL(2,q) , PSL(3,q) , SL(3,q) , PSU(3,q) , SU(3,q) , Ay , 
or PSU(3,4) • 

Still more partial information is possible when r is PSL(2,q) , 

PGL(2,q) , PSL(3,q) , or PSU(3,q) , as follows. 

If r is PSL(3,q) , then P has a r-invariant desarguesian sub-

plane of order q on which r induces r • Moreover, q In , q - lin - 1 

and q + 11n2 - 1. (All of this is also true when q and n are even, 

and r is PSL(3 ,2e) .) 

If f is PGL(2,q) and (q, n) .J 1 , then P has a desargues ian 

r-invariant subplane of order q on which r induces r . Moreover, 

q/n , q lin - 1 , and q+ 1/n
2 - 1 . (All of this is also true when 

q and n are even, and f is PGL(2,2e) .) 

~ 

1-----·-____________ -------------------



If r is PSU(3,q) and (q,n) .J 1 , then p has a desarguesian 

r-invariant subplane of order 2 on which r induces r Moreover, q . 
qln , q - lin - 1 ,and q+ lln

2 - 1 . 
If r is PSL(2,q) or PGL(2,q) and if 3+q, then r has 

point - and line - orbits of size q+ 1 This is, however, false when 

31q ; an example is provided by a subgroup PSL(2,9) of PSL(3,25) • 

Similarly, if r is PSU(3,q) and 3+q, then r has point - and 

line - orbits of size q3 + 1. In each of these cases, r induces the 

usual 2-transitive representation of r on its orbits of size q + 1 

or 

These results on the action of specific groups r on a projective 

plane should be compared with [14 L [3 Land [10]. There are clearly 

some open problems even in these concrete situations. 

3. Baer involutions 

Almost nothing general is known about collineation groups of even 

order containing no involutory perspectivities. It would be particularly 

nice to know, for example, that a plane of odd order does not admit a 

Klein group (a,~) of collineations such that a,~ , and a~ are Baer 

involutions. This, or any reasonable facsimile of this, would combine 

with Lemma 1 to make collineation groups of even order in planes of odd 

order infinitely more accessible to geometric and group-theoretic analy-

sis. Such Klein groups can, however, occur for planes of even order. 

149 
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Some useful combinatorial information has recently been found when 

a Baer involution preserves a regular polarity ([5], [9], [20]). Also, 

if the Klein group <a,~) mentioned above happens to preserve a polarity 

~ , A. Hoffer has pointed out the possibility that the 4 polarities in 

<a,~,~) - <a,~) might be played off against one another. But little is 

known even in this more special situation. 

Consider a plane ~ of order n and a collineation group r of 

even order. Again suppose that r has no nontrivial solvable normal 

subgroup of even order, but now suppose r has Baer involutions. Also, 

suppose r has no nontrivial normal subgroup of the form r(x,x) • 

If n is even and r contains an involutory elation, the structure 

of r is known by [6]. The same is true if n is odd and r contains 

a Klein group of homologies having the same axis (again by [6]), an 

oddball situation that probably cannot occur. These two cases are acces-

sible for nongeometric reasons: in both cases, the permutation represen-

tation of r on the set of centers of involutory perspectivities is of 

a very special type. 

All other cases are open. In particular, even when n is odd and 

r contains an involutory homology, little is known in general. Unlike 

when n is even, the representation of r on the centers of involutory 

homologies has no special properties, as is seen from the examples 

PrL(2,q) and PrU(3,q) • The only tools available as of now are Lemma 

I and the following results [12]; the first has the same flavor as 

Gleason's lemma. 

• 
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Lemma 3. Let P be a plane of odd order, ~ a collineation 

group of P fixing a line A and a point a e A ,and b a point of 
I! 

A - a If ~(b) contains an involutory homology but no Klein group, 

then ~ is transitive on those points c € A - a which are centers of 

(not necessarily involutory) nontrivial homologies. 

Lemma 4. Let L and X be lines of a plane of odd order and 

x,y € L, x J y. Let ~ be a collineation group satisfying the fol-

lowing conditions. 

( i) t,(x,X) contains an involutory homology, but no Klein group. 

( H) ~(y) contains a nontrivial elation with axis J L • 

( Hi) I~(Y) I is odd. 

( iv) X n L i-
f::, 

y 

Then t,( L) o 
x X n L for contains an involutory homology, and 

some 0 € b, • 

4. Perspectivities 

The following situation is of interest in view of Piper's talk. It 

also provides a testing ground for working with Baer involutions. 

(*) Let P be a (not necessarily finite) projective plane, and 

r a collineation group fixing no point or line. Suppose that each 

point of P is the center of a nontrivial perspectivity in r 

The only known examples in which (*) holds are desarguesian or 

Moufang. However, even then r need not contain the little projective 
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group of P • This is a major hazard which must be dealt with when 

studying (*) • For example, r might be psu(3,q) 

(*) holds, so does one of the following: 

2 and P == PG( 2 ,q ) • 

If (i) if L is a 

line for which r(L) .J 1 , then r(x,L) .J 1 for all x e L ; or ( ii) 

there is a 1 - 1 mapping 19 from the set of points into the set of 

lines such that y e x19 implies x e y19 , Y19 == ttiY for all Y e r , 

and r(x,x) .J 1 if and only if 19 In the case of a finite P X == x • , 

(i) implies that P is desarguesian and r contains the little pro-

jective group, while in (ii) ~ must be a polarity preserve~ by r • 

Thus, (i) makes direct contact with Piper's talk: some results stated 

there are special cases of the situation in (i). Case (ii) suggests the 

following slightly weaker situation. 

(#) ~ is a polarity of a finite projective plane P ,and r is 

a collineation group preserving ~ such that r(L).J 1 for each non-

absolute line containing at least one absolute point. 

This situation actually permits a possibility excluded by (*) tti 

can be an orthogonal polarity of a desarguesian plane of odd order. 

Assume (#) . Let P have order n, and let A be the set of 

absolute points of tti. A major obstacle to the study of (#) is the 

fact that r is not known to be transitive on A -- although even then, 

and even if (*) holds, we cannot yet show that P must be desarguesian. 

The following theorem collects the known conditions under which (#) 

implies that P is desarguesian. 
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Theorem. Assume (*) . Then P is desarguesian if anyone of the 

following holds. 

(1) r contains an involutory perspectivity. 

(2) n is not a fourth power. 

(3) ~ induces an orthogonal polarity on the fixed plane of each 

Baer involution in r . 

(4) r is transitive on those nonabsolute lines which contain ab-

solute points. 

Actually, (2), (3) and (4) are fairly easy consequences of (1). The 

proof of (1) was, in effect, accomplished in two steps. In [11], the 

case where ~ is a unitary polarity was handled using quite a lot of 

group theory; Baer involutions had to be considered in great detail. The 

general case of (1) was then completed in [12], using arguments which are 

more geometric. Lemmas 1 and 3 were basic for the proof. 

The only other information known about (*) is as follows. P is 

desarguesian if ~ is orthogonal. We may thus assume that ~ is not 

orthogonal, and hence that n is a square. If n> 4 , then r has no 

nontrivial solvable normal subgroup. (Surprisingly, this is not easy to 

prove.) By the Feit-Thompson theorem, this at least provides involutions 

to play with. 
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