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Some locally finite flag-transitive buildings

WiLLIAM M. KaNTOR*

1. INTRODUCTION

This paper is a continuation of Kantor [4, 6] and Ronan [10]. We will construct finite and
infinite ‘geometries’ admitting flag-transitive groups and having buildings as universal
covers. The first building is that of % (6, QQ,); the remaining ones are new and strange. As
in the aforementioned papers, our motivation is the search for finite geometries that
strongly resemble buildings, and for group-theoretic situations similar to BN-pairs.

The paper is split into two independent parts. In section 2 we construct finite GABs
(geometries that are almost buildings [4, 6]) with diagram {"{ and rank 2 residues PG(2, 2).
One of these is described for each odd integer m > 1. Each of them is covered by the
£2% (6, O,) building.

The GABs in Section 2 admit flag-transitive groups, and hence can be constructed as
coset spaces exactly as in [6, sect. 2]. Consequently, all the relevant terminology is found
in that reference (but compare 3.1 below).

In Section 3 we will construct chamber systems (Tits [13], Ronan [9]) whose diagrams are
complete graphs and whose rank 2 residues are PG(2, 2) or PG(2, 8). This section is
relatively trivial. It is of interest only as an indication of the existence of pathological locally
finite flag-transitive buildings.

I am grateful to T. Meixner for his comments and corrections.

2. THE GABs [

2.1. A RATIONAL ORTHOGONAL GROUP

Equip Q" with the usual inner product, and let u,, . . . , u; be the standard orthonormal
basis. Set u, = Zw,and V = uy.
The vectors g, = —Tu, + u,, 1 < 1 < 7, span V and satisfy the conditions
7
Ya = 0, (a,a) = 42, and (a,q) = -7 for i #j. m
1
Clearly, there is a subgroup G, = A4, of GL(V) preserving {a,, . . ., a;} (in fact, there is
an S, as well).
Next, set
by = a + a,, + a;.; for 1 €i<7, )

where subscripts are taken mod 7. Then it is straightforward to check that
Yb = 0,(b,b) = 242, and (b.b) = 2A—=T) for i#
1

By (1), there is a linear transformation ¢ on V such that «f = b,_, for all i, and
(u*, v*) = 2(u, v) for all 4, ve V. Moreover, by (1), (2) and a simple calculation
b? = 2a,_;. Also, (G,)* = G, induces 4, on {b,, ..., b}

*This research was supported in part by an NSF grant.
429
(0195-6698/87/040429 4+ 08 S$02.00/0 1 1987 Academic Press Limited




430 W. M. Kanror

There 1s an obvious PG(2, 2) whose points are the g, and whose lines are the triples
appearing in (2). Thus, G, = G, n G,, = PSL(3, 2). Moreover, ¢ induces an outer
automorphism of this group.

Let r be the reflection in (a, — a.)". Then r induces the transposition (a4,, a,} on
{ay, ..., a;}. Set ¢, = b;. Then b, = ¢, by = ¢; and b, = ¢,. Set G, = (G,,). Then
G 18 the stabilizer in G, of the partition a4la,a,]aa.]asa;. Moreover, the transfor-
mation (b, by, by) i in Gy

b, = 124, ¢, = 124, d = 2a,
b, = 235, ¢y = 135, d = —a + &, + a5 + 4,

by = 346, cy = 346, dy = 2a,
b, = 457, c, = 457, d, = 2a,

bs = 561, ¢s = 562, ds = a + a, + a; — ay,
by = 672, ¢, = 671, dy = a + a — a; + ay,
b, = 713, e = 123, & = a — a, + as + a;.

(In the above table we have written b, = 124 in place of b, = a, + a, + a,. The d, will be
defined soon.) It follows that G, = (4, x A,)- 2 is the stabilizer of {b,, b;, b,} in G,.
Since r normalies G, we also have G, n G, = PSL(3, 2).

Now set d; = ¢/ and Gy, = (G,))’. Then G = (G = (As x Ag)-2and Gy =
(Guyo X = PSL(3, 2) = G- Moreover, G s = 4y, a:)(as, a4), (ay, as)ay, a;)> = Dy,

Set G = (G, Gy, Giys Gy »- In the notation of [6, sect. 2], I' = A(G,,, Gy, Gy Gay)
is a GAB in G with diagram U} where each » » js g PG(2, 2). In fact, this is clear from
the intersections we have just dealt with. (Flag-transitivity follows from [1, (3.10)].)

Notethat G = (G, (b, b1, by)>. For, Gy, = (G, by, b3, 50, Gy = {Gipir» Gioiey >
and Gy = {Gw)» Gy -

Also, (¢, r) induces a dihedral group of order 8 on {G,, G, Gy, G, }-

2.2. Fmnte GABs

Clearly, G, {r> = S, permutes the vectors ¢, . . . , a,, and hence can be regarded as a
group of 6 x 6 integral matrices with respect to the basis a,, ..., a, of V (since
a; = —X%a,). Also, ¢ produces an integral matrix, while ¢ ' = l¢ has all its entries in

Z[L]. Thus, G{g,r> = (G, ¢, r> < GL(6, Z[}]). If mis any odd integer then we can view
all of these 6 x 6 matrices mod m. Whenever D < GL(6, Z[1]) let D' be the correspond-
ing set of matrices mod m.

The homomorphism G — G induces an isomorphism on G, for eacha € {a, b, ¢, d},
and preserves intersections among these four groups. Thus, if m > 1 and m is odd then
'™ = AGE, Gy, G, G\) is a finite GAB with diagram “{_1% and group G™. (Once
again, flag-transitivity follows from [2, (3.10)].) Clearly, G — G" induces a cover
I' > '™, In 2.3 we will see that this is a universal cover.

THEOREM |. G = Q*(6, p) for each primep # 2,7, where G\ = 2" (6, p) if and only
ifp=1,2o0r4 (modT).

ProOF. Let u,, ..., u;. uy be the standard orthonormal basis of @*. Then

7Y 20m) + 20, = (3700 ) © 2, @ 72140 @

1
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since Ty, = u, — a;for 1 < i < 7. Moreover, the three summands on the right hand side
of (3) are pairwise orthogonal.

Passing mod p we find that GF(p)® becomes an orthogonal geometry decomposed into
the orthogonal sum of a 6-space and a 2-space, each of which is preserved by G'”. The
2-space inherits the quadratic form 7x* + 49y, which has nontrivial zeros if and only if
(—7/p) = I;thats, ifand only if p = 1, 2 or 4 (mod 7).

Since (G,) = Gy, G’ = Gand(G'”) = G'7. Thus, G*”is contained in the orthogonal
group specified in the theorem.

On the other hand, (G{r))'? lies in OF (6, p), and r* is a reflection. Thus, (G{r))Y? =
0Q%(6, p) by Wagner [14]. This proves that G'” = 2%(6, p), as required.

When p = 3, both A” and the theorem were first obtained by Aschbacher and Smith [2].

2.3. Tue £27(6, Q,) BUiLDING
Next, we will identify the GAB in (2A):

THEOREM 2. The GAB I is isomorphic 1o the affine building for 27 (6, Q@,).
We will imitate the proof given in [6] of a similar resulit.
LEMMA 1.V ®, @, is isometric to an Q7 (6, Q,)-space.

First PrROOF. By {6, (6.1)], @ is an 027 (8, O,)-space. By (3), the orthogonal complement
of ¥ ®¢ @, inherits the quadratic form 7x> + 49y%, and this has nontrivial zeros in Q,.

SECOND PROOF. Let 4, 1 = (—1 + /=7)/2 € @,. A straightforward calculation (using
the fact that /> + 4 + 2 = 0) proves that the vectors (4, 4, 2, 4, 4, %, 3), (3, A, A, 4, A, 4, 4)
and (4, 3, 4, A, 4, 4, £) span a totally singular 3-space lying in V ®, Q..

The affine building 4 for 27 (6, 4,) can be described as follows (Bruhat—Tits [3]). The
vector space V' = V ®@¢ O, has a basis e, e, e;, /), f5, f; such that all inner products are
0 except for {¢;, f;) = (f}, e;) = 1. Define the four Z,-lattices L, by

Ly = ey, e e fis fo fi),

L = {enene, 260,
Ly = Gente e fi.hfid
Ly = Genie s fifiifie,

where the brackets denote generation of lattices over the ring Z, of 2-adic integers. Let P,
be the stabilizer of L, in 2%(6, ©,). Then 4 = A(P,, P,, P, P;). The corresponding
diagram is

@ ¥
8t
Note that there is an obvious dihedral group of order 8 inducing graph automorphisms on
A
Let L, = {a, ..., a) and define L,, L_and L, similarly.

LEMMA 2. We may assume that L, is a scalar multiple of L,.
PrOOE. G, fixes some point of the realization of 4 (Bruhat-Tits [3, pp. 64-65]). Since

G, = A, itfixes a vertex. Thus, we may assume that G,,, < P,. Choose k € Q, so that ka, €
Ly — 2L,. Then L, @ kL, + 2L, > 2L,. By the irreducibility of G, L, = kL, + 2L,.
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Since Ly/L, kL, € 2(Ly/Ly n xL,), Ly & kL, by Nakayama’s Lemma {7, p. 242]. Thus,
LO = KLQ'

LemMa 3. We may assume that L,, L. and L, ~ (XL} are scalar multiples of L,, Ly and
Ly~ Ly, respectively.

Proor. By definition, L, » L,. Applying ¢, we find that L, > 2L,. Now apply r in
order to deduce that L, » L, » 2L,. Also, L, n (3L,) 2 2L,. (For, L, n (1L,) contains
A, Qg Ay, Q) + Gy, a; — Gy, 4, + asand g, — 4as.)

Thus, the group S = G0 fixes the following three subspaces of L /2L,

L2L, = by + 2Ly by + 2L, by + 2L,)
L‘,/ZLC, —_— <C} + ZLH, 132 + 2{4{), C3 + Z’L“)
L,nQL)y2L, = {ag+ 2L, a, + 2L,,a, + 2L, ay + a; + 2L, a) + a5 + 2L,>.

Also, L, /2L, inherits the structure of an 27 (6, 2)-space (the quadratic form being v - (2,
v)/2 (mod 2)). The subspaces L,/2L,, L j2L, and (L, n GL,)2L,)*" = {d, + 2L,) are
totally singular and pairwise incident (since b, = ¢,and by = ¢; = —d, — 2a,), and hence
form a flag of the 2% (6, 2)-space L,/2L,. This is the only such flag fixed by S.

IfL, = kL, then S fixes a flag of kL,/2xL, = Ly/2L,. Choose notation first so that this
flag is 2L,/2L,, 2Ly /2Ly, (Ly ~ L,/2Ly)* and then so that 2L, = kL,, 2L, = xL,, and
Lyn Ly = k(L, ~ (3L,).

Proor oF TuroreM 2. By Lemmas 2 and 3, G, < Py, Gy, < Py, G, < Py and
Gy < Py v P Setr’ = r” Then r’ interchanges L, and $L,, and hence normalizes the
stabilizers Py, n P, of L, n (AL,). Thus, G, = (G,) < P§ where P, n P, < Pj. Since
Gy & P,, it follows that P; = P,. This proves that G, < Py, Gy, < P;, G, < Py and
Gy < Py

It follows that G induces a flag-transitive group on the residue of each of the vertices P,
of A. Since A is connected, it follows that G is flag-transitive on A.

Now define I” — A via G, g > P,g and so on (where g € ). This is a cover. Since 4 is
simply connected (Tits [13]), it follows that I = A.

REMARK. By considering their discriminants it is easy to show that L, = Ly, L, = L,
L= Lyand {L, = L,.

2.4, Tae Grour G

Let f be the quadratic form 42X$x} — 14X, .. ;. (XX, obtained from (1) by using the
basis a,, . . ., a; of V. Let £(Z[1], /) be the commutator subgroup of the corresponding
orthogonal group over Z[1].

THEOREM 3. G = (Z[1], /).

Proor. By2.2,G < GL(6, Zli]). Also, G = G’ and G preserves the form fobtained by
restricting to ¥ the usual form on @’. Thus, G € 2 = QZ[1], /).

By Theorem 1 and Lemma 1, £ acts flag-transitively on A. Then Q = ({2 Py)G. We
will show that @ n P, < G.

Let g € € n P,. The matrix (x;;) of g with respect to the basis ¢, . . . , g, must have all
entries x; in Z{1]. On the other hand, Lemma 2 implies that (L,)* = L,, so that x; € Z,.
Thus, x; € Z. Since g preserves f, there are only finitely many possibilities for (x;).
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The centralizer C of L,/2L, in 2 P, is a finite subgroup normalized by G, and
C n G, = 1. Then C consists of scalars. But — 1 ¢ Q2 (since —1 ¢ 2 (6. 17) = Q'").
Thus, C = 1 and £2 n P, is isomorphic to a subgroup of 2% (6, 2) containing G, = 4.
Since 27 (6, 2) = A, is not isomorphic to any subgroup of GL(6., @), it follows that
2~ Py = G, < G, as required.

2.5. FURTHER PROPERTIES

We conclude this section with several remarks concerning ¢ and 7.

2.5.1. Assume that G = Q%(6, p) with p = +1 (mod 4). Then —1 ¢ G, while
—1 ¢ G{J) for each x. Let ‘bar’ denote the homomorphism G'” — G'”/{—1>. Then
o = AGR,GY, G5, G isa finite GAB with group G'”, and there is an obvious cover
I'? — [P This is a 2-fold cover. For, — 1 acts nontrivially on I''” since — 1 does not fix
G,

Note that this is quite different from the situation in [6}, where — 1 always acted trivially.

2.5.2. By construction, {¢, r>** induces a D, of graph automorphisms of ™",

If p # 2is aprime and (2/p) = 1 then (¢, r>'? < G'7: the graph automorphisms are
induced by inner automorphisms. In particular, for such primes p all G{# are conjugate in
G,

2.5.3. Inthecasep = 7 not covered by Thearem 1, G7 = 7°Q2(5. 7). For,ifa = a;/7
then G acts on

[ 6
ZZ[%]G} = ) ZBNa) — a)) + 7340,

while g} — &) = —XZ3(a] — a)) + 7ajand (a] — a/, a] — a)is 1ifi # jand 2if i = j.
Passing mod 7 we obtain a 6-space ¥, over GF(7) and a hyperplane ¥; upon which G acts.
Moreover, V; inherits a nontrivial G-invariant inner product (although ¥, does not). Using
(G{r))? as in the proof of Theorem 1, we find that G induces £2(5, 7) on ¥;. On the other
hand, (G,,)"” does not fix any l-space of ¥;. From this it follows that G'” cannot act
faithfully on ¥;, and hence that G is as claimed.

Moreover, the homomorphism G — (5, 7) induces a 7°-fold cover from I'? onto a
GAB with diagram "} and group (5, 7).

2.5.4. The situation in 2.3 closely resembles that of [6]. This relationship can be made

more precise, as follows. Let w, ..., u, be as in the proof of Theorem 1. Set
vy = U, + ug = X} u,. Regard G, <r> as a group of isometries of Q* permuting
{uy, ..., uy} and fixing us. Extend ¢ to @ by letting uf = v, and o = 4u. Then

@, v*) = 2u, v) for all u, v € Q, so that G{r, @) projectively preserves the form Z}x7.
Call this form f;, and set Gy = X(Z[}}, ;). Then G = (Gy),, ,,. Moreover, if ryand r, are
the reflections in u; and v, then both lie in G, while G = Cg ({rg, r,>). Finally, the
complex I'in 2.2 can be identified with the set of fixed points of {ry, r, > on the complex
4, occurring in [6, sect. 5].

2.5.5. Three vectors were introduced in the second proof of Lemma 1; call them v, v,,
vy Set vy = u, + \/f:_?_ uy. Let 9, be defined by replacing \/— 7 by —/—7. Then v,, v,,
vy, v, and 9,, 5,, 9, 9, span complementary totally singular 4-spaces of (3.

2.5.6. Asin[6, (10.3)], it can be shown that any finite flag-transitive GAB with diagram
[T arises as an image of I'in such a way that the commutator subgroup of the given group
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is a homomorphic image of G. More generally, a similar results holds for chamber-
transitive SCABs (cf. 3.1) with the above diagram.

3. ComPLETE GRAPH DIAGRAMS

The present section is based on a generalization of GABs.

3.1. CHaMBER SystemMs AND COSETS

A chamber system of rank r consists of a set € of objects called chambers, together with
a family of partitions &, of 4, where i ranges through a set [ of size n. If J & [ then &,
denotes the join of the partitions &, j € J. The chamber system is connected if &, = €. A
member of & is called an i-edge. A vertex is a member of &, for some i e L.

If x € &, J € I, then the residue Res(x) is the chamber system consisting of the set of
chambers in x, together with the intersections of this set with all £}, j € J. Clearly, Res(x)
has rank |J|. A chamber system is residually connected if Res(x) is connected whenever
x € &, for some J of size <n — 2.

DEFINITION. A chamber system is a SCA B (chamber system that is almost a building)
if it is residually connected of rank n > 3 and if, for each 2-set {i, j} < I, thereis an integer
ny such that Res(x) is a generalized n;-gon for each x € & ;;. The diagram of the SCAB is
defined as follows: it has node set [ the distinct nodes i and j are joined by n,; — 2 edges
if n; € {2, 3, 4}, by in, edges if n, = 6 or 8, and by an edge labeled n, in all other cases.

In this terminology, a GAB can be regarded as a SCAB in which every flag has a
nonempty intersection. (Here, a flag is a set of vertices of the SCAB any two of which have
a nonempty intersection. Compare Tits [11, p. 3] and [13])

We will only be interested in connected chamber systems that admit an automorphism
group G transitive on ¥. In this situation, fix C € 4, let B be its stabilizer in G, and let £,
be the stabilizer of the i-edge containing C. Then the chamber system is isomorphic to the
chamber system (G, B, E,),; defined as follows: chambers are cosets of B; and each i-edge
is a coset of E,, regarded as a set of cosets of B. Conversely if G is a group generated by
a family £, i € 1, of subgroups, and B € n{E}i ¢ I}, then the above definition produces
a connected chamber system with a chamber-transitive automorphism group. If
E;, = (E}lje J) then &, can be identified with the set of cosets of E,.

A theorem of Tits [13] states that, if €, &(i € 1) is a SCAB, and if every rank 3 residue
having a spherical diagram is a building, then there is a universal 2-covering SCAB 4, &,
(i € I) that is a building. Thus, there is a surjection € — % such that, whenever J/ < I and
|Ji < 2, every member of &, is mapped bijectively onto a member of &,. Consequently,
rank 2 residues are mapped isomorphically. If the original SCAB has the form (G, B, E)),
then its universal 2-cover also has a chamber-transitive automorphism group, and hence
has the form (G, B, E,),, where G = G/N for the group N of covering transformations
(compare Ronan [9]). Moreover, B = BN/N and E, = EN/N.

In the remainder of this section we will have B = [, so that G will be regular on
chambers.

3.2. FroBeENTUS GROUPS

If a SCAB has as diagram the complete graph K, on n = |I{ vertices, and if each edge
corresponds to PG(2, g), we will say that the diagram is K,/PG(2, ¢).
Letg = 2 or &
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REMARK. If (G isa group generated by a finite set {E;|i € I} of n = 3 subgroups of order
g + 1. any two of which generate a Frobenius group of order (¢° + ¢ + 1)(g + 1), then
(G. 1, E)), 1s a SCAB with diagram K, /PG(2, ¢).

Proor. If j # k then (E,,,, |, £}, i1s PG(2, g). since the Frobenius group E, ,, is
sharply flag-transitive on that plane. (NB: This flag-transitivity holds only for ¢ = 2 or 8.)

3.3. ExaMPLES WITH DIaAGRaM K, /PG(2. ¢)

#i

Asin 3.2, let ¢ = 2 or 8. It is easy to give many examples of SCABs using 3.2. The
following examples are not GABs. Nevertheless, each has as universal cover a flag-transitive
building [13].

ExXaMPLE |. Let F = GF(g’ + ¢ + DDandm > 1, and let G be the semidirect product
of F™ with a cyclic group <> of order ¢ + 1, where ¢ induces 4 scalar transformation on
F™. Then G produces many SCABs with diagrams K,/JPG(2, g). n < (¢ + g + 1), as

follows. Letz, = 0, ..., v, beany st of elements generating 7. Then {{v;1>|1 </ < n}
satisfies the requirements of 3.2. For, if i # j then (w1, vj1) = {vo;"', v1> where
(w07 )" = vlo = (v;v;,') for some integer s satisfying 0 < s < ¢* + ¢ + 1.

Of course, each of these SCABs is a residue of a certain onc having diagram K,/PG(2, ¢),
where N = (¢° + ¢ + 1)”. In fact, if we allowed infinite index sets 7 then all of these for
all m would be residucs of a SCAB having as diagram a countable complete graph.

It is easy to check that these SCABs are never GABs.

Note that if m = 2 = »n — 1 then the above SCAB has diagram K,/PG(2, ¢).

EXAMPLE 2. The group G of all transformations x — ax® + bover F = GF(¢'), g = 2
or8,a”*""! = 1,be F,a € Aut F, produces a SCAB with diagram K, |PG(2, g), as follows.
Note that F contains an clement « satisfying o+’ = 4 + 1. Then o *¢*' = g(a?*') =
al(a? + 1) = 1. The three groups G,,, G,, and G}, have order ¢ + 1. For, this is clear in
the case of G,, while G, and (|, are obtained by conjugating by x — «x and
x = (¢ + Dx + o, respectively. Then 3.2 applies to {G,,, Gy,. G, }-

This example can be generalized, as follows.

ExaMmpLE 3. Letg = 2 or 8, let m = |1, and let G be the group obtained from the
direct product of m copies of the group G in Example 2 by identifying all the s versions
of x — x*; thus, |G| = ¢ (¢ + g + 1Y"(¢ + 1). Then G™ produces a SCAB with
diagram K., .,/PG(2, ¢). For, let t € G have order ¢ + 1. In each copy of G’ pick
clements a;, b, of order 7 such that Example 2 applies to {¢, a;¢, b;t} for 1 < i < m. Then
3.2 applies to {{t), {a,1>, {by|1 < i < m}. For, {a;t, bty = {ab; ', a1ty Ifi = jour
choice of g, and b, yields that this is a Frobenius group. If i # jthen|ab, ' = ¢ + ¢ + 1
and (a6, )" = a’b;* = (a;b] '), as required.

Note that the resulting SCAB is a covering of one of the SCABs in Example 1.

EXaMPLE 4. G = PTL(2, ¢'). ¢ = 2 or 8, produces a SCAB with (g° + (g — 1)
vertices and diagram K,/PG(2, g). For, if » is as in Example 2 then 3.2 can be applied to
{G01s Gronr Goiar Gy, ) (Where the subscripts refer to stabilizers when G is regarded as
acting on the projective line {0} u GF(g')). That the first three of these behave as desired
was shown in Example 2. Any element of PSL(2, ¢*) interchanging o and 0 and sending
1 to « must be an involution, and hence leaves invariant our set of four groups. Hence, any
three of the groups behave as desired.

Of course, all rank 3 residues are as in Example 2. As in Examples 2 and 3, we can
generalize this example as follows.
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ExaMpPLE 5. Let G be the semidirect product of the direct product of n 2 1 copies of
PSL(2,¢%). g = 2or8, by a cyclic group {z> of order g + 1, where ¢ induces the field auto-
morphism x — x* on each factor. Then G produces a SCAB with diagram K, ,, /PG(2, q).
For, let g, b;, ¢, be elements of the ith factor such that {{t>, {a;t>, {b,1>, {b;t), {c;t>} is
as in Example 4. Then the union of these # sets behaves as in 3.2. Namely, using Example
2 we see that @ = a7, b, = b7 and ¢! = ¢7. Thus, we can proceed exactly as in Example 3.

Finally, Examples 1, 3 and 5 can be merged in a similar manner:

ExamPLE 6. Consider the group (4 x B x C){¢) where 4, B, C and ¢ are as follows:
A = GF(g + g + )f and ¢' = 2a for all a € A; B{¢) is the group in Example 3; and
C{ty is the group in Example 5. Then (4 x B x C) {t) produces many SCABs with
diagram Ky/GF(q), the largest N being N = (¢ + ¢ + 1)* + 2m + 3n.

ProBLEM. When can two buildings constructed as in the above examples (via [13]) be
isomorphic?

Note that Example 6 shows that any two such buildings arise as residues of one of these
buildings.
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