
Europ. 1. Combinatorics (1987) 8, 429~436 

Some local1y finite Hag-transitive buildings 

WILLIAM M. KANTOR* 

I. INTRODUCTION 

This paper is a continuation of Kantor (4, 6] and Ronan [10]. We will construct finite and 
infinite 'geometries' admitting flag-transitive groups and having buildings as universal 
covers. The first building is that of {1+ (6, (Ji2); the remaining ones are new and strange. As 
in the aforementioned papers, our motivation is the search for finite geometries that 
strongly resemble buildings, and for group-theoretic situations similar to BN-pairs. 

The paper is split into two independent parts. In section 2 we construct finite GABs 
(geometries that are almost buildings [4, 6]) with diagram n and rank 2 residues PG(2, 2). 
One of these is described for each odd integer m > 1. Each of them is covered by the 
{1+ (6, (Ji2) building. 

The GABs in Section 2 admit flag-transitive groups, and hence can be constructed as 
coset spaces exactly as in [6, sect. 2]. Consequently, all the relevant terminology is found 
in that reference (but compare 3.1 below). 

In Section 3 we will construct chamber systems (Tits [13], Ronan [9]) whose diagrams are 
complete graphs and whose rank 2 residues are PG(2, 2) or PG(2, 8). This section is 
relatively trivial. It is of interest only as an indication of the existence of pathological locally 
finite flag-transitive buildings. 

I am grateful to T. Meixner for his comments and corrections. 

2. THE GABs n 
2.1. A RATIONAL ORTHOGONAL GROUP 

Equip (Ji7 with the usual inner product, and let Uj , ••• , U7 be the standard orthonormal 
basis. Set u* = 'Ei uj and V = u;. 

The vectors ai = tui + u*, I ;:;;; i ;:;;; 7, span V and satisfy the conditions 

0, for i #- j. (1) 

Clearly, there is a subgroup G«O ~ A7 of GL(V) preserving {ai, ... , a7} (in fact, there is 
an S7 as well). 

Next, set 

for 1;:;;; i ;:;;; 7, (2) 

where subscripts are taken mod 7. Then it is straightforward to check that 
7 

L bj = 0, (bi , bJ for i #- j. 
I 

By (I), there is a linear transformation <p on V such that a'!' = b7 - i for all i, and 
(u<P, vI') = 2(u, v) for all u, v E V. Moreover, by (I), (2) and a simple calculation 
hi = 2a7 _ i • Also, (G(a)'" = G(hl induces A7 on {hi, ... , b7 }· 
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There is an obvious PG(2, 2) whose points are the ai and whose lines are the triples 
appearing in (2). Thus, G,aHn) = G{tI) 1\ G{I» ::;:::: PSL(3, 2). Moreover, <p induces an outer 
automorphism of this group. 

Let r be the reflection in (al ac).L. Then r induces the transposition (ai' a2) on 
{aI, ... , a7 }. Set ci h;. Then hI C(, hJ = C3 and b4 = C4 • Set G(d = (GIn))'. Then 
G,allh)(C) is the stabilizer in G(a) of the partition a4Iala2Ia,anlasa7' Moreover, the transfor­
mation (hi' h3 , h4 ) is in G{b)(c)' 

bl 124, C I 124, d l 2an, 

b2 235, ('2 135, d2 -a l + a2 + as + a7, 

b) 346, ('3 346, d, ., 2a4, 

b4 457, C4 457, d4 2a" 

bs 561, C5 562, ds al + a2 + as - a7, 

b6 672, C6 671, d6 a l + a2 - as + a 7 , 

b7 713, C7 723, d7 a l a2 + as + a7 · 

(In the above table we have written hi 124 in place of hi = a l + a2 + a 4 . The di will be 
defined soon.) It follows that G(h)(e) (A3 x A4 )' 2 is the stabilizer of {bl , b3 , b4 } in Gin)' 

Since r normalies G(G)' we also have Gla) 1\ G(e) ;:::::: PSL(3, 2). 
Now set di = ct and G(d) (GIl»"" Then G(G)(d) (G(n)le)"';:::::: (A, x A4 )' 2 and G(bM) = 

(G,G)!C»'" ::;:::: PSL(3,2) ::;:::: G(c)(d)' Moreover, G(a)(b)(c)(d) «aI, a2 )(a3 , an), (ai' a5)(a2 , a7» ::;:::: DB' 
Set G = <G(GP Glb ) , G(C) , G(d»' In the notation of [6, sect. 2], r = L1(G(a)' G(b) , Grel , G(d) 

is a GAB in G with diagram 0 where each .--. is a PG(2, 2). In fact, this is clear from 
the intersections we have just dealt with. (Flag-transitivity follows from [I, (3.10)].) 

NotethatG = <G(a),(b l ,b3 ,b4».For,G(b) <G(a)(b)' (b l ,h),b4», G,C) = <G(a){c),G(b)(c» 
and G(d) = (G(a)(dl' G(b)(d»' 

Also, <<p, r) induces a dihedral group of order 8 on {GIO)' Glh), Glc), G(d)}' 

2.2. FINITE GABs 

Clearly, G(o) <r) ::;:::: S7 permutes the vectors ai' ... , a7 , and hence can be regarded as a 
group of 6 x 6 integral matrices with respect to the basis ai' ... , a6 of V (since 
a7 = -L~aJ. Also, <p produces an integral matrix, while <p-I t<P has all its entries in 
1'm. Thus, G<cp, r) = <G(a), cp, r) ~ GL(6, 1'[1]). Ifm is any odd integer then we can view 
all of these 6 x 6 matrices mod m. Whenever D GL(6, 1'[t]) let Dim) be the correspond­
ing set of matrices mod m. 

The homomorphism G -+ G(m) induces an isomorphism on G(a) for each a E {a, b, c, d}, 
and preserves intersections among these four groups. Thus, if m > I and m is odd then 
rmJ = L1(G:;;;), Gl;;j), G!;;), GiJn is a finite GAB with diagram ~O~ and group G(m). (Once 
again, flag-transitivity follows from [2, (3.10)].) Clearly, G -+ G(m) induces a cover 
r -+ r m

). In 2.3 we will see that this is a universal cover. 

THEOREM 1. Glp) = Q±(6,p)foreachprimep # 2,7, whereGIP) = Q+(6,p)ifandonly 

if p == I, 2 or 4 (mod 7). 

PROOF. Let UI , •.. , U7 , Ug be the standard orthonormal basis of Q~. Then 

(3) 
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since 7u, 11* - ai for I ~ i ~ 7. Moreover, the three summands on the right hand side 
of (3) are pairwise orthogonal. 

Passing mod p we find that GF(p)8 becomes an orthogonal geometry decomposed into 
the Qrthogonal sum of a 6-space and a 2-space, each of which is preserved by G(PI. The 
2-space inherits the quadratic form 7x2 + 49i, which has nontrivial zeros if and only if 
( 7/p) = I; that is, if and only if p == 1,2 or 4 (mod 7). 

Since (G(a))' = G(al' G' G and (GIP)), = Glp). Thus, GIPI is contained in the orthogonal 
group specified in the theorem. 

On the other hand, (G<r»)'P) lies in 0±(6, p), and rIp) is a reflection. Thus, (G<r»(P) ~ 
n± (6, p) by Wagner [14]. This proves that GIP) n± (6, p), as required. 

When p = 3, both L1IP) and the theorem were first obtained by Aschbacher and Smith [2). 

2.3. THE n T (6, O2 ) Bt:ILDING 

Next, we will identify the GAB in (2A): 

THEOREM 2. The GAB r is isomorphic to the affine building for n+ (6, O 2 ), 

We will imitate the proof given in [6] of a similar result. 

LEMMA 1. V ®o O2 is isometric to an n+ (6, Oz )-space. 

FIRST PROOF. By [6, (6.1)], O~ is an n+ (8, 02)-space. By (3), the orthogonal complement 
of V ®o Oz inherits the quadratic form 7x2 + 49y2, and this has nontrivial zeros in O2 , 

SECOND PROOF. Let )., A I ± .J - 7)/2 E O 2 , A straightforward calculation (using 
the fact that ,1.2 + ). + 2 0) proves that the vectors (A, 2, A, A, A, A, 3), (3, )., )., A, I" A, A) 
and CA, 3, A, A, A, I., X) span a totally singular 3-space lying in V ®o 

The affine building L1 for n+ (6, O 2 ) can be described as follows (Bruhat-Tits [3]). The 
vector space V' = V ®o O 2 has a basis el , ez, e3,/; ,/;,J; such that all inner products are 
o except for (el ,!;) U;, e) = I. Define the four Zz-Iattices Li by 

Lo (e l , ez, eJ,/;,};.j,), 

L, <! e" e2, el, 2.1; ,fl,.h), 

L3 <1 e" i el , 1 e}.,t;,f;,!;), 

L3 el, ! e2, 1 fl,!;,j;, eJ), 

where the brackets denote generation of lattices over the ring of 2-adic integers. Let Pi 
be the stabilizer of Li in .Q+(6, O2 ), Then .1 L1(Po, PI' P 3 , Pd. The corresponding 
diagram is 

Note that there is an obvious dihedral group of order 8 inducing graph automorphisms on 
.1. 

Let La = <ai' ... , a]). and define Lh , L, and L" similarly. 

LEMMA 2. We may assume that L" is a scalar multiple of Lo. 

PROOF. Gla ) fixes some point of the realization of L1 (Bruhat-Tits [3, pp. 64-65]). Since 
G(a) A] it fixes a vertex. Thus, we may assume that G(a) < Pu. Choose K E O2 so that Ka, E 

Lo 2Lo· Then Lo ;2 KLa + 2Lo => 2Lo. By the irreducibility of G(al' Lo = KL" + 2Lo. 
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Since Lo/Lo n KLa £;; 2(Lo/Lo n "La), Lo £;; KLa by Nakayama's Lemma [7, p. 242]. Thus, 
La = KL". 

LEMMA 3. We may assume that Lb, L, and La n (tLd) are scalar multiples of LJ , L J, and 
Lo n L t , respectively. 

PROOF. By definition, La => Lb' Applying qJ, we find that Lb => 2La. Now apply r in 
order to deduce that La => L, => 2L". Also, La n (tLd) ;2 2La. (For, La n (}Ld) contains 
a6 , a4 , a), a, + a2 , a, - a2 , a, + as and at - as.) 

Thus, the group S = G(a)(b)(e)(d) fixes the following three subspaces of La/2La: 

L,/2La 

La n (tLd)/2L" 

(cl + 2La, C2 + 2La, C3 + 2L,,) 

(a6 + 2L(/, a4 + 2L., a) + 2L(/, a l + a2 + 2La , al + as + 2L(/), 

Also, La/2La inherits the structure of an Q+ (6, 2)-space (the quadratic form being v f-+ (v, 
v)/2 (mod 2». The subspaces Lb/2La' L,j2La and (La n (}Ld)/2L.)J. (d2 + 2La) are 
totally singular and pairwise incident (since b, = Ct and b3 c) = - d2 - 2al), and hence 
form a flag of the Q+ (6, 2)-space L,,/2La' This is the only such flag fixed by S. 

If Lo = KLa then S fixes a flag of KLa/2KLa Lo/2Lo. Choose notation first so that this 
flag is 2L3/2Lo, 2L3)2Lo, (Lo n LI /2Lo)J. and then so that 2L3 KLb , = KLc, and 
Lo n L, K(La n (tLd». 

PROOF OF THEOREM 2. By Lemmas 2 and 3, G(a) < Po, G(b) < P3 , G(e) < P3, and 
G(o)(d) < Po n PI' Set r' = r<i> Then r' interchanges La and !Ld' and hence normalizes the 
stabilizers Po n PI of La n OLd)' Thus, G(d) (G(a»' < PE' where Po n PI < P~. Since 
G(d) f;. Po, it follows that P~' = PI' This proves that G(a) < Po, G(b) < P3 , Gk ) < P3 and 
G(d) < PI' 

It follows that G induces a flag-transitive group on the residue of each of the vertices Pi 
of L1. Since L1 is connected, it follows that G is flag-transitive on L1. 

Now define r ...... L1 via G(a)g f-+ Pog and so on (where g E G). This is a cover. Since L1 is 
simply connected (Tits [13]), it follows that r:;;;;:. L1. 

REMARK. By considering their discriminants it is easy to show that La 
L, = L3, and tLd = L I • 

2.4. THE GROUP G 

Let f be the quadratic form 42LY xf 14L, ~ i < j"; 6XiXj obtained from (I) by using the 
basis at, ... , a6 of V. Let Q(Z[t], f) be the commutator subgroup of the corresponding 
orthogonal group over ZHJ. 

THEOREM 3. G Q(Z[!], f). 

PROOF. By 2.2, G ::s:; GL(6, Z[!]). Also, G = G' and G preserves the formf obtained by 
restricting to V the usual form on (j)7. Thus, G ::s:; Q = Q(Z[tL f). 

By Theorem 1 and Lemma 1, Q acts flag-transitively on L1. Then Q = (Q n Po)G. We 
will show that Q n Po ::s:; G. 

Let g E Q n Po. The matrix (xU> of g with respect to the basis ai, ... , a6 must have all 
entries xi) in Z[t]. On the other hand, Lemma 2 implies that (LaY = La, so that xi} E Z2' 
Thus, xi} E Z. Since g preserves J, there are only finitely many possibilities for (xu), 
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The centralizer C of L"/2L,, in il n Po is a finite subgroup normalized by G(a)' and 
C n G(al = I. Then C consists of scalars. But I ¢ il (since - I ¢ il~ (6, 17) il(17

). 

Thus, eland il n Po is isomorphic to a subgroup of il+ (6, 2) containing Gill) ~ A7 • 

Since il-t (6, 2) ~ Ag is not isomorphic to any subgroup of GL(6, 10), it follows that 
il n Po G(a) < G, as required. 

2.5. FCRTHER PROPERTIES 

We conclude this section with several remarks concerning G and r. 

2.5.1. Assume that GIP) = il± (6, p) with p == ± I (mod 4). Then -1 E G(l'l, while 
I ¢ Gg/ for each x. Let 'bar' denote the homomorphism G(p) ..... GIl'l/< 1 >. Then 

rIP) .1(G-(P) (}IP) G-(p) (}IPI) is a finite GAB with group G-(p) and there is an obvious cover M' W· W' w) , 
Pp) ..... riP). This is a 2-fold cover. For, 1 acts nontrivially on riP) since I does not fix 
GI,~)· 

Note that this is quite different from the situation in [6], where - I always acted trivially. 

2.5.2. By construction, <<p, rym) induces a Dk of graph automorphisms of rIm). 

If p =1= 2 is a prime and (2Ip) 1 then <rp, rYp) < GIP): the graph automorphisms are 
induced by inner automorphisms. In particular, for such primes p all G!:i are conjugate in 
G(p). 

2.5.3. In the case p 
then G acts on 

7 not covered by Theorem I, G(7) 75 il(5, 7). For, if a; ad7 

6 6 

L 1'[t]a; L 1'[t](a; - a;) + Z[lJa'J, 
I 2 

while a; - a; = L~(a; a;) + 7a; and (a; - a;, a; - a;) is I if i =1= j and 2 if i j. 
Passing mod 7 we obtain a 6-space v.. over GF(7) and a hyperplane Vs upon which G(7) acts. 
Moreover, Vs inherits a nontrivial G-invariant inner product (although v.. does not). Using 
(G <r >)0) as in the proof of Theorem 1, we find that G induces il( 5, 7) on v;. On the other 
hand, (G1a»)O) does not fix any I-space of Vc,. From this it follows that G(7) cannot act 
faithfully on Vs, and hence that G(7) is as claimed. 

Moreover, the homomorphism G(7) ..... il(S, 7) induces a 75 -fold cover from r O) onto a 
GAB with diagram 0 and group il(S, 7). 

2.5.4. The situation in 2.3 closely resembles that of [6]. This relationship can be made 
more precise, as follows. Let UI,"" U8 be as in the proof of Theorem I. Set 
v* = u* + Us = L~ Uj • Regard G(a)<r) as a group of isometrics of lOS permuting 
{u1, ••• , us} and fixing u8 • Extend <p to 108 by letting ur = and v~ 4ug • Then 
(u'P, v"') = 2(u, v) for all u, v E 108

, so that G<r, <p> projectively preserves the form L~ . 
Call this formfg, and set Gg = il(Z[tJ,fg). Then G = (Gg)us.v,' Moreover, if r8 and r* are 
the reflections in Ug and v*, then both lie in G8 while G CGK«rS , r*>Y. Finally, the 
complex r in 2.2 can be identified with the set of fixed points of <rs, r * > on the complex 
.18 occurring in [6, sect. 5]. 

2.5.5. Three vectors were introduced in the second proof of Lemma l' call them VI' V 2, 

V3' Set V4 = u* + J - 7 us. Let Vi be defined by replacing by - Then VI' V2, 

v), V4 and VI' V2' V}, v4 span complementary totally singular 4-spaces of Q~. 

2.5.6. As in [6, (10.3)], it can be shown that any finite flag-transitive GAB with diagram 
o arises as an image of rin such a way that the commutator subgroup of the given group 
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is a homomorphic image of G. More generally, a similar results holds for chamber­
transitive SCABs (cf. 3.1) with the above diagram. 

3. COMPLETE GRAPH DIAGRAMS 

The present section is based on a generalization of GABs. 

3.1. CHAMBER SYSTEMS AND COSETS 

A chamber system of rank n consists of a set C{/ of objects called chambers, together with 
a family of partitions Iffi of C{/, where i ranges through a set I of size n. If I I then IffJ 

denotes the join of the partitions ~, j E 1. The chamber system is connected if Iff! = C{/. A 
member of Iffi is called an i-edge. A vertex is a member of Iffl-{i} for some i E I. 

If x E Iff], J £; I, then the residue Res(x) is the chamber system consisting of the set of 
chambers in x, together with the intersections of this set with all ~,j E 1. Clearly, Res(x) 
has rank Ill. A chamber system is residually connected if Res(x) is connected whenever 
x E Iff] for some I of size ~ n - 2. 

DEFINITION. A chamber system is a SCAB (chamber system that is almost a building) 
ifit is residually connected of rank n ~ 3 and if, for each 2-set {i,j} £; I, there is an integer 
nij such that Res(x) is a generalized nij-gon for each x E lffu.jJ' The diagram of the SCAB is 
defined as follows: it has node set I; the distinct nodes i and j are joined by nij 2 edges 
if nij E {2, 3, 4}, by tnj} edges if nij = 6 or 8, and by an edge labeled nij in all other cases. 

In this terminology, a GAB can be regarded as a SCAB in which every flag has a 
nonempty intersection. (Here, ajtagis a set of vertices of the SCAB any two of which have 
a nonempty intersection. Compare Tits [II, p. 3] and [13].) 

We will only be interested in connected chamber systems that admit an automorphism 
group G transitive on C{/. In this situation, fix C E C{/, let B be its stabilizer in G, and let Ei 
be the stabilizer of the i-edge containing C. Then the chamber system is isomorphic to the 
chamber system (G, B, E;)iEI defined as follows: chambers are cosets of B; and each i-edge 
is a coset of E" regarded as a set of cosets of B. Conversely if G is a group generated by 
a family E" i E I, of subgroups, and B :S;; n{E;!i E I}, then the above definition produces 
a connected chamber system with a chamber-transitive automorphism group. If 
EJ = <~Ij E I) then IffJ can be identified with the set of cosets of EJ • 

A theorem of Tits [13] states that, if tffi(i E l) is a SCAB, and if every rank 3 residue 
having a spherical diagram is a building, then there is a universal 2-covering SCAB cg, jl 
(i E l) that is a building. Thus, there is a surjection cg -> C{/ such that. whenever I £; I and 
11j :S;; 2, every member of jJ is mapped bijectively onto a member of IffJ • Consequently, 
rank 2 residues are mapped isomorphically. If the original SCAB has the form (G, B, E,)/ 
then its universal 2-cover also has a chamber-transitive automorphism group, and hence 
has the form (G, ii, EJI' where G GIN for the group N of covering transformations 
(compare Ronan (9]). Moreover, B = iiNIN and Ei = EiN/N. 

In the remainder of this section we will have B = 1. so that G will be regular on 
chambers. 

3.2. FROBENIUS GROUPS 

If a SCAB has as diagram the complete graph Kn on n = III vertices, and if each edge 
corresponds to PG(2, q), we will say that the diagram is Kn /PG(2, q). 

Let q = 2 or 8. 
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REMARK. If G is a group generated by a finite set {Eil i E I} of n ): 3 subgroups of order 
q + I. any two of which generate a Frobenius group of order (l + q + I )(q + I), then 
(G, LEi), is a SCAB with diagram Kn IPG(2. q). 

PROOF. If j :;6 k then (E: I.k:' I, EJ: I.k: is PG(2. q), since the Frobenius group E:lk: is 
sharply flag-transitive on that plane. (NB: This flag-transitivity holds only for q = 2 or 8.) 

3.3. EXAMPLES WITH DIAGRAM Kf1 /PG(2. q) 

As in 3.2, let q = 2 or 8. It is easy to give many examples of SCABs using 3.2. The 
following examples are not GABs. Nevertheless, each has as universal cover a flag-transitive 
building [13]. 

EXAMPLE I. Let F GF(l + q + I) and m ): I, and let G be the semidirect product 
of Fm with a cyclic group (I) of order q + 1, where t induces a scalar transformation on 
Fm. Then G produces many SCABs with diagrams Kn/PG(2. q). n ~ (q? + q + J)f11, as 
follows. Let VI = 0, ... , Vn be any set of elements generating Fm. Then {(vJ)! I !( i !( n} 
satisfies the requirements of 3.2. For, if i :;6 j then (v,t, VII) = (viVI-

I , v,t) where 
(v,vj·lt,1 = v:vl-

s = (vivj I)' for some integer s satisfying 0 < s < q? + q + I. 
Of course, each of these SCABs is a residue of a certain one having diagram K,,/PG(2, q), 

where N = (q" + q + l)m. In fact, if we allowed infinite index sets J then all of these for 
all m would be residues of a SCAB having as diagram a countable complete graph. 

It is easy to check that these SCABs are never GABs. 
Note that if m = 2 = n 1 then the above SCAB has diagram K,/PG(2, q). 

EXAMPLE 2. The group G of all tramformations x --'> axil + b over F = GF(q3), q = 2 
or 8, aq2+q~1 = I, bE F, (J E Aut F, produces a SCAB with diagram K3/PG(2, q), as follows. 
Note that F contains an element :x satisfying :xq+ I :x + I. Then :xq2 

+q+ I = :x(C{q+ I)q = 
:x(:xq + I) = I. The three groups GOI ' GOa and Gb have order q + I. For, this is clear in 
the case of GOI ' while Goo and Gj, are obtained by conjugating by x --'>:xx and 
x --'> (:x + l)x + :x, respectively. Then 3.2 applies to {GOI , Go" G,,}. 

This example can be generalized, as follows. 

EXAMPLE 3. Let q = 2 or 8, let m ): I, and let G(m) be the group obtained from the 
direct product of m copies of the group G in Example 2 by identifying all the m versions 
of x --'> x 2

; thus, IGI = q3m(q2 + q + I)"'(q + I). Then G(m) produces a SCAB with 
diagram K2m~liPG(2, q). For, let l E G(m) have order q + 1. In each copy of G' pick 
elements ai' bi of order 7 such that Example 2 applies to {t, aJ. bit} for 1 ~ i ~ m. Then 
3.2 applies to {<t), (ait), (bJ)ll ~ i ~ m}. For, (ajl. bit) <arb, I, a,1). If i = jour 
choice of ai and bi yields that this is a Frobenius group. If i :;6 j then laihl II q: + q + I 

d (b ····I)(/j' . "b--" (b- I )2 . d an aj j = a, j = a,} , as reqUIre . 
Note that the resulting SCAB is a covering of one of the SCABs in Example I. 

EXAMPLE 4. G = prL(2, q'), q = 2 or 8, produces a SCAB with (q' + I)(q - I) 
vertices and diagram K4 /PG(2, q). For, if x is as in Example 2 then 3.2 can be applied to 
{GxOI ' Gcdlo , Gx• ln GOb} (where the subscripts refer to stabilizers when G is regarded as 
acting on the projective line {oo} u GF(q3». That the first three of these behave as desired 
was shown in Example 2. Any element of PSL(2, q') interchanging 00 and 0 and sending 
I to x must be an involution, and hence leaves invariant our set of four groups. Hence, any 
three of the groups behave as desired. 

Of course, all rank 3 residues are as in Example 2. As in Examples 2 and 3. we can 
generalize this example as follows. 
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EXAMPLE 5. Let G be the semidirect product of the direct product of n ~ 1 copies of 
PSL(2, q'), q = 2 or 8, by a cyclic group (t) of order q + 1, where t induces the field auto­
morphism x -> x2 on each factor. Then G produces a SCAB with diagram K3n + I /PG(2, q). 
For, let a" hi, (', be elements of the ith factor such that {(t), (a;t), (hJ), (bJ), (Cit)} is 
as in Example 4. Then the union of these n sets behaves as in 3.2. Namely, using Example 
2 we see that a; = ai, b; = b; and c; = c;. Thus, we can proceed exactly as in Example 3. 

Finally, Examples 1, 3 and 5 can be merged in a similar manner: 

EXAMPLE 6. Consider the group (A x B x C)(t) where A, B, C and t are as follows: 
A = GF(q2 + q + \)k and d = 2a for all a E A; B(t) is the group in Example 3; and 
C(t) is the group in Example 5. Then (A x B x C) (t) produces many SCABs with 
diagram KN/GF(q), the largest N being N = (q2 + q + 1/ + 2m + 3n. 

PROBLEM. When can two buildings constructed as in the above examples (via [13)) be 
isomorphic? 

Note that Example 6 shows that any two such buildings arise as residues of one of these 
buildings. 
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