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1. Introduction

HIGMAN [9,10] and Aschbacher [2] have determined all rank 3 permuta-
tion groups having y, = 1 and A = 0 (in the notation of [9]). In this note we
will complete the classification of rank 3 groups with \i = 1:

THEOREM 1.1. No rank 3 groups exist having /x = 1 and A > 0 .

In view of the standard correspondence between transitive groups and
certain graphs, this result can be rephrased in the following manner. Let F
be a graph which is connected and not complete. Assume that G « Aut F
is transitive both on ordered adjacent and non-adjacent pairs of points,
and that two non-adjacent points are adjacent to exactly one point. Then
T has no triangles, and G and T are as on p. 151 of [9].

The proof is primarily geometric and combinatorial, groups entering
only after extremely strong information has been obtained concerning
involutions.

The underlying geometric objects associated with such groups are
defined and generalized in § 3. When all lines have just two points, these
are precisely Moore graphs [12]; this suggests calling them Moore
geometries in the general case. They fall into two classes, one of which
has been studied in [3] using elementary arithmetic and standard eigen-
value conditions (cf. (3.3)).

Elementary properties of Moore geometries are proved in § 3. In
particular, it is shown in (3.6) that from any finite affine plane one can
obtain in a natural manner a Moore geometry having special numerical
properties; thus, in some sense Moore geometries may be regarded as
generalizations of affine planes. By combining G. Higman's character
theoretic result (2.1) with intricate counting arguments, in § 4 we obtain
severe restrictions on involutions of Moore geometries. These are used in
§§ 5 and 6 to prove (1.1); some aspects of the proof are reminiscent of
arguments used for projective planes (especially (4.8)).

I am grateful to G. Higman for pointing out (2.1) (in a slightly different
form); this produced a considerable simplification of my original proof of
(1.1). The reader strictly interested in (1.1) need only examine (2.1),
(3.1H3.3), (4.1M4.8), (5.1H5.3), and §6. On the other hand, Moore
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geometries seem sufficiently interesting in their own right to warrant the
inclusion of many of their properties; this is done in the remainder of this
paper.

I am indebted to Noboru Ito and the referee, Peter Cameron, for their
many helpful comments.

If G is a group acting on a set X, and Y e X, then G(Y) and GY will
denote the pointwise and global stabilizers of Y.

2. Strongly regular graphs

Let F be a graph. For points x, y of F, we write x ~ y if x and y are
joined, and x-Z-y if x and y are distinct and not joined. xx denotes
{x}U{y|y~x}.

Let F be a strongly regular graph with parameters n, k, I, A, jx, and
adjacency matrix A satisfying

AJ=kJ,

(where I and / are the identity and all one n x n matrices (see, e.g.,
Higman [9], [11]). Set A2 = (X-fi)2+4(k-fi), where A>0. Then, by a
straightforward calculation,

1
i + A Ae " 2A i + A A 2nA J

is an idempotent matrix. For each geAutF, let M(g) denote the
corresponding n*n permutation matrix. Then eM(g) = M(g)e. It follows
that the function 9(g) = trace (eM(g)) is a character of AutF.

d(g) can be calculated as follows. Let *(g) denote the number of fixed
points of g, and a(g) the number of points x with x ~x f . Then a simple
calculation yields

THEOREM 2.1.

defines a character of Aut F. In particular, 6(g) is an algebraic integer, and
hence even an integer if A is.

Note that A is usually an integer. Moreover, the degree 6(1) of 6 is the
multiplicity of one of the eigenvalues of A (cf. Higman [9], [11]).

Theorem 2.1 is due to G. Higman, in a slightly different form. When
Aut F has rank 3 on points, (2.1) is a special case of results of Scott [13].
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The remainder of this section is devoted to some easy examples of
(2.1), designed to indicate how it may help restrict the parameters of F in
some situations; further examples will appear in § 4. Each case is de-
signed to make the determination of a(g) easy.

DEFINITION. If S s Aut F, F(S) denotes its set of fixed points.

Example 1. Assume F(g) = zx, and that hyperbolic lines ([9], [11])
contain no joined pairs of points. (This occurs if, for example, p. > A +1
[9].) Then a(g) = 0. For suppose x£zx ; then g fixes each point joined to
both x and z, and hence fixes xz, so x^-x* by hypothesis. Thus, in this
situation 2A divides -(A-/i,-A)(fc + l ) - 2 k + (A-j i ) -A =

Example 2. If F corresponds to a generalized quadrangle of order
(s, r), then (2.1) implies that s + t divides (t + l)x(g) + a(g)-(s + l)(r + l)
for every geAutF. There is also a corresponding result for the dual
quadrangle.

If F(g) = zx for some z, we obtain s +1 \ (t + l)sl
Suppose next that g is an involution, and that F(g) is a subquadrangle

of order (s1, t1). Then

o(g) = (l + 0 ( l + s '0(s-s ' ) and x(g) = (l + sl)(l + s'f),

but the divisibility condition is unwieldy. If, however, s = s' here then
(2.1) yields s + t | (s + l)(t + l)st\

Example 3. Assume A = 0 and |g| = 3. Since F then contains no trian-
gles, a(g) = 0. Thus, (2.1) implies that 2A divides (ji + A)*(g) - 2fc - p, - A.

In particular, if y. = 2 here then -J(k — 1) is an integer dividing x(g) ~ 2.
(The parameters A = 0, y. = 2 correspond to a biplane having a null
polarity; cf. Cameron [5].)

For the case y, = 1, see the remark following (4.7).

Example 4. Let 3) be a design such that pairs of distinct blocks have
exactly two different intersection sizes a, T. Let M be the incidence matrix
of 9), /„ and Jo the uxu identity and all-one matrices, and h and Jb the
analogous bxb matrices. Then the set of blocks forms a strongly regular
graph, whose adjacency matrix A satisfies

ATM = kh + crA + T(/6 - L, - A).

Let x, a, and 0 be as before (with different interpretations for k and A).
Set G = Aut®. Then M induces a G-isomorphism between the eigen-
spaces (of dimension u - 1 ) of MM1 and AfM with eigenvalue r-A.
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Hence, either 1 + 0 or b - 6 (depending on whether 0(1) = v -1 or b-v)
is the permutation character x? °f G on the points of S.

Now (2.1) provides an intriguing relationship between \r> X> an^ a- This
does not seem to yield any useful information in the case of designs with
A = 1. Consider, however, the 3-designs studied by Cameron [4], with
parameters u = (s + l)(s2 + 5s + 5) = r + l , & = (s2 + 5s + 5)(s2 + 4s + 2), fc =
s* + 3s + 2 = A + l, and which are locally symmetric. (Here, cr = 0 and
T = S + 1.) By (2.1), ^(g)(s + 3) = ̂ (g)-a(g)/(s + l) + s2 + 5s + 5. In par-
ticular, if |g| = 3 then

3. Moore geometries
Let T be a graph satisfying the following properties. There is more than

one point; no point is joined to all others; and two non-adjacent points
x, y are both joined to exactly one point, called x ° y.

If L is a maximal clique in F (i.e., maximal set of pairwise adjacent
points), II (L) will denote the complement of LK*X | * e L}, and L will be
called a line.

LEMMA 3.1.
(i) Lines exist, and each has at least two points.

(ii) Two points are on at most one line.
(Hi) No point is collinear with all others.
(iv) Two non-collinear points x, y are both collinear with exactly one

point i » y .
(v) A point not in a line is collinear with at most one point of the line,

(vi) No triangles or quadrangles of lines exist.

Proof. Two points are collinear if and only if they are joined. Suppose
w, y, z€x^-{x} with w~y~z and w^z. Then w and z are joined to x
and z, so by hypothesis they must be joined. Thus, x^-{x} is partitioned
into cliques, and (ii) holds. The remaining assertions are obvious.

DEFINITION. A system of points and lines satisfying OMvi) is called a
Moore geometry.

THEOREM 3.2. Let <§ be a Moore geometry. Then exactly one of the
following holds.

(I) The underlying graph is strongly regular; all lines have the same
number s +1 of points; and all points are on the same number t+1 of lines.

(II) There are integers a, b, I satisfying the following conditions,
(a) Each point is in A = {x | \xx\ = a} or B = {x | Ix̂ l = b}.
(/3) A * 0 and B*0.
(y) Each line has 2 or I points, and both sizes occur.
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(8) Each 2-point line meets A and B, while each l-point line is
contained in A.

(e) a-f> = / -2>0 , and |AUB| =

Proof. Let L = xx'. Then by (iv), each z € II (L) can be written z =
(x oz)o(x'°z), while y°y'€U(L) whenever y e x x - L and y ' ex ' x -L .
Thus, |n(L) | = | x x -L |o |x ' x -L | .

By (iii) and (iv), each point is on at least two lines. Suppose p = x ° y.
Then each zexx — px determines a unique z ° y e y x —py. Thus,
|xx-px| = | y x -py |>0 . In particular, |xx| = |yx| if and only if |px| = |py|.

Suppose L is a line with \L\ > 2. Then |xx| is independent of x e L. (For,
let {p .x ' Js .L- to , p / x ' , and y e p x - L ; then-|xx-L| = |yL-py| = | x ' x -
L\.) Thus, |I1(L)| = | x x - L | \ so the total number of points of <8 is

If all lines have 2 points, then |xx| = |yx| for all x, y, and (I) holds with
s = l and t = |x x | -2 . Suppose all lines have more than 2 points. Then
once again, |xx| = d is independent of x. By (#), so is \L\, and there are
(d - l ) / ( |L | - l ) lines per point. Thus, (I) also holds in this case.

We may thus assume that some line has more than two points, while
some line has just two points u and u'. In the latter case, n =

By (#), for a given x there are just two sizes of lines through x.
Moreover, if y ~ x then either |xy|>2 and |xx| = |yx|, or |xy| = 2 and

The connectedness of <S implies that some point p is on both an /-point
line px and a 2-point line py, where l>2. Set a = |px| = |xx| and b = |yx|.
Then a-1 = 6 - 2 , n = l + ( a - l ) ( b - l ) , and (e) holds. Clearly (0) holds.
If z e x x - p x , then |zx | - |zx| = |px |- |px| = a-l = b-2, so |xx| = 6 if and
only if |zx| = 2. Thus, the points of xx-{x} fall into the sets A and B
defined in (a), according to the size of zx. Each line on p or x has 2 or I
points.

We can now prove (a). Let w£px, and set q = p°w. If |pq|>2 then
\pq\ = l and |qx| = a,so I w ^ a or l + (n-l)/( |<jx | - l) = b. Suppose \pq\ =
2, so |q-L| = l + (n - l ) / ( | p x | - l ) = fc and | H - X | - | < H = | P

X | - 2 . H I<H = 2
then \wx\ = |px |, while if |qw|>2 we know |qx| = |wx|. This proves (or).

From py, we see that n = l + (a - l ) (b —1). For any 2-point line uu',
n = l + ( |u x | - l ) ( |u ' x | - l ) . Since |ux| and |u'x| are a or b, while a-b =
1-2*0, it follows that uu' meets both A and B.

Finally, consider a line M with \M\ = m>2. If M s A then |M] = / by
(#) (since n = l — al + a1 already). It remains to eliminate the case Mfl

. But here, we know M^B. Let veM and w e u x - M . Then
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|wx| — |wt)| = b — |m|. If |wu| = 2 then wvr\Aii0, so wsA and 2 —m =
a — b = l — 2>0 . Thus, each line meeting M must have m points, and
hence lies in B. Thus, the connected component of "8 containing M lies
entirely in B. Since A ̂  0 and <S is connected, this is a contradiction. This
completes the proof (y), (8), and hence of (3.2).

DEFINITIONS. 1. A Moore geometry has type (s, t) or (a, b, I) according
to whether (3.21) or (3.2 II) holds.

2. A Moore geometry of type (a, 3, /) is called trivial It consists of an
/-point line L = {xi, . . . , xj , and / +1 other points z, y i , . . . , yt, with lines
L, {x,, y,}, and {z, y,}. Here, A = L U {z} and B = {y, y,}. A Moore
geometry of type (1,1) is also called trivial

3. In a Moore geometry of type (a, b, I), an i-line (i = 2 or /) is a line
having exactly i points.

4. A subgeometry of a Moore geometry <S is a subset F of points which
is a Moore geometry under the induced adjacency. Thus, x, y e F and
x¥-y in <3 imply i » y e F . Clearly, if SsAutT then the set F(S) of fixed
points of S is either a subgeometry or satisfies F^c.x^' for some x.

Remarks. No relationship is known in type (a, b, I) between |A|, \B\
and a, 6, i (except for |A|>|B| ; cf. (3.8)). Examples of non-trivial Moore
geometries of type (a, b, I) will be given in (3.5) and (3.7). No Moore
geometries of type (s, t) are known with s > 1; the following result
provides a few restrictions on the parameters s and t.

LEMMA 3.3. The following hold for a Moore geometry of type
(s, 0^(1,1)-

(i) A = J{s(s + 4t)} is an integer.
(ii) A divides s\t + l){(s-2)t+l}.
(iii) There are {l + s(f+ l)(sf + l)}(f+ l)/(s + l) lines.
(iv) An incidence matrix <S has rank equal to the number of points.
(v) t>s.
(vi) s = 1 implies that t = 2, 6, or 56.
(vii) S5*2.
Proof, (i) and (ii) follow from standard eigenvalue considerations: in

(2.1), A = V(s2 + 4sf), a n d W k ^ integer.
(iii) Count flags.
(iv) Some incidence matrix D satisfies DD' = ((+1)/+A. By (2.1),

—(t+1) is not an eigenvalue of A.
(v) This follows from (iv). (Alternatively, let well(L). Then w is

collinear with exactly s +1 points not in 11 (L), one in each x^ — L, xeL.
Thus, t + 13=s + l. By (i), r^s.)

(vi) This is well-known ([9], [12]).
(vii) Suppose s = 2. Then A2 = 4(l + 2f). By (ii), V(l + 2f) divides f + 1,

whereas (l + 2t,t+l)=l.
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Remarks. Note that when s = 4, (i) and (ii) state merely that J{t +1) is
an integer. Thus, s = 4 is the most likely candidate for s if a Moore
geometry of type (s, t) is to exist with s > l . On the other hand, (ii)
implies that, for s ¥=• 4, r is bounded by a function of s.

Both (v) and (vii) are well-known results: (v) asserts the non-existence
of finite generalized pentagons with more than 5 points; and (vii) is the
Friendship Theorem.

One can also study D'D and the adjacency matrix of the dual of <8.
However, these do not seem to provide any additional information.

DEFINITION. Let <S have type (a, b, I), with A and B as in (3.2). Define
(B, A) to be the incidence structure have B as set of points, A as set of
blocks, and incidence relation ~. Then any two points are on a unique
block, and each point is on exactly b — 1 blocks. Note, however, that some
blocks may be on no points!

LEMMA 3.4. If (B,A) is a design, with k points on each block,
then k2-{l-l)k-(b-2) = 0, k2-k=«O (mod / - I ) , and
(a + l)(a - k){a - k - 1 ) =» 0 (mod /).

Proof. Suppose each block is on fc points. Then \B\ = l + ( fc - l ) (k- l )
and |A| = {l + (b- l ) (k- l )}(b- l ) /k- Since |A| + |B| = l + ( a - l ) ( 6 - l ) , it
follows that a - l = fc-l+{l + (b-l)(k-l)}/fc. As a-b = l-2, this
proves the first assertion.

If xeA, then \xJ-C\B\ = k and | x x nA | = a - k . Here, x 'OA is a union
of /-lines. The number of such lines is ( a - k - l ) / ( / - l ) ; then 6 - 2 = fc
(mod / - I ) implies the second assertion. Finally, there are exactly |A | (a -
k-W-iylll /-lines. Since |A| = (&-l ) (a- fc)s(a + l ) ( a -k ) (mod /),
this proves the lemma.

That the hypotheses of (3.4) can actually be satisfied is seen from the
following example.

Example 1. Let a be an affine plane of order /. Denote by A its set of
lines and B its set of points. Join two members of A if they are disjoint,
and members of A and B if they are incident. The result is a Moore
geometry of type (21,1 + 2,1), called an affine Moore geometry.

Example 2. Starting with an affine Moore geometry as above, adjoin a
new point to each Z-line, and a new line containing all new points. The
resulting Moore geometry of type (2/ + 1 , / + 2, / +1) will be called projec-
tive.

Example 3. Let 6 be a polarity of a finite projective plane of order n.
Let A and B be the sets of nonabsolute resp. absolute points. Join two
points x and y if xj^yex". The resulting Moore geometry of type
(n + 2, n +1,3) will be called polar. (There is a unique example <Sl3 when
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n = 3, and two examples when n = 4, one of which is also affine; the other
is denoted $2i-)

PROPOSITION 3.5 (W. Bridges). A Moore geometry of type (a, b, t) is
polar if and only if 1 = 3.

Proof. Suppose / = 3, and regard the points of S as both the points and
lines of an incidence structure. Call x and y incident if either x ~ y or
x = y 6 B. It is then straightforward to verify that the result is a projective
plane of order b-l. Moreover, there is an obvious polarity, and hence $
is polar.

LEMMA 3.6. Every Moore geometry of type (21,1 + 2,1) is affine or S21.

Proof. Let \L\ = I and x e L. Note that | x x - L\ = a -1 = /.
If weU(L)r\B, then |w x n(x x -L) | = l; these intersections account

for / of the b = 1 + 2 points of wx. Thus, w is joined to a unique point of
II (L), which must be in A by (3.2 S).

We claim that II (L) contains two joined points of A. For suppose not.
If 2 e A D IT (L) then |zx n II (L)|== a - / = i, so z is joined to / - 1 points
of II (L), all in B. It follows that 11 (L) splits up into (a - Ifll = / sets S of
size Z, each consisting of a point of A joined to / — 1 points of B. Let zeS.
Then each of the I — 1 points of S — {z} is joined to a point of x x - L , and
each such point must be in A (by (3.2 S)). Thus, x x - L consists of an
/-line L, and a point bx e B. Since each point of S -{z} is joined to a point
of Lx, necessarily z~bx. Since x e L was arbitrary, we see that z*~-{z}^
B. However, there is a point w e II (L) n B not joined to z. Then
z °weB, which is not the case.

Thus, there is an Mine M with |MnIl(L)|3=2.

CASE 1. Afg II (L). Suppose that M n x x = {u}. Then xu<=A and
|x x - ( /Uxu| = a - ( 2 f - l ) = l. Thus, xx = LUxuU{p} with peB. Let ze
M-{u}. Then |z xn Il(L)| = a - / = / implies that zxnI~I(L) contains a
unique q&M. Consider q »x. Since q~ z~u, we cannot have q ° xe ux.
Thus, q°x = p, so <jeA But qz contains at least f -1 points of
I1(L). Thus, 1-1 = 2 and » has type (6,5,3). Now (3.5) applies.

CASE 2. M e II (L). Each point of M is joined to a different point of
x x - L , and no two of the latter points can be collinear. Consequently,
xx-L<=B. As x€L was arbitrary, it follows that B = \J{x±-L\xeL}
and A = LUI1(L). If zell(L) then |zxn Il(L)| = a-i = I, so zxnfI(L)
is a line. Thus, F1(L) is partitioned into I lines of size /.

Each point of B is joined to / +1 points of A. Each point of A is joined
to / points of B. Two points of B are joined to a unique point of A.
Hence, (B, A) is an affine plane, and the lemma follows easily.
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THEOREM 3.7. If <3 is a non-trivial Moore geometry of type (a, b, I), then
a 2*21 +1, unless <§ is affine, projective, ^13 or#2i-

Proof. Suppose a<2l Then b = a - / + 2=s/ + l. Let \L\ = L If pe
B D II (L) then px contains the I +1 points p and x°p, xeL. Thus,
px n II (L) = {p}. Moreover, x°p<=A implies that |x(x°p)| = /, so |xx |>
2 / - 1 and hence xx is the union of two /-lines.

Similarly, if z e A n l l ( L ) then z x n I I ( L ) n B = 0 and |z x nr i (L) | =
a - J < J . Thus, z±C\U(L) = L' -{x ° z] for an Mine V and a point xeL.
Once again, xx is the union of two /-lines.

Thus, in any case we may assume xx = L U M for some x and /-lines
L, M. Each point of <8 is collinear with some point of L or M.

Let peB be joined to weL, say. Let u€M-{x}. Then y = p » u e A
Thus, |uy| = / and u± = MUuy.

It follows that, if M and all its points are deleted from *8, the result is
still a Moore geometry, of type ( a - 1 , b, I-1) = (21-2, b, / - I ) where
Z> = 2 + ( a - l ) - ( / - l ) = Z + l, unless / - 1 = 2 and the result is a Moore
geometry of type (1, 2). In the former case, $ is found to be projective by
(3.6), while in the latter case S is »13 by (3.5).

One other indication of the significance of the incidence structure (B,
A) is afforded by the following straightforward

LEMMA 3.8. For any Moore geometry of type (a, b, I), an incidence matrix
of (B,A) has rank \B\; moreover, |B |< |A| .

Proof. By [6], p. 20, the indicated rank is \B\, and |B|=s|A| with
|B| = |A| if and only if (B, A) is a projective plane. However, the latter
case cannot occur, since A contains two (joined) points which are not
joined to a point of B.

Consequently, if Aut <8 is transitive on A, then it is also transitive on B.
A point in a Moore geometry of type (a, b, I) will be called isolated if it

is in A and is on no /-line.

PROPOSITION 3.9. Let <§ be a non-trivial Moore geometry of type (a, b, I).
Let A and B be as usual

(i) Assume that q is isolated. Then q is unique, \B\ = a — 1, and each
point of A — {q} is joined to exactly one point of B. If N denotes an
adjacency matrix of the graph induced on A — {a}, then (N+I)x
{N2-(l-3)N-(a-2)I) = (a-2)J=NJ (where I and J are the identity and
all-one matrices).

(ii) / / no two l-lines meet, then <£ is affine.
(iii) If some l-line meets all others, then <fl is projective or ^ i 3 .

Proof, (i) First of all, q is collinear with each point of B (since q¥-peB
would imply q~q°p~p with q°p&A and |q(<J°p)| = ')• Thus, a —I = |B|.
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If x e A — {q} then q°x must be the only point of B joined to x. In
particular, q is the only isolated point.

Let N2 and N3 be the characteristic functions of the relations
{(x,y) |x,yeA-{q},x^y, x°yeA} and {(x, y)| x, ye A-{q},x^y,x°
yeB}. Then N2 = (a-2)I+(l-2)N + N2, NN, = N2, NJ = (a-2)J, and
I+N+N2 + N3 = J.

This implies (i). (Note also that Nl = (a-l)N3 + (a-1-1)1.)
(ii) Suppose first that there is an isolated point q. Let xeA — {q}. Then

(i) and our hypothesis imply that |x i | = 2 + ( / - l ) , so a = 1 + 1, whereas <8
is non-trivial.

Thus, the /-lines partition A. It follows easily that (B, A) is an affine
plane, as required.

(iii) Let M be an /-line meeting every Z-line. Then each non-isolated
point of A - M is on a unique /-line, and hence is joined to a — I points of
B. Since a-l>\, no isolated points exist by (i). Let peB. If p ~ x e M ,
then x is the only point in xx joined to p. If p — xgM, let y be the point
of M on the unique /-line through x; then x is the unique point of yx

joined to p. Consequently, b — 1^/ , so a—l+l^l and (3.7) applies.

COROLLARY 3.10. In (3.7), a*2l + l if l>3.

Proof. Assume a = 21 + 1. By (3.9 ii), there is a point q on exactly two
/-lines L, M. Let q'eq^HB and p e B - ( q x n B ) . Then q~q°peA, so
we may assume q°peL. Then xeM-{q} implies that x ^ p and x ° p e
A. Thus, each point of Af is on two /-lines.

Label the points of M as qu ..., qt. Let M and L< be the two /-lines on
q,. If XjeL«-{q,} for each i, then either X!ox2 is one of the points of
Xi fl B, or x2 is on an /-line # L] through x^. It follows that we can choose
X i , Xi, x 3 w i t h X i ° Xy € A . B u t t h e n e i t h e r Xi ° x 2 = Xi ° x j o r X i ° x 2 J t x i ° x 3

implies that some point (x,"x2 or Xi) of A is on at least three /-lines.

4. Involutions

Let "S be a non-trivial Moore geometry with n points, a an involutory
automorphism, and F = F(a). Severe restrictions on F will follow from
the next lemma.

LEMMA 4.1.

(i) If x" ~ x for some x, andL = xx', then \FnU(L)\ = \xx-L\.
(ii) If zfLF, then there is either exactly one line on z meeting For exactly

one fixed line on z. In any case there is at most one line on z meeting F.
(iii) F contains two collinear points.

Proof, (i) If y e x x - L , then y°e(x°)x-L, so y^y" and y°y"€
FnU(L). Conversely, if weFDlI (L) then w = (x°w)°(xow)a.

(ii) If z"-/- z then z°z° e F. If z" ~ z then zz" is the only fixed line on z.
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It remains to show that z ~ x, y e F and x# y imply y exz. But if ygxz,
then x, z, y, z" is a quadrangle.

(iii) If x" ~ x for some x, this follows from (i) and the non-triviality of "S.
If x*Vx for all x, but F = {u}, then i°»x = u for all x#u, and this is
absurd.

THEOREM 4.2. If<8has type (s, 0 * (1,1), then one of the following holds
for F(a).

(i) s > 1 and F=xx for some x; also, a(cr) = 0 if s is odd,
(ii) s > l and F is a subgeometry of type (5,0. where t = sftf+l);

also 2 ^ + l | s 2 - 2 s - 4 anda(a) = 0 if s is odd.
(iii) (s, f) = (1,2) or (1, 6), and either |x x -F] = 0 or 2 for some x, or F is

a subgeometry of type (1,2).
(iv) (G. Higman) (s, r) = (1, 56) and | x x - F | = 2 /or some x, *(or) = 56,

a(a) = 112, and a is an odd permutation of the points of <S.

Remark. Here *(o-) and a(a) are as in (2.1).

Proof. The cases (s, t) = (1,2) and (1, 6) are left to the reader.

LEMMA 4.3. If F is a subgeometry of type (s, t1), then (4.2 ii) holds.

Proof. Suppose first that a(<r)>0 and s is odd. Necessarily L D F = 0
for some fixed line L. Then (4.1 i) yields |Fl = st, whereas |F| =
l + s(f'+l)(sf' + l). Thus, s = l and t=l + (t'+l)2. Since t = 56 and t' =
1, 2, or 6 by (3.3 vi), this is absurd.

Thus, cr(o-) = 0 or s is even. By (4.1 ii), the number of pairs (x, z)
with z& F and x e F n zx is

Thus, r = sf'(t' + l)-
In (2.1) and (3.3), A = s(2»'+l). By (2.1), if a(o-) = 0 then

A divides (s-2)-[ l + s(f'+l)(sf' + l)]+2sf+s + 2 = s(s2f'2 + s2r' + sf'-
2f' + s).Thus, s 2 - 2 s - 4 = 0 (mod2f'+l). In particular, if s = 1 then t = 6.
(Note the similarity of this case to Baer involutions of projective planes.)

LEMMA 4.4. F cannot be a subgeometry of type (s\ t') with s > s'.

Proof. Suppose F has type (s', t'), with n' points and b' =
n'(f' + l)/(s' + l) Unes, where s>s'. Then the union of the lines in F
contains b'(s-s') points not in F. If w is one of these, then w"~w; if
L = ww" then st = | I l (L)nF | = (s'f')2 by (4.1 i).

Let ztL F. We claim that z" ~z implies that |zz" D F\ = s' +1. For, if not
set M=zz° and note that | I I (M)nF| = sr = {s'tf. Since |MnF|=sl , it
follows that M H F is a point x and Fcx±uFI(Af)- Thus, |F|=e
l + s'(f'+l) + (s'02» which is not the case. This proves the claim.



320 WILLIAM M. KANTOR

Next, suppose z"¥-z. Then z» :°eF , and by (4.1 ii) this is the unique
point of F joined to z.

Now count in two ways the number of pairs (x, z) with ztF and
jeFfl:1:

Plugging in st = s'2t'2 and simplifying yields

Since (s',l + 2s' + s't')~l, necessarily s'21 s. If s'2 = s, then 2f' = 2s', which
contradicts (3.3 v). Thus, s5*2s'2, so l + 2f' + s'f'3*2 + 4s' + 2sY, and
hence 2 t '> l + sV. Now s' = l, so l + 2r' + f' = s(l + 2 + f')- Consequently,
s = (3f'+l)/(t' + 3). Then K s < 3 contradicts (3.3 vii).

LEMMA 4.5. If F^xx, then either (4.2 i) or (4.2 iii)

Proo/. If xeL = L°, then (4.1 i) implies L g F . Thus, F is a union of
lines on x. In particular, |F| = 1 (mod s).

Suppose a(cr) = 0, and let y/-x. Then y'Vy, so y°y"eF. Since y was
arbitrary, y « y" = x ° y can be any point of xx — L. Thus, we obtain F = xx.
By (2.1), V{s(s + 4t)} divides (s-2){1+ s(t + l)} + 2st + s + 2 = s2(f+l).
Thus, s?41, so (4.2i) holds in this case.

Now assume a(<r)>0, and let x£M = M°. Suppose s is odd. Then
M(1F=0, so \F\ = st by (4.1 i). Since |F] = 1 (mod s), necessarily s = l
and |F] = 56. There is a point yexx moved by a. If ue yx-{x, y}, then
u " ~ u (as otherwise, i c u ' e x 1 , whereas y = u°.x). Thus, a(cr) = 2-56 and
(4.2 iii) holds.

Consider next the case s even. Here, each fixed line meets F. Let yexx

and ze yx —xy. If za-/-z then z"°zeFc xx, so y = x°z = z°°z. If z" ~ z
then zz" meets F, and y = x o z6 zzTlF. Thus, F = xx here.

LEMMA 4.6. F cannot be a subgeometry of type (a, b, I).

Proof. Assume it is. Let L and L' be lines with |LDF| = 2 and
\LT\F\ = L Recall that / > 2 by definition, so s + l > 2 here. Also 2 =
s + l = /(mod2).

By (4.1 i), |FnIT (L)| = st, while by (3.2), |Fn Il(L)| = (a -2 ) (6 -2) .
We claim that / = s +1. For if not, then (4.1 i) implies that |FD II (L0| =
(o - / ) 2 = s£, so ( a - / ) 2 = (a-2)(fr-2) = ( a -2 ) ( a - / ) , whereas / > 2 .

Now / = s + l and st = (a-2)(fc-2) = ( a - 2 ) ( a - s - 1 ) , so
a 2 - ( s + 3)a + 2s + 2-sr = 0. Hence, if 2 > 0 and XJ =
(s + 3 ) 2 - 8 s - 8 + 4st = ( s - l ) 2 + 4st, then X is an integer. By (3.3 i), A =
V(s2 + 4sf) is an integer. Clearly, A>X, so 2 s - l = A2-X22=
This contradiction proves (4.6).

Finally, (4.2) follows from (3.2) and (4.3H4.6).
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COROLLARY 4.7. (G. Higman.) Every involution of a Moore geometry <9
of type (1,56) is an odd permutation. Aut*8 is not transitive on points.

Proof. Set G = AufS. If |G| = 2 (mod4) and \GX\ is even for some
x, G cannot be transitive on 1 + 572 points.

Remark. For <3 as in (4.7), 3 X lAut^. To see this, assume geAut<0
has order 3. Then a(g) = 0 in (2.1), so we obtain -^(g) + 115 =
0(mod 15). Consequently, x(g)>5 and F(g)cxx for some x Let ye
F(g)-{x}. Then g acts on yx—{x, y}, a set of size 56. Since g fixes no
point of y±—{x, y}, this is impossible.

Elementary considerations involving fixed point sets and transfer now
imply that G = Aut<S has order dividing 2-56-72-11-13-19, and that
O2'(G)/O{5,u}(G) is cyclic of order dividing 72 • 13 • 19. Moreover, G has a
normal Sylow 11-subgroup.

COROLLARY 4.8. Let <% be a Moore geometry of type (s, t), s>l, and
suppose G^AufS fixes the line xy. If |G(xx)| and |G(yx)| are even, then
{ a e G | c r 2 = l and Fi^^z^ for some zexy} is an elementary abelian
2-group.

Proof. [G(xA), G(yJ-)]=sG(xx)nG(yi). If an element g in the latter
group moves some point u, then {x°u, u, y°u, u*} contains a triangle or
quadrangle. Thus, [G(xi), G(yx)] = 1. Let aeGix1) and r&G{yx) be
involutions. Then or is the identity on only one line through x or y. By
(4.2), F(OT) = z± for some z, and clearly z e xy.

Let a' be another involution in G(xx). Then a'r = TKT'. Also, by the last
paragraph, a' • <rr = or • a' since clearly z^x. Thus, aa' = a'cr. Hence,
axr' is 1 or an involution in G(xA). This proves the corollary. (Note the
similarity between this proof and a standard argument concerning projec-
tive planes; cf. Artin [1], p. 57.)

COROLLARY 4.9. Let S be a 2-group acting on a Moore geometry of type
(s, t) with s odd. If F(S) is a subgeometry, then it has type (s, f) with t =

Proof. Deny! By (4.2), there are 2-groups S and T with S>T,
\S: T\ = 2, F(T) a subgeometry of type (s, t1) with t = st'(t' + l), and F(S)
a subgeometry of type (s, f) with t' = st"(f+\). But then t">s3 by (3.3).
Since 2f' + l | s 2 - 2 s - 4 by (4.2), this is impossible.

Remark. Suppose •# has type (s, i) with s > 1 odd, and g e Aut <§ has
order 4. If F(g2) is a subgeometry of type (s', t1), then F(g*) = F(g). FOT
otherwise, x(g) = 1 + s(f' +1) by (4.2,9). Since <9 contains no quadrangles,
while s is odd, a(g) = 0 by (4.2 i, ii). Thus, (2.1) implies that A = 5(2^ + 1)
divides (s-2)[l + s(f'+l)]+2s(f + l ) - ( s - 2 ) . This leads to the contradic-
tion 2=0 (mod 2^ + 1).



322 WILLIAM M. KANTOR

THEOREM 4.10. Suppose a is an involutory automorphism of a non-trivial
Moore geometry of type (a, b, I). Set F= F(a), and let A and B be as in
(3.2). Then one of the following holds.

(i) F = x*~ for some x.
(ii) FCJCX

; x e A , x^ — F^B, F is a union of lines through x, \F\ =
a — l>2, and some fixed line is disjoint from F and contained in A;
moreover, x is unique unless a —1 = 1 and F is a line.

(iii) F is a subgeometry of type (/ — I, t) for some t, and F s A.
(iv) F is a subgeometry of type ( 1 , 0 for some t> 1, F £ A, F £ B, and

each fixed line meets F. Moreover, \A C\F] (a-t-2) + \Br\F\ (b-t-2) =
n-\F\+/(/- 2), where j is the number of l-lines meeting F exactly twice.

(v) F is a subgeometry of type (a1, b', I) for some a', b'.
(vi) Fisa subgeometry of type (a1, b', I1) with 1>V and a-l = (a'- I'f.

Each 2-line of F is contained in a 2-line of <8. Every fixed line meets F.

Remarks. Note that no analogue of (2.1) is available here. Also, \A\
and \B\ are not known, and in (v) and (vi) the relationships between
A,B, A' and B' are not clear. Hence, one cannot expect results quite as
precise as (4.2).

Proof. By (3.2 5) and (4.1 i), if L = L°£F, then |L| = Z, LQA, and
\FnU(L)\ = a-l = b-2. Let n be the number of points of <S.

Suppose F c x \ By (4.1 i), F is a union of lines through x. As in the
proof of (4.5), some fixed line M is not on x. By (3.2 8), Me. A. If now
FDM=0 then \F\ = a-l by (4.1 i). Here {z°x\zeM} is a set of /
points of xx-F. Hence, \x±\&(a-l) + l = a = b-l + 2>b, so xeA. Then
also {z°x | z € M) = xx-F consists of pairwise non-collinear points, and
hence each corresponding line x(z°x) has just 2 points. Thus, xx — F s B
by (3.2 5). Moreover, now |F|>2. For if F = {x,y} then |xy| = 2, yeB,
and F<= yx, which we have seen cannot occur.

Consider the case FDM = {u}, so 1 is odd. By (4.1 i), |F|s=|xu| + ( a - / ) .
As |M|>2 , ueA. If |xu| = 2 then xeB, so b = \x±\>\F]»2 + a-l = b. If
\xu\ = l then xeA, so a = \x±\>\F\ = l + a-L

Thus, F s xx implies that (i) or (ii) holds. From now on, we may assume
F is a subgeometry.

Suppose first that F has type (s, t) with FQA (which certainly holds if
s > l ) . Assume s + KL Then s2t2 = a-l by (4.1 i). Then also by (4.1 i),
no fixed line can miss F. By using (4.1 ii), the number of pairs (x, z) with

and xe zxDF is found to be

where |F| (t + l)(s +1)~'(' - s - 1) is the number of points not in F lying on
lines of F. Since s2t7=a-l = b-2 and n = 1 +(a- ! ) ( />- ! ) , it follows
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(after simplifying and dividing by s2*2) that (a-l)(l+2s + st) =
Here, (l + 2s + st,s2{st + l)) = (l + 2s + st,-2s) = (l + 2s + st72). It follows
that sr+2s + l divides 2(s + l)2. By (3.3 v), st + 2s + l >(s + l)2. Thus,
st + 2s + l = 2(s2 + 2s + l). Now 1 = 2 (mods), so s = l and f = 5, which
contradicts (3.3 i).

Thus, if F has type (s, t) with FcA, then (iii) holds. Suppose F has
type (1, t) and F £ A. Since F contains a pentagon, by (3.2 8) there is an
Mine L with |L n F| = 2. Thus, 1 is even. By (4.1 i), \FD U(L)\ = a-l =
b-2, where |FnIl(L)| = t2. Since <S is non-trivial, it follows that t> 1. By
(4.1 i), every fixed line meets F twice. By (4.1 ii), the number of pairs
(x, z) with ziF and x e z ^ D F is

where ;(/ — 2) is the number of points not in F on some line of F. This
proves (iv).

Finally, suppose F has type (a', V, I1). Here V>2. L e t | F n L | = /', so
\L\=L If (v) does not hold, then l>l'. By (4.1 i), |FnU(L) | = a - J =
(a'-l1)2. Let |FDM| = 2. If |M| = I, then |FnII(M) | = a - i =
(a'-2)(b'-2) by (4.1 i); since b'-2 = a'-I'*a'-2, this is a contradic-
tion. Moreover, if some fixed line met F in at most one point, then (4.1 i)
would yield \F\ = a-l or (a - l ) + a', whereas |F|25|Fnfl(L)| + aT. This
completes the proof of (4.10).

COROLLJ\RY 4.11. In (4.10), if I is even, <8 is neither projective nor ^13

and F is a trivial Moore geometry of type (a', 3,11), then l'=l, a = 3/+1,
b = 2l + 3, and there is a fixed line M with Mn F = 0.

Proof. Let \FHL\ = l'. By definition, V>2, so \L\ = L Also,
|FnIl(L)| = l. Since "» is non-trivial, a-l>\, and hence by (4.10vi),
/' = / and |JF1 = 2J + 1.

Let Lo be a line with |Lon F\ = 2, and suppose |Lo| = L Then by (4.1 i),
a - f = |Fnri(Lo)| = J - l , so a = 2 / - l . This contradicts (3.7).

Consequently, L is the only /-point line meeting F. Since La A, it
foUows from (3.2S) that Fn f l (L) = {u}<= A and ( u ^ M O F s B .
Thus, | F n A | = I + l and | F n B | = L

Suppose next that each fixed line meets F. By (4.1 ii), the number of
pairs (x, z) with ztL F and x e zx f~l F is

1 + ( a - l ) ( b - l ) - ( 2 f + l) = (f + l X a - a ' H l(b- b1).

Since b = a - f + 2, b' = 3, and a'=l + l, this yields ( a - 2 0 ( a - / - l ) = 0.
Then a = 2/?* a' (mod 2), which is impossible.

Thus, some fixed line M misses F. By (4.1 i), 2Z + 1 = a^l = b-2, as
required.



324 WILLIAM M. KANTOR

The cases of affine or projective Moore geometries, which appear as
exceptions in (4.10 ii) and (4.11), can actually occur. We leave it to the
reader to translate properties of involutions of affine or projective planes
([6], p. 172) into the language of Moore geometries. The example of Baer
involutions of affine planes has the following partial characterization.

PROPOSITION 4.12. Let <€ be a Moore geometry, and <x an involution such
that F = F(cr) is an affine subgeometry of type (2f, I'+ 2, f). Then one of
the following holds.

(i) <S is affine of type (2f'\ I'2+ 2, I'2).
(ii) <S has type (2r2 + 2l',2l'2 + l' + 2,l'); AHF, BHF is the natural

partition of F; and some fixed line misses F.
(iii) <S has type (2l'2,2r2-l'+2,11); AHF, BDF is the natural partition

of F; and each fixed line meets F.
(iv) <8 has type (28, 26, 4), /' = 4, |A D F\ = 30, \B n F\ = 6, some 4-line

meets F just twice, and each fixed line meets F.

Proof. By (4.2), "0 must have type (a, b, I), say. Let A and B be as usual
for % and let A' and B' be as usual for F = F(a). We will have to relate
A' and B' to A and B, using properties of F. Each point of A' is on an
/'-lineof F, so A ' s A .

Consider (4.10 vi). Here, each point of B' is on a 2-line of F, and hence
is in B by (3.2 8). Thus, A' = A n F and B' = B n F. Each fixed line meets
F, and there are exactly /' + 1 such lines of size I Thus, we can use
(4.1 ii) to count the number of pairs (x, z) with z£F and x e z i n F :

Here, \A'\ = l'2 + l', \B'\=l'\ and b-2 = a-l = (a'-l')2= I'2. It follows
that l = ln and a = 2ln, as desired.

Now consider the case (4.10 v), where / = /'. Suppose first that some
fixed line M misses F. Then a -1 = \F\ = 212 + J by (4.1 i). Again by (4.1 i),
no /-line can meet F just twice. Thus, no point of B' can be in A, so
A' = A D F and B' = B D F. This is the conclusion of (ii).

It remains to consider the possibility where each fixed line meets F. Set
i = |AnB' | . By (4.1 ii), the number of pairs (x, z) with zfLF and xe
z±HFis

where i(b'-1)(/-2) is the number of points not in F lying on lines of F.
Here, \A'\ = l2 + k \B'\ = l2, a' = 2J, and b'=l + 2.
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Suppose i = 0. Then

Since b-2 = a-l, this yields (iii).
Finally, suppose iVO. Then some /-line L satisfies |FDL| = 2, so / is

even. By (4.1 i), a- J = |Fn ri(L)| = (a ' -2)(b ' -2) = (2I-2)Z. It follows
that /(2/-3) = i(J-2), and hence that (iv) holds.

A similar result holds when F(<r) is projective or polar.

5. Geometries having many involutions
Throughout this section, we will consider the following situation. Let "S

be a Moore geometry of type (s, t), s> 1, such that for some G=s Aut"*,
|G(xx)| is even for every point x. We may assume that G is generated by
its involutions.

By (4.8), E(L) = {<reG|o-2=l and c r e G ^ ) for some xeL} is an
elementary abelian 2-group for each line L. Clearly E(L)*zGL. Write
E(i) = E(L)nG(i 1) .

LEMMA 5.1. Let z be a point such that E(L)M = E(z) whenever L C\ M =
{z}. Then the following hold.

(i) t is even.
(ii) G, is transitive on the set of lines through z.

(iii) If zeL then G^ is transitive on (£(L)/£(z))*.

Proof. E(L) is semiregular on the lines ¥=L through z. This proves (i)
and (ii). Let bars denote images in GJE(z). Suppose L(~lM = {z}, ere
E(L)-E(z), and T € E ( M ) - £ ( Z ) are such that a and f are not Gx-
conjugate. Then (erf) contains an involution g, and <rg is conjugate to cT
or f in (a, f). Then crge E(N) for some N on z, and a fixes N. Thus,
N = L, so g = crag e E{L) and f fixes L. This contradiction proves that all
involutions in E(L)/E(z) are conjugate in Gz, and hence in G^.

LEMMA 5.2. There exist lines L and M such that Lf lM = {x} is a point
andE(L)M>E(x).

Proof. Deny! Then G is transitive on lines by (5.1 ii), and hence on
points by (3.3 iv) and [6], p. 21. In particular, |£(x)| = e is independent of
x, and |E(L)| = l + (s + l ) ( e - l ) for each L. Since e divides \E(L)\, e\s.
Now s and t are even.

Let SeSyl2G. Then S fixes some x and some line L on x. By
hypothesis, E(L) is strongly closed in S with respect to G. Since G is
flag-transitive on "S by (5.1 ii), GL is transitive on the subgroups E(y),
y 6 L, and hence acts irreducibly on E(L). Consequently, by Goldschmidt
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[7], G/O(G) is isomorphic to PSL(2, q), Sz(q) or PSU(3, q) (where
q = |E(L)|), PSL(2, q) (q odd), or a group of Ree type.

Clearly, E(L) D E(M) = E(x) whenever L D M = {x}. By (3.3 vii),
|E(L)| = l + (s + l ) ( c - l ) ^ 4 , so |S |*4. If G/O(G) is of Ree type, then
E(L) = S and two conjugates of S exist whose intersection has order 4,
whereas |E(L)| = 8 and e = 4 cannot both hold. Thus, G/O(G) is
PSL(2, q), PSU(3, q) or Sz(q), where q = \E(L)\.

ULDM = {x}, then E(L)O(G) = E(Af)O(G). The connectedness of <8
now implies that E(L)O(G) is independent of L. Then G = E(L)O(G),
which is ridiculous.

LEMMA 5.3. IfLC\M = {x] and E(L)M>E(x), then
(i) \E(M)\^\E(x)\\
(ii) E(L) and E(M) normalize one another, and

(iii) E(L)E(M) fixes exactly one point of <8.

Proof. Let TSE(L)»-E{X), SO reE(u) with ueL-{ac}. Then
CE(AO(T) = E(x). Regard T as a linear transformation of the GF(2)-space
E(M). Then Im (-r-l)<sKer(T-l) = .E(x). This proves (i).

Let o-€E(Af). Then o-T<r"1Glm(T-l)=e£(x), so rr"eE(x)**E(L),
and hence T°eE(L). Then T" eE(u")r\E(L) implies that u'eL. Thus,
L = xu = (xu)°, so E(M) fixes L. Interchanging L and M proves (ii), while
(iii) is obvious.

LEMMA 5.4. For each point x and line L, \E(x)\ = s and \E(L)\ = s2.

Proof. By (5.3 iii), there is a unique orbit x° which contains points
fixed by Sylow 2-subgroups of G. Set |E(x)| = e.

Suppose G is point-transitive. Then |E(L)| = l + (s + l ) ( e - l ) for each
line L. Since e divides |E(L)|, e\s. By (5.3 i), some L exists with
|E(L)|«Se3, so s « e . Thus, e = s and the result holds in this case.

We may thus assume that G is not transitive. Let ztLx°. By (5.3), we
can apply (5.1) to z. In particular, ( is even and G, is transitive on the
lines through z. Choose z so that, if zeN, then |E(N)| is minimal.

Let S e Sy I2G. Then S fixes some point x and some line M on x. We
may assume E(N)^S. Then E(M) normalizes E(N) by (5.3 ii). If M*N,
set L = M; if M = N, let L be as in (5.3). In either case, we obtain E(L)
normalizing E(N) withL^N. By (5.3), L DN = {x} and |E(N)| =s|E(x)|2.

Let E(L) move z to zVx,z , and choose T G £ ( Z ' ) # . Then T ° " S
E(N)-E(x). On the other hand, |TE(L) | = |E(L)/E(x)|, while | T ° - | is
divisible by |E(N)/E(z)| - 1 by (5.1 iii). Thus,

|T°" | ^ |E(L)/E(x)| (|E(N)/E(z)| - 1 ) s* |E(L)/E(x)

since E(x)DE(z) = l.
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We claim that |E(L)ss|E(N)|. For suppose, |E(L)|<|E(N)|. Then ue
L-{x} implies that | E ( J C ) | | E ( » ) | « | E ( L ) | < | E ( N ) | « | E ( X ) | 2 . Thus, vtx°.
Our choice of z now contradicts |E(L)|<|E(N)|.

Thus, \T°»\&\E(N)\-\E(X)\. Since T°" c E(N) - E(x), equality must
hold: \E(L)\ = |E(N)|, E(N) = E(x)E(z), and GN is transitive on N-{x}.
Set |E(z)| = /, so/=£e by (5.3i). Now ef=\E{N)\ = e + (J-l)s implies that
e = s.

It remains to prove that / = s, so suppose / < s. Then |E(L)| = s/ implies
that x° n L = {x}. As before, GL is transitive on L-{x], and \E(v)\ = / for
ueL-{x}.

Recall that S fixes M = L or N. Let V be any line on x; we claim that
x o DL' = {x}, Gu is transitive on L'-{x}, and \E(L')\ = sf. For, we may
assume E(L0^S. Then ECL*) normalizes E(M). Proceeding as before
(with M,L' replacing N,L) we find that GL- is transitive on L'-{x},
x ° n L ' = {x}, and \E(L')\ = \E(M)\ = sf, as asserted.

Thus, every line of*8 meets x° exactly once. zx contains exactly ( + 1
points of x°, while each remaining point of x° is joined to a unique point
of z*--{z) not in x°. Thus, |x°| = (f+l)+[s(t + l ) - ( f + l)]t Counting in
two ways the pairs (x', L") with x'e x° (1L', we find that |x°| (t +1) is the
number of lines of <S. By (3.2 iii), (t + l)\l + (s-l)t] =
[l + sO + l)(st + l)](f + l)/(s + l). This is impossible, and hence the lemma
holds.

Remark. By [6], pp. 126, 130-132, for each L the subgroups E(x),
x 6 L, determine a desarguesian affine plane.

LEMMA 5.5. If t is even, then s \ t

Proof. E(L)E(M) must fix a lineN* L, M on x By (5.4), E(L)E(M)/E(x)
acts on N—{x} as a transitive elementary abelian group. Hence, W =
(E(L)E(M))DG(N) has order at least s3ls by (5.4). All involutions in W
are clearly in E(x). Let u e N-{x} and ueL'^N. Then Wv is semiregu-
lar on L'-{u}, so IW^^s . Thus, |L 'w |>s for each L'i*N on u. This
proves the lemma.

6. Proof of Theorem 1.1
Let G be a minimal counterexample to (1.1). By (3.2), G is acting on a

Moore geometry <S of type (s, t), where s > 1 .
Since Gx is transitive on the set of points zfLx^, it is transitive on the

pairs (y, z) with y = x°z. Thus, G, is 2-transitive on the set of lines
through y.

Let P be a 2-group maximal with respect to having D = F(P) a
subgeometry.
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We claim that P&l. For suppose P = 1. Then § 5 applies. In particular,
by (5.2) and (5.3), lines L and M exist with LHM = {x} and E(L)
normalizing E(M). The 2-transitivity of Gx implies that E(Li) normalizes
E(Mi) whenever L t n Mt # 0 . Let y # x, and consider (E(x), E(y)>. This
group is clearly abelian if yex x . If y£xx and u = x°y, then the group is
contained in the 2-group (E(xu), E(yu)). Thus, by a well-known result of
Baer ([8], p. 105), <E(x)°)*s Oj(G). But ^ has an odd number of points
by (5.4), so this is absurd. Thus, P* 1.

If P is Sylow in G*. for some non-collinear x, zeD, then NO(P)° has
rank 3, and this contradicts the minimality of G. Thus, NO(P)^ contains
an involution <r for each such pair x, z. By (4.2), a fixes DC\(x°zY
pointwise. Clearly, x°z can be any point of D.

Consequently, § 5 applies to NO(P)D. In particular, s is even.
Let S e Syl2Gx. Then each orbit of S of points not collinear with x has

length 5B (s2f)a. Let ereZ(S) be an involution. Again using (5.2, 3), we
find by (4.2) that F(<r) must have type (s, f) with t = sf(t' + l). Then S
acts on a subset of F{q) of size s t>(t'+l) = st with orbits of length &
(s2t)2, so (st)i^(s2t)2, which is ridiculous.

This completes the proof of (1.1).
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