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The subject of this note began with Thompson [Th1,2]. In the course of
constructing his simple group Th, he considered the Lie algebra L over C of
tV;‘)e Es. He constructed a decomposition L = Hy L ... L Hyy using a family

= {Hy,..., Hs } of Cartan algebras that are palrwise pe:{pemil{izlar with re-
%;;e(i? to the }\ﬁhﬁﬂ" form (he (dlled this a “Dempwolfl dec ()Ill})()‘%ifi()ﬁ of L; the
construction was made with the assistance of P. Smith and a (()ﬁlputer). Moreover,
H is closed under Lie multiplication. Thompson showed that such a decomposition
is unique up to conjugacy in E3(C). Moreover, he found that the stabilizer of H
in Eg(C) has a subgroup that is a nonsplit extension of the form 2 29 L(3,2), and
he constructed a lattice A € L, invariant under this group and positive definite
with respect to the Killing form, such that Aut A = Zo x Th.

Kostrikin and various coworkers studied this type of situation more generally
in the case of other simple complex Lie algebras L [Bo], [KKU1-8], [KT1,2],
[T1-3]. Their goals apparently were to look for interesting lattices and groups
while at the time studying interesting properties of Lie dlfrebr as. Some aspects of
what they found fit nic elv into the ° Gi(nﬁ;;% and Geometueﬂa framework of the
present conference. This note summarizes a small part of their research, especially
its relationship to questions in geometry and combinatorics.

The above papers considered a set H = {Hq,.. Hf?»»M } of Cartan subalgebras
of a simple complex Lie algebra L such that L = H; . L Hpgq with respect
to the Killing form, where ?s 13 the Coxeter number of L. Sii( h a set H 18 called an
orthogonal {5(’( ompom‘mﬁ { OD) of L. Note that it iz not difficult to find a direct
sum decomposition L = H1 &g Hpyq of Linto Cartan subalgebras. Bringing
the Killing form into the picture greatly restricts the possibilities.
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Let Aut’H denote the stabilizer of H in the simple Lie group corresponding to

L.

Existence of 0D’s [Bo], [Ivi-2], [KKU1-6], [T1]

(D’s are known to exist for each of the following types of Lie algebras (where p
denotes any prime, r is any positive integer, and £ is any integer 2 3): Apn..q, By,
Con—r, Dy, Fy, By, F, Ey and Gy, For now, let me note that there is an additional
example known in the case of Eg, with Aut ™ = 3*5L(3,5) (split) [Bo]. Al OD’s
have been classified in the cases 44, 45, A3, 4,4, C; [KKUA4]. There is more than
one class of GD’s under the action of the corresponding Lie group for algebras of

type Ga, E7, By and Dy (£ > 4) [KKU1.,2].

Open. Is there an OD in the Lie algebras As or €37 In [KKULJ3] it is
conjectured that (1) there is an OD in the case A¢ if and only if £ = p" — 1 for
some prime p and some r; and (i1) there is an OD in the case Cp if and ounly if £
is a power of 2.V

An OD iz called “multiplicative” if it iz closed under Lie multiplication. Mul-
tiplicative QD’s exist if and only if L has type 4y, Ban_y or Don with n > 2,
Es or GGy; moreover, all are conjugate under the action of the corresponding Lie
group [Hes], [KKU2]. I each of these cases, H satisfies an additional condition:
Aut M ss wrreducible on L. (OD’s with the latter property are the ones investigated
in the greatest detail in the above references®; of course, this also fits into recent
work on the subgroup structure of finite groups of Lie type. The following theoremn
represents the present status of classifying such OD's [KKU24], [KT1], [T1-3]:

THEOREM.  Asswme that H is an QD such that AviH s irveducible on L. Then
L can be of type Apn 1 ov Bypn_yypp) for any prime p and any o 21, Gy, Fy. Eq
or Ey; all possibilities hove been clussified in euch of these cases. L cannot be the
Lie algebra Ay or By for £ not of the above form.

There 18 also a partial classification in the case of Dy when H arises in a
specific combinatorial manner that will be described later [Iv2]. There are also
other algebras for which nonexistence of GD%s is known in the irreducible case
[T1].

A Jordan subgroup of Aut L i3 an elementary abelian subgroup J whose vor-
malizer N iz finite and maximal among the normalizers of elementary abelian

1) This is called the “Winnie-the-Pooh problem” in [KKU3], based on a pur-
ported quote from Winnie, which the translator of [KKU3] (L. Queen, assisted
by J. H. Conway} sought unsuccessfully in the Pooh books [KKUS3, p. 114,
footnote]. The reason for the futility of this search is indicated in [Ko, p. 180].

2} Determining them is the “weakened Winnie-the-Pooh problem” [KKU3],[T1].
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subgroups of Aut L, and such that J is a minimal normal subgroup of N. All
Jordan subgroups of simple complex Lie algebras were determined in [Ale]. For
every known (20 such that Aut 7 is transitive on 7, Aut H lies in such a normal-
izer N, with J acting trivially on H {compare [Bo]). More generally, for every
known OD H, the lxe:{nel of the action of AutH on H is “arge”.

The case Ay of the theorern is settled using the classification of finite 2-transitive
permutation groups. These arize as " e H iz irreducible
on L. Then the stabilizer (Aut H)y, must be irreducible on Hy. However, the
normalizer of Hy in the Lie group SL(f + 1,0C) induces the Weyl group Siqq
on Hy. The group induced by (Aut ?“i) g, on Hy occurs withic the irreducible
representation of degree £ of Sepq. It follows that the action of (Aut H)gy, within
S¢q1 must be 2-transitive. Of course, this greatly limits this group and hence also

Aut H.

My interest in D’s stems from the geometry and combinatories involved in
the construction of the known examples. Therefore, the remainder of this note
will focus on constructions.

Constructions within the Lie algebra 4,._,

Consider the Lie algebra L = sl(p™,C) consisting of all p™ x p" matrices of trace
0, where p i3 a prime and n» > 1. Let V = }E‘Q“ let ¢ be a primitive complex pth
root of 1, and define p x p matrices I and P as follows:

D = diag(l,e,...,e"™") and

P is the permutation matrix corresponding to the p-cycle (1,...,p).
Both of these have trace 0. With each v = (a1, b1,..., 04, b,) € V — {0} associate
the matrix

J,=D""P'a...@D"pPh=c [,

These p*" — 1 matrices J,, form a basis of L. The commutator of the matrices J,
and J, is e(® ‘}I Where, foury vt == Lo, Biper 5Oy Dy ) itned w2 228 Gy bl yomen B 3,
(u,v) = Zila;b — aih;) defines a ponsingular alternating bilinear form on V.
(We will soon see that there is an ektmspecml group hzrlxmg here.) Moreover,
Tr (JuJdu) = 01f u -+ v = 0: in this case J, and J, are perpendicular.

. pery

All known OD’s of Lie algebrus of type Ag have £ = p" — 1 for some p and
n as ahove, wnd, up to ecquivalence wnder the action of GL(p",C). wrise as L =
Hy L ... L Hpnoq with each H; spanned by some of the J,%s. In this case, let
Vi={0,u| Jx € H;}. Then

Vil =1 = dimm H,; = p" — 1,

Vi 13 a subspace of V, and
Therefore, the Vs form a spread T in V: a collection of p™ + 1 n-spaces of the
2n-space V such that each nonzero vector 18 in a unique member of . Moreover,
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this is a symplectic spread: there is a symplectic structure on ¥V such that each
member of T is totally isotropic [Iv1].

Conversely, each symplectic spread of V }‘):{‘()(112(‘6“-% an QD by the previous
recipe. Symplectic spreads were studied for use in finite geometry and coding
theory (ef. [Kal,2]) several years before this connection arose with Lie diﬁ"%‘i):{d‘%

[Iv1].

Examples of symplectic spreads

Clearly, there is no need to restrict the base field K to F,: this could be any
field whatsoever, but we are only interested in the case in which A is a finite field
F,. Then each spread consists of ¢" + 1 n-spaces in a 2n-space over F,. The
importance of spreads is that they produce affine planes: Let A4(XZ) denote the
point-line geometry whose points are vectors and whose lines are ‘rhe cosets W+
with W € Z, v € V. Then A(E) is an affine plane of order ¢™: any two points
are ot a unique live; given a live L and a point ¢ not on it, the:{le i3 a unique line
through » digjoint from L; and each line has exactly ¢™ points. There is an obvious
notion of parallelisimn, and by dd_]()lIlHiU" a new “line at infinity” that “contains” all
parallel classes one obtains a projective plane (of order ¢®). For each ¢ € V the
translation v +— v + ¢ i3 an automorphism ﬁkmg every parallel class. These affine
planes (and their associated projective planes) are called franslation planes. The
nontrivial translations are just the automorphisms of A(Z) that fix every parallel
class but fix no point. The group of translations will be identified with V.

Examrre 1. IV iz a 2-dimensional vector space over K, its set T of 1-spaces
is a spread, producing the desarguesian plane A(X) of order ¢.

These 1- -spaces are totally 1sotropic with respect to any nonsingular alternating
bilinear formn (, ) on the K-space V. If K7 is any subfield of K, amdif Trs K == O
is the trace map, then & becomes a spread of the K'-space V (‘()Ii‘%i‘ifﬂiﬂ" of totally
isotropic subspaces with respect to the alternating K’-bilinear form TI{ , ). The
resulting affine plane is identical to the one obtained using K. Nevertheless, this
vields an example of a symplectic spread for every prime power p*

This suggests that it matters what fields are used. The kernel of any spread X,
or of the pidﬁe A(Z), is the set of Gii(i()ﬁli)[})hl‘ﬂil‘% of the group V of translations
that send each member of T iuto itself. This is a ring under the obvious operations,
and is in fact a field. Thus, it is fairly standard to view a translation plane as
a vector space over its kernel, rather than over a subfield of its kernel. Any
isomorphism between two translation planes must send the translation group of
the first plane to the translation group of the second, and (after the kernels are
identified) is a semilinear transformation over the kernel. This also yields a natural
notion of equivalence of spreads — under the action of the group TL(V).

ExXaMpLE 2. Let F be a field of odd order, let s € F be a nonsquare, let 1 5
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o € Aut F with fixed field K, and let p € Aut F. View F? as a K-space. Then
the subspaces

{(0,y) [y € F} and

{{e,me —smf2?) |ye Flforme F
form a spread. A(Z) is called & “twisted field plane”; it was discovered by Albert
[Al], who showed it is nondesarguesian.

I odd chiaracteristic, there is {up to equivalence) only one known infinite family
of symplectic spreads of dimension > 2 over their kernels: when s = -1 (w0
|F} = 3 (1nod 4)) and p = ¢, the above example is symplectic with respect to the
alternating formn ({z1,v1),(z2,v2)) = Tr(z{ys — 2fy1), where Tr: F — K is the
trace map.

ExaMrrie 3. Let A be a field of odd order, let s € A be a nonsquare, and let
g € Aut K. Define a binary o;;emtioﬁ * o1l f&2 by

(e,b) * (u,v) = (av + bu, asu? + bv).
(This produces F» if and only if ¢ = 1.) View K? x K* as aleft vector space over
K. Then the subspaces

{{0,y) |y € K?} and

{{z,e*+m) |z € K}, form € K,

form a spread that is symplectic with respect to the alternating form

(21,22, %3, 24), (y1, 92, Y3, 9a)) = T1ya — Ty + T2ys — T3y2 -

Exampre 4. Hering [He] defined a subgroup & = SL(2,13) of SL{(6.3), and a
subspace W, and showed that £ = {W? | g € G} 15 a spread. The group V x G
is 2-transitive on the points of A(Z). In fact, G < Sp(6,3), and W is totally
isotropic, so that T i1s symplectic.,

The QD ’s for algebras of type Ai in the Theorem arise from spreads appearing
in Brxamples 1 and 4. In fact, these spreads are just those for which the automor-
phism group of the corresponding plane A(XZ) is 2-transitive on the points of the
plane.

ExaMprre 5. Two families of symplectic spreads in }E‘;§ with ¢ > 27 a power
3, are given in [Ka2] and [PT]. The first of these arises from the Ree groups

2(? {32?%—1)

Of course, for the above examples subfields of K can be used to produce more
symplectic spreads. With this proviso, every known symplectic spread in odd char-
acteristic appenrs wn Bramples 1-5.

ExaMprLE 6. The Suzuki group Sz(g), ¢ = 27! > 2, acts on an ovoid in F*,

g
Applying the graph automorphism of Sp(4, ¢) produces a symplectic spread in }Fi
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(cf. [Lid]). In fact, when ¢ is even, the only known symplectic spreads in }F; are

the desarguesian one and this one.

ExaMprre 7. Large numbersof symplectic spreads are constructed in [Kal] when
g iz even and n iz odd. Here i3 one especially interesting family.

Let K = F, and F = Feen with ¢ even and n odd. Let Tr:Fy» — K be the
trace map, and let W be its kernel. Finally, let r € F» —F, € F and let s € F have
order ¢" +1. Then & = {s'(W +r&A) | 0 < i < ¢"+ 1} is 6 spread. Moreover, it is
symplectic with respect to the alternating form (u,v) = Tr (ue + vu); for, z — sz
preserves this form, (Fyn ,Fyn ) = 0, and (r,w) = Tr(rw +7w) = (r +7)Tr(w) = 0
for w e W.

The proof that T is a spread is not difficult (¢f. [Kal]). The automorphism
group of A(X) has a subgroup {z — s'z2+¢ |0 < i < ¢"+ 1 and ¢ € F}
that iz trapsitive on lines, in fact, regular on the set of incident point-live pairs
(sharply flug-transitive). The planes are nondesarguesian, and are the only known
nondesarguesian affine planes of even order having a sharply flag-transitive auto-
morphism group.

Open problems

1. Find more examples of symplectic spreads,

2. It appears to be very difficult to determine whether a more or less “random”
spread 13 symplectic when dim V' > 4.

3. What effect does “symplecticress” have on the lnternal geometric properties of
the affine plane A4(Z)?

Constructions within the Lie algebra C,._.

View T as C? @ ... 2 CF (all tensor products will have n — 1 factors). Let D,
P and J, (with v € F5"™% — {0}) be as in the case of Apn .y (with p = 2), and
equip €7 with the nonsingular alternating bilinear forﬁx whose matrix is § =
I®---®I®(DP). We may assume that L = {M € gl(2",C) | S~M'§ = —AM}.

Note that @ = (D,P) ® --- @ {D,P) ® (iD,DP} is an ektmspecml group
of isometries of § of order 2"~ ! (ie., it is a subgroup of Sp(2",C) that is the
central ;)I()du(t of n—2 dihedral iﬁ‘":{()izp‘-% and a quaternion group, dll of order 8). Its

center Z((}) is {—I} and will be identified with Fy, while @/Z(@) will be identified
with F5"* 7. There is a nonsingular quadratic form : Q/Z(Q) — Fy such that
2(2Z(Q)) = 2% € Z(Q); its associated skew-symmetric bilinear form, defined
by (2Z(Q),yZ(Q)) = [z,], is the same one used carlier for Aze_y. Moreover,
ht iJiS m= — 1)‘9(“33,“ and {J, | @(u) = 1} is a basis of L.

IEH = {H;}; iz an OD of the Lie algebra Ass.; obtained using matrices J,
as above, then {H; N L}; is an OD of the present algebra L. The totally isotropic
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(rn—1)-spaces of an—z associated with H are still totally isotropic, but they are not
totally %1:{3,0"111(3:{ Wl‘fh respect to ©. Nevertheless, we see that any symplectic spread
of Fg“ gives vise to an OD of L [Bo] (cf. [KKUI, p. 294]). Moreover, this
discussion helps to clarify the remark made earlier that there was an extraspecial
group lurking behind the Ap» .1 construction.

Constructions within the Lie algebra Dy

This Lie algebra L can be identified with the space of all skew-symmetric 2¢ x 2
matrices over C. If Eéj denotes the 2f x 2f matrix with ?j -entry 1 and all others
0, and if E(¢,j) = Ei; — E};, then {E(: j) | 1 <4 < 7 < 20} 13 a basis of L.
There is a natural way to obtain an QD given in [KKU8]. A parallel class of
the set X = {1,...,2¢} is a partition © of X into £ pairs; a perallelism of X is a
partition IT of the set of 2-element subsets of X into 27 — 1 parallel classes [Cal.
Then H = {H. | # € II} 1s an OD of L, where H,. is the subspace spanned by
{E(i, ) | {7.7} € m}. So there are quite a lot of QD5 of these Lie algebras.

EXAMPLE 1. Let 2f = 2" identify {1,...,2¢} with F}, and let II be the set of
parallel classes of lines of the affine space 40(;3,;) Explicitly, for ¢ € F} — {0}
let H, be the *-aui)qu(e gpatmed by {E(u,v) | © = v + «}. This produ( es a

multiplicative QD since [H,, Hy| = H,4y for all distinet nonzero a, b € F%.

ExaMrrLE 2. Let G be any group of order 26 — 1. Tdentify X with {0} U G, Let
= {r, | a € G}, where 7 = {0,a} U{ {za,z7 a} | 1 # = € G'}. This defines
a parallelism, and & acts on both X and II in an obvious manner (and is even
transitive on IT). The resulting OI)'s are studied at length in [KKUS].

These examples represent a negligible proportion of the parallelisms of a 24-
et. See [Ca, pp. 64-67] for asymptotic estimates of the number of inequivalent
parallelisins.

There is an obvious diagonal group underlying H for any II: the subgroup of
GL(2¢, fC) (OIHHT;IW of all (hdﬂ"oﬁdl matrices with +1 on the diagonal induces a

group ZQ =1 of diagonal transformations of L with respect to the basis consisting
of the E(i,7)s (ome again —1 € GL(26,C) induces the identity on L) The
stabilizer Aut 1 of 11 in ng alsoactson . If £ > 4 and 7 13 an oD arising from

a parallelism I1, then Aut H s srreducible on L .a:f and only if one of the f()ii(}mm{;
holds [Iv2]:

2¢ = 2™ 1I iz as in Example 1;
2f =12, AutTl = PSL(2,11); or
2¢ = 28, Aut Il = 202(3)

This is proved using the classification of finite 2-transitive groups.
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Further constructions

There i3 a similar construction for the algebra L of type By, Namely, this timne L
cant be viewed as the set of all skew-symmetric (20 — 1) x (20 — 1) matrices over C,
50 just restrict the preceding types of ODs for Dy to the matrices whose last row
and column consist entirely of (s, Moreover, in [T2] it i3 shown that any OD H
of an algebra of type By must have this form if AutH iz irreducible on L.

There is also an entirely different construction of OD’s for Lie algebras of type

5

Dyn-1, one very similar to that used for type (a1 [Bo] (cf. [KKU1, p. 294]).

The following general construction technique for an QD in any L is given in
[KKU2]: Let @ be the root system, &% the set of positive roots with respect
to some ordering, and L = Hy & B Cr, a Cartan decomposition relative to the

feg 28]

Cartan subalgebra Hy. Assume that H = {Hy, ..., H;} is an OD and that, for
0 <7 < h, the Cartan subalgebra H, is spauned by elements of the form 2o+ cqzmn
with @ € &% and ¢, € €. Let ®; be the set of positive roots « associated in this
manner with H,;. Then &7 is partitioned by the sets ®,, and @, 3 € &, = o + 3,
o — 3 & ®; conversely, every partition of ®F into b sets ®,; having this property
produces an OD.

In [KKUZ2] it i3 show that the only simple Lie algebras L admitting OD’s
arising in this manuer are those of type Ay, Boyq or Doy with £ > 2, Fy, Fs and
G5, This result is used, in turn, to determine all multiplicative QD's.

ExaMpre. If @ has type Gy and ey, ap 15 a base, use the partition {ay, 3o +2a5 },
{aq + a2,3aq1 + a2}, {204 + ag, a0}, The resulting OD, with Aut H = B SL(3,2)
(nonsplit), is studied in detail in [KKUS5].

As remarked earlier, part of the original motivation for the study of OD’s was
the search for interesting lattices: ones invariant under all or most of Aut H. See
Kostrikin's survey [Ko] for indications of this, together with pointers towards
further literature.
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the present references only when it was used in the published English version.
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