Some locally finite flag-transitive buildings

WILLIAM M. KANTOR*

1. Introduction

This paper is a continuation of Kantor [4, 6] and Ronan [10]. We will construct finite and infinite 'geometries' admitting flag-transitive groups and having buildings as universal covers. The first building is that of Ω^+ (6, \mathbb{Q}_2); the remaining ones are new and strange. As in the aforementioned papers, our motivation is the search for finite geometries that strongly resemble buildings, and for group-theoretic situations similar to BN-pairs.

The paper is split into two independent parts. In section 2 we construct finite GABs (geometries that are almost buildings [4, 6]) with diagram \square and rank 2 residues PG(2, 2). One of these is described for each odd integer m > 1. Each of them is covered by the $\Omega^+(6, \mathbb{Q}_2)$ building.

The GABs in Section 2 admit flag-transitive groups, and hence can be constructed as coset spaces exactly as in [6, sect. 2]. Consequently, all the relevant terminology is found in that reference (but compare 3.1 below).

In Section 3 we will construct chamber systems (Tits [13], Ronan [9]) whose diagrams are complete graphs and whose rank 2 residues are PG(2, 2) or PG(2, 8). This section is relatively trivial. It is of interest only as an indication of the existence of pathological locally finite flag-transitive buildings.

I am grateful to T. Meixner for his comments and corrections.

2. THE GABS

2.1. A RATIONAL ORTHOGONAL GROUP

Equip \mathbb{Q}^7 with the usual inner product, and let u_1, \ldots, u_7 be the standard orthonormal basis. Set $u_* = \Sigma_1^7 u_i$ and $V = u_*^{\perp}$.

The vectors $a_i = -7u_i + u_*$, $1 \le i \le 7$, span V and satisfy the conditions

$$\sum_{1}^{7} a_{j} = 0, \quad (a_{i}, a_{i}) = 42, \text{ and } (a_{i}, a_{j}) = -7 \quad \text{for } i \neq j.$$
 (1)

Clearly, there is a subgroup $G_{(a)} \cong A_7$ of GL(V) preserving $\{a_1, \ldots, a_7\}$ (in fact, there is an S_7 as well).

Next, set

$$b_i = a_i + a_{i+1} + a_{i+3}$$
 for $1 \le i \le 7$, (2)

where subscripts are taken mod 7. Then it is straightforward to check that

$$\sum_{i=1}^{7} b_{i} = 0, (b_{i}, b_{i}) = 2.42, \text{ and } (b_{i}, b_{j}) = 2(-7) \quad \text{for } i \neq j.$$

By (1), there is a linear transformation φ on V such that $a_i^{\varphi} = b_{7-i}$ for all i, and $(u^{\varphi}, v^{\varphi}) = 2(u, v)$ for all $u, v \in V$. Moreover, by (1), (2) and a simple calculation $b_i^{\varphi} = 2a_{7-i}$. Also, $(G_{(a)})^{\varphi} = G_{(b)}$ induces A_7 on $\{b_1, \ldots, b_7\}$.

^{*}This research was supported in part by an NSF grant.

There is an obvious PG(2, 2) whose points are the a_i and whose lines are the triples appearing in (2). Thus, $G_{(a)(b)} = G_{(a)} \cap G_{(b)} \cong PSL(3, 2)$. Moreover, φ induces an outer automorphism of this group.

Let r be the reflection in $(a_1 - a_2)^{\perp}$. Then r induces the transposition (a_1, a_2) on $\{a_1, \ldots, a_7\}$. Set $c_i = b_i^r$. Then $b_1 = c_1$, $b_3 = c_3$ and $b_4 = c_4$. Set $G_{(c)} = (G_{(b)})^r$. Then $G_{(a)(b)(c)}$ is the stabilizer in $G_{(a)}$ of the partition $a_4|a_1a_2|a_3a_6|a_5a_7$. Moreover, the transformation (b_1, b_3, b_4) is in $G_{(b)(c)}$.

$$b_1 = 124$$
, $c_1 = 124$, $d_1 = 2a_6$,
 $b_2 = 235$, $c_2 = 135$, $d_2 = -a_1 + a_2 + a_5 + a_7$,
 $b_3 = 346$, $c_3 = 346$, $d_3 = 2a_4$,
 $b_4 = 457$, $c_4 = 457$, $d_4 = 2a_3$,
 $b_5 = 561$, $c_5 = 562$, $d_5 = a_1 + a_2 + a_5 - a_7$,
 $b_6 = 672$, $c_6 = 671$, $d_6 = a_1 + a_2 - a_5 + a_7$,
 $b_7 = 713$, $c_7 = 723$, $d_7 = a_1 - a_2 + a_5 + a_7$.

(In the above table we have written $b_1 = 124$ in place of $b_1 = a_1 + a_2 + a_4$. The d_i will be defined soon.) It follows that $G_{(b)(c)} \cong (A_3 \times A_4) \cdot 2$ is the stabilizer of $\{b_1, b_3, b_4\}$ in $G_{(b)}$. Since r normalies $G_{(a)}$, we also have $G_{(a)} \cap G_{(c)} \cong PSL(3, 2)$.

Now set $d_i = c_i^{\varphi}$ and $G_{(d)} = (G_{(c)})^{\varphi}$. Then $G_{(a)(d)} = (G_{(b)(c)})^{\varphi} \cong (A_3 \times A_4) \cdot 2$ and $G_{(b)(d)} = (G_{(a)(c)})^{\varphi} \cong PSL(3, 2) \cong G_{(c)(d)}$. Moreover, $G_{(a)(b)(c)(d)} = \langle (a_1, a_2)(a_3, a_6), (a_1, a_5)(a_2, a_7) \rangle \cong D_8$. Set $G = \langle G_{(a)}, G_{(b)}, G_{(c)}, G_{(d)} \rangle$. In the notation of [6, sect. 2], $\Gamma = \Delta(G_{(a)}, G_{(b)}, G_{(c)}, G_{(d)})$ is a GAB in G with diagram where each •——• is a PG(2, 2). In fact, this is clear from

the intersections we have just dealt with. (Flag-transitivity follows from [1, (3.10)].) Note that $G = \langle G_{(a)}, (b_1, b_3, b_4) \rangle$. For, $G_{(b)} = \langle G_{(a)(b)}, (b_1, b_3, b_4) \rangle$, $G_{(c)} = \langle G_{(a)(c)}, G_{(b)(c)} \rangle$

and $G_{(d)} = \langle G_{(a)(d)}, G_{(b)(d)} \rangle$. Also, $\langle \varphi, r \rangle$ induces a dihedral group of order 8 on $\{G_{(a)}, G_{(b)}, G_{(c)}, G_{(d)}\}$.

2.2. FINITE GABS

Clearly, $G_{(a)}\langle r \rangle \cong S_7$ permutes the vectors a_1, \ldots, a_7 , and hence can be regarded as a group of 6×6 integral matrices with respect to the basis a_1, \ldots, a_6 of V (since $a_7 = -\Sigma_1^6 a_i$). Also, φ produces an integral matrix, while $\varphi^{-1} = \frac{1}{2}\varphi$ has all its entries in $\mathbb{Z}[\frac{1}{2}]$. Thus, $G\langle \varphi, r \rangle = \langle G_{(a)}, \varphi, r \rangle \leqslant GL(6, \mathbb{Z}[\frac{1}{2}])$. If m is any odd integer then we can view all of these 6×6 matrices mod m. Whenever $D \subseteq GL(6, \mathbb{Z}[\frac{1}{2}])$ let $D^{(m)}$ be the corresponding set of matrices mod m.

The homomorphism $G oup G^{(m)}$ induces an isomorphism on $G_{(a)}$ for each $a \in \{a, b, c, d\}$, and preserves intersections among these four groups. Thus, if m > 1 and m is odd then $\Gamma^{(m)} = \Delta(G_{(a)}^{(m)}, G_{(b)}^{(m)}, G_{(c)}^{(m)}, G_{(d)}^{(m)})$ is a finite GAB with diagram ${}_e^a \square_d^b$ and group $G^{(m)}$. (Once again, flag-transitivity follows from [2, (3.10)].) Clearly, $G \to G^{(m)}$ induces a cover $\Gamma \to \Gamma^{(m)}$. In 2.3 we will see that this is a universal cover.

THEOREM 1. $G^{(p)} = \Omega^{\pm}(6, p)$ for each prime $p \neq 2, 7$, where $G^{(p)} = \Omega^{+}(6, p)$ if and only if $p \equiv 1, 2$ or 4 (mod 7).

PROOF. Let u_1, \ldots, u_7, u_8 be the standard orthonormal basis of \mathbb{Q}^8 . Then

$$7\left(\sum_{i=1}^{8} \mathbb{Z}\left[\frac{1}{2}\right]u_{i}\right) + \mathbb{Z}\left[\frac{1}{2}\right]u_{*} = \left(\sum_{i=1}^{6} \mathbb{Z}\left[\frac{1}{2}\right]a_{i}\right) \oplus \mathbb{Z}\left[\frac{1}{2}\right]u_{*} \oplus 7\mathbb{Z}\left[\frac{1}{2}\right]u_{8}$$
(3)

since $7u_i = u_* - a_i$ for $1 \le i \le 7$. Moreover, the three summands on the right hand side of (3) are pairwise orthogonal.

Passing mod p we find that $GF(p)^8$ becomes an orthogonal geometry decomposed into the orthogonal sum of a 6-space and a 2-space, each of which is preserved by $G^{(p)}$. The 2-space inherits the quadratic form $7x^2 + 49y^2$, which has nontrivial zeros if and only if (-7/p) = 1; that is, if and only if $p \equiv 1, 2$ or 4 (mod 7).

Since $(G_{(a)})' = G_{(a)}$, G' = G and $(G^{(p)})' = G^{(p)}$. Thus, $G^{(p)}$ is contained in the orthogonal group specified in the theorem.

On the other hand, $(G\langle r\rangle)^{(p)}$ lies in $O^{\pm}(6, p)$, and $r^{(p)}$ is a reflection. Thus, $(G\langle r\rangle)^{(p)} \ge \Omega^{\pm}(6, p)$ by Wagner [14]. This proves that $G^{(p)} = \Omega^{\pm}(6, p)$, as required.

When p = 3, both $\Delta^{(p)}$ and the theorem were first obtained by Aschbacher and Smith [2].

2.3. The $\Omega^+(6, \mathbb{Q}_2)$ Building

Next, we will identify the GAB in (2A):

THEOREM 2. The GAB Γ is isomorphic to the affine building for $\Omega^+(6, \mathbb{Q}_2)$.

We will imitate the proof given in [6] of a similar result.

LEMMA 1. $V \otimes_{\Omega} \mathbb{Q}_2$ is isometric to an $\Omega^+(6, \mathbb{Q}_2)$ -space.

FIRST PROOF. By [6, (6.1)], \mathbb{Q}_2^8 is an Ω^+ (8, \mathbb{Q}_2)-space. By (3), the orthogonal complement of $V \otimes_{\Omega} \mathbb{Q}_2$ inherits the quadratic form $7x^2 + 49y^2$, and this has nontrivial zeros in \mathbb{Q}_2 .

SECOND PROOF. Let $\lambda, \overline{\lambda} = (-1 \pm \sqrt{-7})/2 \in \mathbb{Q}_2$. A straightforward calculation (using the fact that $\lambda^2 + \lambda + 2 = 0$) proves that the vectors $(\lambda, \lambda, \overline{\lambda}, \lambda, \overline{\lambda}, \overline{\lambda}, \overline{\lambda}, 3)$, $(3, \lambda, \lambda, \overline{\lambda}, \lambda, \overline{\lambda}, \lambda, \overline{\lambda})$ and $(\overline{\lambda}, 3, \lambda, \lambda, \overline{\lambda}, \lambda, \overline{\lambda}, \lambda, \overline{\lambda})$ span a totally singular 3-space lying in $V \otimes_{\mathbb{Q}} \mathbb{Q}_2$.

The affine building Δ for Ω^+ (6, \mathbb{Q}_2) can be described as follows (Bruhat–Tits [3]). The vector space $V' = V \otimes_{\mathbb{Q}} \mathbb{Q}_2$ has a basis $e_1, e_2, e_3, f_1, f_2, f_3$ such that all inner products are 0 except for $(e_j, f_j) = (f_j, e_j) = 1$. Define the four \mathbb{Z}_2 -lattices L_i by

$$L_0 = \langle e_1, e_2, e_3, f_1, f_2, f_3 \rangle,$$

$$L_1 = \langle \frac{1}{2} e_1, e_2, e_3, 2f_1, f_2, f_3 \rangle,$$

$$L_3 = \langle \frac{1}{2} e_1, \frac{1}{2} e_2, \frac{1}{2} e_3, f_1, f_2, f_3 \rangle,$$

$$L_{Y} = \langle \frac{1}{2} e_1, \frac{1}{2} e_2, \frac{1}{2} f_3, f_1, f_2, e_3 \rangle,$$

where the brackets denote generation of lattices over the ring \mathbb{Z}_2 of 2-adic integers. Let P_i be the stabilizer of L_i in $\Omega^+(6, \mathbb{Q}_2)$. Then $\Delta = \Delta(P_0, P_1, P_3, P_3)$. The corresponding diagram is

Note that there is an obvious dihedral group of order 8 inducing graph automorphisms on Λ .

Let $L_a = \langle a_1, \ldots, a_7 \rangle$, and define L_b , L_c and L_d similarly.

LEMMA 2. We may assume that L_a is a scalar multiple of L_0 .

PROOF. $G_{(a)}$ fixes some point of the realization of Δ (Bruhat–Tits [3, pp. 64–65]). Since $G_{(a)} \cong A_7$ it fixes a vertex. Thus, we may assume that $G_{(a)} < P_0$. Choose $\kappa \in \mathbb{Q}_2$ so that $\kappa a_1 \in L_0 - 2L_0$. Then $L_0 \cong \kappa L_1 + 2L_0 = 2L_0$. By the irreducibility of $G_{(a)}$, $L_0 = \kappa L_1 + 2L_0$.

432 W. M. Kantor

Since $L_0/L_0 \cap \kappa L_a \subseteq 2(L_0/L_0 \cap \kappa L_a)$, $L_0 \subseteq \kappa L_a$ by Nakayama's Lemma [7, p. 242]. Thus, $L_0 = \kappa L_a$.

LEMMA 3. We may assume that L_b , L_c and $L_a \cap (\frac{1}{2}L_d)$ are scalar multiples of L_3 , L_3 and $L_0 \cap L_1$, respectively.

PROOF. By definition, $L_a \supset L_b$. Applying φ , we find that $L_b \supset 2L_a$. Now apply r in order to deduce that $L_a \supset L_c \supset 2L_a$. Also, $L_a \cap (\frac{1}{2}L_d) \supseteq 2L_a$. (For, $L_a \cap (\frac{1}{2}L_d)$ contains a_6 , a_4 , a_5 , $a_1 + a_2$, $a_1 - a_2$, $a_1 + a_5$ and $a_1 - a_5$.)

Thus, the group $S = G_{(a)(b)(c)(d)}$ fixes the following three subspaces of $L_a/2L_a$:

$$L_b/2L_a = \langle b_1 + 2L_a, b_2 + 2L_a, b_3 + 2L_a \rangle$$

$$L_c/2L_a = \langle c_1 + 2L_a, c_2 + 2L_a, c_3 + 2L_a \rangle$$

$$L_a \cap (\frac{1}{2}L_d)/2L_a = \langle a_6 + 2L_a, a_4 + 2L_a, a_3 + 2L_a, a_1 + a_2 + 2L_a, a_1 + a_5 + 2L_a \rangle.$$

Also, $L_a/2L_a$ inherits the structure of an Ω^+ (6, 2)-space (the quadratic form being $v \mapsto (v, v)/2$ (mod 2)). The subspaces $L_b/2L_a$, $L_c/2L_a$ and $(L_a \cap (\frac{1}{2}L_d)/2L_a)^{\perp} = \langle d_2 + 2L_a \rangle$ are totally singular and pairwise incident (since $b_1 = c_1$ and $b_3 = c_3 = -d_2 - 2a_1$), and hence form a flag of the Ω^+ (6, 2)-space $L_a/2L_a$. This is the only such flag fixed by S.

If $L_0 = \kappa L_a$ then S fixes a flag of $\kappa L_a/2\kappa L_a = L_0/2L_0$. Choose notation first so that this flag is $2L_3/2L_0$, $2L_3/2L_0$, $(L_0 \cap L_1/2L_0)^{\perp}$ and then so that $2L_3 = \kappa L_b$, $2L_3 = \kappa L_c$, and $L_0 \cap L_1 = \kappa (L_a \cap (\frac{1}{2}L_d))$.

PROOF OF THEOREM 2. By Lemmas 2 and 3, $G_{(a)} < P_0$, $G_{(b)} < P_3$, $G_{(c)} < P_3$ and $G_{(a)(d)} < P_0 \cap P_1$. Set $r' = r^{\phi}$ Then r' interchanges L_a and $\frac{1}{2}L_d$, and hence normalizes the stabilizers $P_0 \cap P_1$ of $L_a \cap (\frac{1}{2}L_d)$. Thus, $G_{(d)} = (G_{(a)})^{r'} < P_0^{r'}$ where $P_0 \cap P_1 < P_0^{r'}$. Since $G_{(d)} \nleq P_0$, it follows that $P_0^{r'} = P_1$. This proves that $G_{(a)} < P_0$, $G_{(b)} < P_3$, $G_{(c)} < P_3$ and $G_{(d)} < P_1$.

It follows that G induces a flag-transitive group on the residue of each of the vertices P_i of Δ . Since Δ is connected, it follows that G is flag-transitive on Δ .

Now define $\Gamma \to \Delta$ via $G_{(a)}g \mapsto P_0g$ and so on (where $g \in G$). This is a cover. Since Δ is simply connected (Tits [13]), it follows that $\Gamma \cong \Delta$.

REMARK. By considering their discriminants it is easy to show that $L_a = L_0$, $L_b = L_3$, $L_c = L_{3'}$ and $\frac{1}{2}L_d = L_1$.

2.4. THE GROUP G

Let f be the quadratic form $42\Sigma_1^6 x_i^2 - 14\Sigma_{1 \le i < j \le 6} x_i x_j$ obtained from (1) by using the basis a_1, \ldots, a_6 of V. Let $\Omega(\mathbb{Z}[\frac{1}{2}], f)$ be the commutator subgroup of the corresponding orthogonal group over $\mathbb{Z}[\frac{1}{2}]$.

THEOREM 3. $G = \Omega(\mathbb{Z}[\frac{1}{2}], f)$.

PROOF. By 2.2, $G \leq GL(6, \mathbb{Z}[\frac{1}{2}])$. Also, G = G' and G preserves the form f obtained by restricting to V the usual form on \mathbb{Q}^7 . Thus, $G \leq \Omega = \Omega(\mathbb{Z}[\frac{1}{2}], f)$.

By Theorem 1 and Lemma 1, Ω acts flag-transitively on Δ . Then $\Omega = (\Omega \cap P_0)G$. We will show that $\Omega \cap P_0 \leq G$.

Let $g \in \Omega \cap P_0$. The matrix (x_{ij}) of g with respect to the basis a_1, \ldots, a_6 must have all entries x_{ij} in $\mathbb{Z}[\frac{1}{2}]$. On the other hand, Lemma 2 implies that $(L_a)^g = L_a$, so that $x_{ij} \in \mathbb{Z}_2$. Thus, $x_{ij} \in \mathbb{Z}$. Since g preserves f, there are only finitely many possibilities for (x_{ij}) .

The centralizer C of $L_a/2L_a$ in $\Omega \cap P_0$ is a finite subgroup normalized by $G_{(a)}$, and $C \cap G_{(a)} = 1$. Then C consists of scalars. But $-1 \notin \Omega$ (since $-1 \notin \Omega^-(6, 17) = \Omega^{(17)}$). Thus, C = 1 and $\Omega \cap P_0$ is isomorphic to a subgroup of $\Omega^+(6, 2)$ containing $G_{(a)} \cong A_7$. Since $\Omega^+(6, 2) \cong A_8$ is not isomorphic to any subgroup of $GL(6, \mathbb{Q})$, it follows that $\Omega \cap P_0 = G_{(a)} < G$, as required.

2.5. Further Properties

We conclude this section with several remarks concerning G and Γ .

2.5.1. Assume that $G^{(p)} = \Omega^{\pm}(6, p)$ with $p \equiv \pm 1 \pmod{4}$. Then $-1 \in G^{(p)}$, while $-1 \notin G_{(x)}^{(p)}$ for each x. Let 'bar' denote the homomorphism $G^{(p)} \to G^{(p)}/\langle -1 \rangle$. Then $\bar{\Gamma}^{(p)} = \Delta(\bar{G}_{(a)}^{(p)}, \bar{G}_{(b)}^{(p)}, \bar{G}_{(c)}^{(p)}, \bar{G}_{(d)}^{(p)})$ is a finite GAB with group $\bar{G}^{(p)}$, and there is an obvious cover $\Gamma^{(p)} \to \bar{\Gamma}^{(p)}$. This is a 2-fold cover. For, -1 acts nontrivially on $\Gamma^{(p)}$ since -1 does not fix $G_{(c)}^{(p)}$.

Note that this is quite different from the situation in [6], where -1 always acted trivially.

- 2.5.2. By construction, $\langle \varphi, r \rangle^{(m)}$ induces a D_8 of graph automorphisms of $\Gamma^{(m)}$.
- If $p \neq 2$ is a prime and (2/p) = 1 then $\langle \varphi, r \rangle^{(p)} < G^{(p)}$: the graph automorphisms are induced by inner automorphisms. In particular, for such primes p all $G_{(x)}^{(p)}$ are conjugate in $G^{(p)}$.
- 2.5.3. In the case p = 7 not covered by Theorem 1, $G^{(7)} = 7^5 \Omega(5, 7)$. For, if $a'_i = a_i/7$ then G acts on

$$\sum_{1}^{6} \mathbb{Z}[\frac{1}{2}]a'_{i} = \sum_{2}^{6} \mathbb{Z}[\frac{1}{2}](a'_{1} - a'_{i}) + \mathbb{Z}[\frac{1}{2}]a'_{1},$$

while $a_1' - a_7' = -\Sigma_2^6(a_1' - a_1') + 7a_1'$ and $(a_1' - a_1', a_1' - a_2')$ is 1 if $i \neq j$ and 2 if i = j. Passing mod 7 we obtain a 6-space V_6 over GF(7) and a hyperplane V_5 upon which $G^{(7)}$ acts. Moreover, V_5 inherits a nontrivial G-invariant inner product (although V_6 does not). Using $(G \langle r \rangle)^{(7)}$ as in the proof of Theorem 1, we find that G induces $\Omega(5, 7)$ on V_5 . On the other hand, $(G_{(a)})^{(7)}$ does not fix any 1-space of V_6 . From this it follows that $G^{(7)}$ cannot act faithfully on V_5 , and hence that $G^{(7)}$ is as claimed.

Moreover, the homomorphism $G^{(7)} \to \Omega(5, 7)$ induces a 7⁵-fold cover from $\Gamma^{(7)}$ onto a GAB with diagram \square and group $\Omega(5, 7)$.

- 2.5.4. The situation in 2.3 closely resembles that of [6]. This relationship can be made more precise, as follows. Let u_1,\ldots,u_8 be as in the proof of Theorem 1. Set $v_*=u_*+u_8=\Sigma_1^8$ u_i . Regard $G_{(a)}\langle r\rangle$ as a group of isometries of \mathbb{Q}^8 permuting $\{u_1,\ldots,u_8\}$ and fixing u_8 . Extend φ to \mathbb{Q}^8 by letting $u_8^\varphi=\frac{1}{2}v_*$ and $v_*^\varphi=4u_8$. Then $(u^\varphi,v^\varphi)=2(u,v)$ for all $u,v\in\mathbb{Q}^8$, so that $G\langle r,\varphi\rangle$ projectively preserves the form $\Sigma_1^8x_i^2$. Call this form f_8 , and set $G_8=\Omega(\mathbb{Z}[\frac{1}{2}],f_8)$. Then $G=(G_8)_{u_8,v_*}$. Moreover, if r_8 and r_* are the reflections in u_8 and v_* , then both lie in G_8 while $G=C_{G_8}(\langle r_8,r_*\rangle)'$. Finally, the complex Γ in 2.2 can be identified with the set of fixed points of $\langle r_8,r_*\rangle$ on the complex A_8 occurring in [6, sect. 5].
- 2.5.5. Three vectors were introduced in the second proof of Lemma 1; call them v_1, v_2, v_3 . Set $v_4 = u_* + \sqrt{-7} u_8$. Let \bar{v}_i be defined by replacing $\sqrt{-7}$ by $-\sqrt{-7}$. Then v_1, v_2, v_3, v_4 and $\bar{v}_1, \bar{v}_2, \bar{v}_3, \bar{v}_4$ span complementary totally singular 4-spaces of \mathbb{Q}_2^8 .
- 2.5.6. As in [6, (10.3)], it can be shown that any finite flag-transitive GAB with diagram \square arises as an image of Γ in such a way that the commutator subgroup of the given group

434 W. M. Kantor

is a homomorphic image of G. More generally, a similar results holds for chamber-transitive SCABs (cf. 3.1) with the above diagram.

3. Complete Graph Diagrams

The present section is based on a generalization of GABs.

3.1. CHAMBER SYSTEMS AND COSETS

A chamber system of rank n consists of a set \mathscr{C} of objects called chambers, together with a family of partitions \mathscr{E}_i of \mathscr{C} , where i ranges through a set I of size n. If $J \subseteq I$ then \mathscr{E}_J denotes the join of the partitions \mathscr{E}_j , $j \in J$. The chamber system is connected if $\mathscr{E}_I = \mathscr{C}$. A member of \mathscr{E}_I is called an i-edge. A vertex is a member of $\mathscr{E}_{I-\{i\}}$ for some $i \in I$.

If $x \in \mathscr{E}_J$, $J \subseteq I$, then the residue $\operatorname{Res}(x)$ is the chamber system consisting of the set of chambers in x, together with the intersections of this set with all \mathscr{E}_j , $j \in J$. Clearly, $\operatorname{Res}(x)$ has rank |J|. A chamber system is residually connected if $\operatorname{Res}(x)$ is connected whenever $x \in \mathscr{E}_I$ for some J of size $\leq n-2$.

DEFINITION. A chamber system is a *SCAB* (chamber system that is almost a building) if it is residually connected of rank $n \ge 3$ and if, for each 2-set $\{i, j\} \subseteq I$, there is an integer n_{ij} such that Res(x) is a generalized n_{ij} -gon for each $x \in \mathscr{E}_{\{i,j\}}$. The *diagram* of the SCAB is defined as follows: it has node set I; the distinct nodes i and j are joined by $n_{ij} - 2$ edges if $n_{ij} \in \{2, 3, 4\}$, by $\frac{1}{2}n_{ij}$ edges if $n_{ij} = 6$ or 8, and by an edge labeled n_{ij} in all other cases.

In this terminology, a GAB can be regarded as a SCAB in which every flag has a nonempty intersection. (Here, a *flag* is a set of vertices of the SCAB any two of which have a nonempty intersection. Compare Tits [11, p. 3] and [13].)

We will only be interested in connected chamber systems that admit an automorphism group G transitive on $\mathscr C$. In this situation, fix $C \in \mathscr C$, let B be its stabilizer in G, and let E_i be the stabilizer of the i-edge containing C. Then the chamber system is isomorphic to the chamber system $(G, B, E_i)_{i \in I}$ defined as follows: chambers are cosets of B; and each i-edge is a coset of E_i , regarded as a set of cosets of B. Conversely if G is a group generated by a family E_i , $i \in I$, of subgroups, and $B \le \bigcap \{E_i | i \in I\}$, then the above definition produces a connected chamber system with a chamber-transitive automorphism group. If $E_J = \langle E_i | j \in J \rangle$ then $\mathscr E_J$ can be identified with the set of cosets of E_J .

A theorem of Tits [13] states that, if \mathscr{C} , $\mathscr{E}_i(i \in I)$ is a SCAB, and if every rank 3 residue having a spherical diagram is a building, then there is a universal 2-covering SCAB $\widetilde{\mathscr{C}}$, $\widetilde{\mathscr{E}}_i$ ($i \in I$) that is a building. Thus, there is a surjection $\widetilde{\mathscr{C}} \to \mathscr{C}$ such that, whenever $J \subseteq I$ and $|J| \leq 2$, every member of $\widetilde{\mathscr{E}}_J$ is mapped bijectively onto a member of \mathscr{E}_J . Consequently, rank 2 residues are mapped isomorphically. If the original SCAB has the form $(G, B, E_i)_I$, then its universal 2-cover also has a chamber-transitive automorphism group, and hence has the form $(\widetilde{G}, \widetilde{B}, \widetilde{E}_i)_I$, where $G = \widetilde{G}/N$ for the group N of covering transformations (compare Ronan [9]). Moreover, $B = \widetilde{B}N/N$ and $E_i = \widetilde{E}_i N/N$.

In the remainder of this section we will have B = 1, so that G will be regular on chambers.

3.2. Frobenius Groups

If a SCAB has as diagram the complete graph K_n on n = |I| vertices, and if each edge corresponds to PG(2, q), we will say that the diagram is $K_n/PG(2, q)$.

Let q = 2 or 8.

REMARK. If G is a group generated by a finite set $\{E_i | i \in I\}$ of $n \ge 3$ subgroups of order q + 1, any two of which generate a Frobenius group of order $(q^2 + q + 1)(q + 1)$, then $(G, 1, E_i)_i$ is a SCAB with diagram $K_n/PG(2, q)$.

PROOF. If $j \neq k$ then $(E_{\{j,k\}}, 1, E_i)_{\{j,k\}}$ is PG(2, q), since the Frobenius group $E_{\{j,k\}}$ is sharply flag-transitive on that plane. (NB: This flag-transitivity holds only for q = 2 or 8.)

3.3. Examples with diagram $K_n/PG(2, q)$

As in 3.2, let q=2 or 8. It is easy to give many examples of SCABs using 3.2. The following examples are not GABs. Nevertheless, each has as universal cover a flag-transitive building [13].

EXAMPLE 1. Let $F = GF(q^2 + q + 1)$ and $m \ge 1$, and let G be the semidirect product of F^m with a cyclic group $\langle t \rangle$ of order q + 1, where t induces a scalar transformation on F^m . Then G produces many SCABs with diagrams $K_n/PG(2, q)$, $n \le (q^2 + q + 1)^m$, as follows. Let $v_1 = 0, \ldots, v_n$ be any set of elements generating F^m . Then $\{\langle v_i t \rangle | 1 \le i \le n\}$ satisfies the requirements of 3.2. For, if $i \ne j$ then $\langle v_i t, v_j t \rangle = \langle v_i v_j^{-1}, v_i t \rangle$ where $\langle v_i v_j^{-1} \rangle^{v_i t} = v_i^s v_j^{-s} = \langle v_i v_j^{-1} \rangle^s$ for some integer s satisfying $0 < s < q^2 + q + 1$.

Of course, each of these SCABs is a residue of a certain one having diagram $K_N/PG(2, q)$, where $N = (q^2 + q + 1)^m$. In fact, if we allowed infinite index sets I then all of these for all m would be residues of a SCAB having as diagram a countable complete graph.

It is easy to check that these SCABs are never GABs.

Note that if m = 2 = n - 1 then the above SCAB has diagram $K_3/PG(2, q)$.

EXAMPLE 2. The group G of all transformations $x \to ax^{\sigma} + b$ over $F = GF(q^3)$, q = 2 or 8, $a^{q^2+q+1} = 1$, $b \in F$, $\sigma \in Aut F$, produces a SCAB with diagram $K_3/PG(2,q)$, as follows. Note that F contains an element α satisfying $\alpha^{q+1} = \alpha + 1$. Then $\alpha^{q^2+q+1} = \alpha(\alpha^{q+1})^q = \alpha(\alpha^q + 1) = 1$. The three groups G_{01} , $G_{0\alpha}$ and $G_{1\alpha}$ have order q + 1. For, this is clear in the case of G_{01} , while $G_{0\alpha}$ and $G_{1\alpha}$ are obtained by conjugating by $x \to \alpha x$ and $x \to (\alpha + 1)x + \alpha$, respectively. Then 3.2 applies to $\{G_{01}, G_{0\alpha}, G_{1\alpha}\}$.

This example can be generalized, as follows.

EXAMPLE 3. Let q=2 or 8, let $m \ge 1$, and let $G^{(m)}$ be the group obtained from the direct product of m copies of the group G in Example 2 by identifying all the m versions of $x \to x^2$; thus, $|G| = q^{3m}(q^2 + q + 1)^m(q + 1)$. Then $G^{(m)}$ produces a SCAB with diagram $K_{2m+1}/PG(2, q)$. For, let $t \in G^{(m)}$ have order q+1. In each copy of G' pick elements a_i , b_i of order 7 such that Example 2 applies to $\{t, a_i t, b_i t\}$ for $1 \le i \le m$. Then 3.2 applies to $\{\langle t \rangle, \langle a_i t \rangle, \langle b_i t \rangle | 1 \le i \le m\}$. For, $\langle a_i t, b_j t \rangle = \langle a_i b_j^{-1}, a_i t \rangle$. If i = j our choice of a_i and b_j yields that this is a Frobenius group. If $i \ne j$ then $|a_i b_j^{-1}| = q^2 + q + 1$ and $(a_i b_i^{-1})^{a_i t} = a_i^2 b_i^{-2} = (a_i b_i^{-1})^2$, as required.

Note that the resulting SCAB is a covering of one of the SCABs in Example 1.

EXAMPLE 4. $G = P\Gamma L(2, q^3)$, q = 2 or 8, produces a SCAB with $(q^3 + 1)(q - 1)$ vertices and diagram $K_4/PG(2, q)$. For, if α is as in Example 2 then 3.2 can be applied to $\{G_{\infty 01}, G_{\infty 02}, G_{\infty 12}, G_{012}\}$ (where the subscripts refer to stabilizers when G is regarded as acting on the projective line $\{\infty\} \cup GF(q^3)$). That the first three of these behave as desired was shown in Example 2. Any element of PSL(2, q^3) interchanging ∞ and 0 and sending 1 to α must be an involution, and hence leaves invariant our set of four groups. Hence, any three of the groups behave as desired.

Of course, all rank 3 residues are as in Example 2. As in Examples 2 and 3, we can generalize this example as follows.

EXAMPLE 5. Let G be the semidirect product of the direct product of $n \ge 1$ copies of PSL(2, q^3), q = 2 or 8, by a cyclic group $\langle t \rangle$ of order q + 1, where t induces the field automorphism $x \to x^2$ on each factor. Then G produces a SCAB with diagram $K_{3n+1}/PG(2, q)$. For, let a_i , b_i , c_i be elements of the ith factor such that $\{\langle t \rangle, \langle a_i t \rangle, \langle b_i t \rangle, \langle b_i t \rangle, \langle c_i t \rangle\}$ is as in Example 4. Then the union of these n sets behaves as in 3.2. Namely, using Example 2 we see that $a_i^t = a_i^2$, $b_i^t = b_i^2$ and $c_i^t = c_i^2$. Thus, we can proceed exactly as in Example 3. Finally, Examples 1, 3 and 5 can be merged in a similar manner:

EXAMPLE 6. Consider the group $(A \times B \times C)\langle t \rangle$ where A, B, C and t are as follows: $A = GF(q^2 + q + 1)^k$ and $a^t = 2a$ for all $a \in A$; $B\langle t \rangle$ is the group in Example 3; and $C\langle t \rangle$ is the group in Example 5. Then $(A \times B \times C) \langle t \rangle$ produces many SCABs with diagram $K_N/GF(q)$, the largest N being $N = (q^2 + q + 1)^k + 2m + 3n$.

PROBLEM. When can two buildings constructed as in the above examples (via [13]) be isomorphic?

Note that Example 6 shows that any two such buildings arise as residues of one of these buildings.

REFERENCES

- 1. Aschbacher, M., Flag structures on Tits geometries, Geom. Ded. 14 (1983), 21-32.
- Aschbacher, M. and S. D. Smith, Tits geometries over GF(2) defined by groups over GF(3), Comm. in Algebra 11 (1983), 1675–1684.
- Bruhat, F. and J. Tits, Groupes réductifs sur un corps local. I. Données radicielles valuées, Publ. Math. I.H.E.S. 41 (1972), 5-251.
- 4. Kantor, W. M., Some geometries that are almost buildings. Europ. J. Combinatorics 2 (1981), 239-247.
- Kantor, W. M., Generation of linear groups, in The Geometric Vein. The Coxeter Festschrift, Springer, New York, 1981, pp. 497–509.
- 6. Kantor, W. M., Some exceptional 2-adic buildings, J. Algebra 92 (1985), 208-233.
- 7. Lang, S., Algebra, Addison-Wesley, Reading, 1971.
- 8. Mitchell, H. H., Determination of all primitive collineation groups in more than four variables which contain homologies, *Amer. J. Math.* **36** (1914), 1–12.
- 9. Ronan, M. A., Coverings and automorphisms of chamber systems, *Europ. J. Combinatorics* 1 (1980), 259–269.
- 10. Ronan, M. A. On triangle geometries, J. Combin. Theory, Ser. A 37 (1984), 294-319.
- 11. Tits, J., Buildings of spherical type and finite BN-pairs, Springer Lecture Notes 386, 1974.
- 12. Tits, J., Reductive groups over local fields, Proc. Symp. Pure Math. 33 (1979), 29-69.
- Tits, J., A local approach to buildings, in *The Geometric Vein. The Coxeter Festschrift*, Springer, New York, 1981, pp. 519-547.
- 14. Wagner, A., Determination of finite primitive reflection groups over an arbitrary field of characteristic not two, I, II, III, Geom. Ded. 9 (1980), 239-253; 10 (1981), 191-203, 475-523.

Received 10 September 1983 and in revised form 20 April 1987

WILLIAM M. KANTOR Department of Mathematics, University of Oregon Eugene, OR 97403 U.S.A.