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The subject of this note began with Thompson [Thl,2]. In the course of 
constructing his simple group Th, he considered the Lie algebra Lover iC of 
type Es. He constructed a decomposition L H1 ..L ... ..L H31 using a family 
H. {H1, ... , H31 } of Cartan algebras that are pairwise perpendicular with re­
spect to the Killing form (he called this a "Dempwolff decomposition" of L; the 
construction was m~de with the assistance of P. Smith and a computer). Moreover, 
H. is dosed under Lie multiplication. Thompson showed that such a decomposition 
is unique up to conjugacy in Es(iC). Moreover, he found that the stabili>ler of H. 
in Es(iC) has a subgroup that is a nonsplit extension of the form 25 SL(3, 2), and 
he constructed a lattice A C L, invariant under this group and positive definite 
with respect to the Killing form, such that Aut A 22 X Th. 

Kostrikin and various coworkers studied this type of situation more generally 
in the case of other simple complex Lie algebras L [Bo], [KKUl-6], [KT1,2], 
[Tl-3]. Their goals apparently were to look for interesting lattices and groups 
while at the time studying interesting properties of Lie algebras. Some aspects of 
what they found fit nicely into the "Groups and Geometries" framework of the 
present conference. This note sUIIlInari>les a small part of their research, especially 
its relationship to questions in geometry and combinatorics. 

The above papers considered a set H. {H1, ... ,Hh+l} of Cartan subalgebras 
of a simple complex Lie algebra L such that L H 1 ..L . .. ..L H h+ 1 with respect 
to the Killing form, where h is the Coxeter number of L. Such a set H. is called an 
oTtil.ogo"nfLl dew"fII'I!O.<itio"n (0 D) of L. Note that it is not difficult to find a direct 
sum decomposition L Hl 8··· 8 H h+ 1 of L into Cart an subalgebras. Bringing 
the Killing form into the picture greatly restricts the possibilities. 

*Supported in part by the National Science Foundation. 
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Let Aut H. denote the stabili>ler of H. in the simple Lie group corresponding to 
~ ~ 

L. 

Existence of OD's [Bo], [lvl-2], [KKUl-6], [Tl] 

a D's are known to exist for each of the following types of Lie algebras (where p 
denotes any prirne, '11 is any positive integer, and (is any integer ~ 3): Apn_l, Bt, 
Czn-l, Dt , F4 , E 6 , E 7 , E8 and Gz. For now,let me note that there is an additional 
example known in the case of E 8 , with AutH. "'" 33 SL(3,3) (split) [Bo]. All OD's 
have been classified in the cases Al , Az, A 3 , A 4 , Cz [KKU 4]. There is more than 
one class of OD's under the action of the corresponding Lie group for algebras of 

~ ~ ~ 

type Gz, E 7 , B t and D t (t ::: 4) [KKU1,2]. 

Open. Is there an aD in the Lie algebras A5 or C3'! In [KKU1,3] it is 
conjectured that (i) there is an aD in the case At if and only if t pn - 1 for 
sorne prime p and sorne II; and (ii) there is an aD in the case C t if and only if t 
is a power of 2.1) 

An aD is called "multiplicative" if it is closed under Lie multiplication. Mul­
tiplicative OD's exist if and only if L has type A 1 , B zn_l or Dzn with II ::: 2, 
E8 or Gz; moreover, all are conjugate under the action of the corresponding Lie 
group [Res], [KKU2]. In each of these cases, H. satisfies an additional condition: 
Aut H. i., i·t"rednfible on L. OD's with the latter property are the ones investigated 
in the greatest detail in the above referencesZ); of course, this also fits into recent 
work on the subgroup structure of finite groups of Lie type. The following theorem 
represents the present status of classifying such OD's [KKU2,4], [KT1], [Tl-3]: 

THEOREM. A.,.mm.e that H. i., an aD .mfh that AntH. i., i·t"rednfible on L. Then 
L wn be oj tYI"; Apn_l OT B[(pn-l)/ZJ JOT any lrrim.e p and any II::: L G z , F4 , E6 
OT E8 ; a11IW.,.,ibilitie., have been da.,.,i{ied in efuh oj the.H; WM;.'. L wnnot be the 
Lie algelrm At OT B t JOT t not oj the above JOTm .. 

There is also a partial classification in the case of D t when H. arises in a 
specific combinatorial manner that will be described later [I v2]. There are also 
other algebras for which nonexistence of OD's is known in the irreducible case 
[Tl]. ~ 

A JOTdan .mbgTlnLI! of Aut L is an elementary abelian subgroup J whose nor­
mali>ler N is finite and maximal among the normali>lers of elementary abelian 

1) This is called the ""Vinnie-the-Pooh problem" in [KKU3], based on a pur­
ported quote from "Vinnie, which the translator of [KKU3] (1. Queen, assisted 
by .J. H. Conway) sought unsuccessfully in the Pooh books [KKU3, p. 114, 
footnote]. The reason for the futility of this search is indicated in [Ko, p. 180]. 

2) Determining them is the "weakened "Vinnie-the-Pooh problem" [KKU3],[Tl]. 



subgroups of Aut L, and such that J is a minimal normal subgroup of N. All 
,Jordan subgroups of simple complex Lie algebras were determined in [Ale]. For 
every known 0 D such that Aut H is transitive on H, Aut H lies in such a normal­
izer N, with J acting trivially on H (compare [BDl). More generally, for every 
known 0 D H, the kernel of the action of Aut H on H is "large". 

The case Ai of the theorem is settled using the classification of finite 2-transitive 
permutation groups. These arise as follows. Assume that Aut H is irreducible 
on L. Then the stabilizer (Aut H) II, must be irreducible on H1 . However, the 
normalizer of H1 in the Lie group SL( t + 1, iC) induces the vVeyl group SH1 
on H1. The group induced by (Aut H) II, on H1 occurs within the irreducible 
representation of degree t of SH1. It follows that the action of (Aut H)Il, within 
Si+1 must be 2-transitive. Of course, this greatly limits this group and hence also 
AutH. 

My interest in OD's stems from the geometry and combinatorics involved in 
the construction of the known examples. Therefore, the remainder of this note 
will focus on constructions. 

Constructions within the Lie algebra Apn_1 

Consider the Lie algebra L 81(pn, iC) consisting of all pn X pn matrices of trace 
0, where p is a prime andn ::: 1. Let V r;;n, let c be a primitive complex pth 
root of 1, and define p X P matrices D and P as follows: 

D=diag(l,c, ... , ) and 

P is the permutation matrix corresponding to the p-cycle (1, ... ,pl. 
Both of these have trace O. vVith each'll (a1, b1, ... , an, bn) E V - {O} associate 
the matrix 

These p2n - 1 matrices J" form a basis of L. The commutator of the matrices J" 
and Jfj is cCu,v)I, where, for 'U (al,b1, ... ,an,bn) and v ((1~,b~, ... ,(1~,b~), 
('II, v) E,(a,b: - a:b,) defines a nonsingular alternating bilinear form on V. 
(vVe will soon see that there is an extraspeciaJ group lurking here.) Moreover, 
Tr (J" J u ) 0 if 'II + v i' 0: in this case J" and J u are perpendicular. 

All kno'Wn 0 D'., of Lie fLlgel)"tfLo< of tYI)(; At hfLve t pn - 1 fOT .'O"fne p fLnd 
n fLo< fLbove, fLnd, nl) to eqnivfLlenee nndwt the fLction of G L(pn, iC), fLTi.H; fLo< L 
H1 .L ... .L H pn+ 1 'With meh H, "IHLnned by ",,)"fIH; of the J,,'.,. In this case, let 
Vi {O,'II I J" E H,}. Then 

lVil-1 dimH, pn_1, 

V, is a subspace of V, and 

(Vi, V,) O. 

Therefore, the V, 's form a "I)Tmd E in V: a collection of pn + 1 II-spaces of the 
2'11-Spaee ~7 such that each nonzero vector is in a unique rnernber of E. 1iloreover, 
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this is a .,y'rnIllectic "I),f'wd: there is a symplectic structure on V such that each 
member of E is totally isotropic [I vl]. 

Conversely, each symplectic spread of V produces an 0 D by the previous 
recipe. Symplectic spreads were studied for use in finite geometry and coding 
theory (d. [Kal,2]) several years before this connection arose with Lie algebras 
[Ivl]. 

Examples of symplectic spreads 

Clearly, there is no need to restrict the base field 1( to IFp: this could be any 
field whatsoever, but we are only interested in the case in which 1( is a finite field 
IFq. Then each spread consists of qn + 1 II-spaces in a 2n-space over IFq. The 
importance of spreads is that they produce affine planes: Let A(E) denote the 
point-line geometry whose points are vectors and whose lines are the cosets W- + v 
with }Il E E, v E V. Then A(E) is an {~fJi:ne Illnne of o'{'{leT qn: any two points 
are on a unique line; given a line L and a point v not on it, there is a unique line 
through v disjoint from Lj and each line has exactly qn points. There is an obvious 
notion of parallelism, and by adjoining a new "line at infinity" that "contains" all 
parallel classes one obtains a projective plane (of order qn). For each c E V the 
t'{'{w .. ,lntion v f-t v + c is an automorphism fixing every parallel class. These affine 
planes (and their associated projective planes) are called tTn'fl .. ,lntion Illnne.,. The 
nontrivial translations are just the automorphisms of A(E) that fix every parallel 
class but fix no point. The group of translations will be identified with V. 

EXAMPLE 1. If V is a 2-dimensional vector space over 1(, its set E of I -spaces 
is a spread, producing the desarguesian plane A(E) of order q. 

These I-spaces are totally isotropic with respect to any nonsingular aHernating 
bilinear form ( , ) on the 1( -space V. If 1(' is any subfield of 1(, and if Tr : 1( -t 1(' 
is the trace map, then E becomes a spread of the 1('-space V consisting of totally 
isotropic subspaces with respect to the alternating 1('-bilinear form Tr ( , ). The 
resulting affine plane is identical to the one obtained using 1(. Nevertheless, this 
yields an example of a symplectic spread for every prime power pn. 

This suggests that it matters what fields are used. The kWf'nel of any spread E, 
or of the plane A(E), is the set of endomorphisms of the group V of translations 
that send each member of E into itself. This is a ring under the obvious operations, 
and is in fact a field. Thus, it is fairly standard to view a translation plane as 
a vector space over its kernel, rather than over a subfield of its kernel. Any 
isomorphism between two translation planes must send the translation group of 
the first plane to the translation group of the second, and (after the kernels are 
identified) is a semi linear transforr;mtion over the kernel. Thi~ also yields a natural 
notion of equivalence of spreads - under the action of the group fL(V). 

EXAMPLE 2. Let F be a field of odd order, let" E F be a nonsquare, let 1 # 
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cr E AutF with fixed field I(, and let p E AutF. View F2 as a I(-space. Then 
the subspaces 

{(O,y) Iy E F} and 
{(:r,m:r - 8mP:r0") Iy E F} for In E F 

form a spread. A(E) is called a "twisted field plane"; it was discovered by Albert 
[AI], who showed it is nondesarguesian. 

In odd characteristic, there is (up to equivalence) only one known infinite family 
of symplectic spreads of dimension > 2 over their kernels: when 8 -1 (so 
IFI := 3 (mod 4)) and p cr, the above example is symplectic with respect to the 
alternating form ((:r1, Y1), (:r2, Y2)) Tr (:r\Y2 - :r~Y1)' where Tr: F -t I( is the 
trace map. 

EXAMPLE 3. Let I( be a field of odd order, let 8 E I( be a nonsquare, and let 
cr E Aut I(. Define a binary operation * on I(2 by 

(a,b) * (u,v) (av + bu, a8u O" + bv). 
(This produces IFq2 if and only if cr 1.) View I(2 X I(2 as a left vector space over 
I(. Then the subspaces 

{(O,Y) IY E I(2} and 

{(:r,:r * In) I :r E I(2}, for In E I(2, 

form a spread that is symplectic with respect to the alternating form 

EXAMPLE 4. Hering [He] defined a subgroup G "'" SL(2,13) of SL(6, 3), and a 
subspace W-, and showed that E {v~rg I !l E G} is a spread. The group V X G 
is 2-transitive on the points of A(E). In fact, G < Sp(6,3), and W- is totally 
isotropic, so that E is symplectic. 

The 0 D'., JOT ILl.gelrtfL.< oj tYlle Ai in the Thwn;m. ILTi.<r; from. "IITend., ILIII";ILTin.g 
in EXILm.llle., 1 ILnd 4. In fact, these spreads are just those for which the automor­
phism group of the corresponding plane A(E) is 2-transitive on the points of the 
plane. 

EXAMPLE o. Two families of symplectic spreads in w,:, with q ::: 27 a power 
3, are given in [Ka2] and [PT]. The first of these arises from the Ree groups 
2G2 (32e+1 ). 

Of course, for the above examples subfields of I( can be used to produce more 
symplectic spreads. vVith this proviso, e"/Je"ry known .,ym.lliectic "IITend in odd chILT­
ILcieTi.,tic ILIII";ILT., in EXILm.llle., 1-5. 

EXAMPLE 6. The Suzuki group Sz(q), q 22e+1 > 2, ads on an ovoid in w,:. 
Applying the graph automorphism of S p( 4, q) produces a symplectic spread in w,: 



(d. [Lu]). In fact, when q is even, the only known symplectic spreads in w;: are 
the desarguesian one and this one. 

EXA M PLE 7. Large numbers of symplectic spreads are constructed in [Kal] when 
q is even and II is odd. Here is one especially interesting family. 

Let K IFq and F IFq2n with q even and II odd. Let Tr: IFqn -t K be the 
trace map, and let vI/ be its kernel. Finally, let I" E IFq2 -lFq C;; F and let 8 E F have 
order qn + 1. Then ~ {8' (vI/ + I"K) lOs i < qn + I} i., fL "I)Tend. Moreover, it is 
symplectic with respect to the alternating form ('II, v) Tr ('II?! + vu); for, z f-t 8Z 

preserves this form, (lFqn ,lFqn ) 0, and (1", w) Tr (I"W + rw) (I" + rlTr (w) 0 
for w E vl/. 

The proof that ~ is a spread is not difficult (d. [Kal]). The automorphism 
group of A(~) has a subgroup {z f-t 8'Z + c lOs i < qn + 1 and c E F} 
that is transitive on lines, in fact, regular on the set of incident point-line pairs 
(.,hfLTI)ly fifLg-tTfw .. ,iti"IJe). The planes are nondesarguesian, and are the only known 
nondesarguesian affine planes of even order having a sharply flag-transitive auto­
rIlorphisrIl group. 

Open problems 

1. Find more examples of symplectic spreads. 

2. It appears to be very difficult to deterrnine whether a rnore or less "ralldoln~: 
spread is symplectic when dim V > 4. 

3. vVhat effect does "symplecticness" have on the internal geometric properties of 
the affine plane A( ~) '! 

Constructions within the Lie algebra C2n-l 

View iC2n 
as iC2 iC2 (all tensor products will have II - 1 factors). Let D, 

P and J" (with'll E ~n-2 - {O}) be as in the case of A.2n_l (with p 2), and 

equip iC2n 
with the nonsingular aiternating bilinear form whose matrix is S 

I I (DP). We may assume that L {Ai E gl(2n,iC) I S-1!11'S -M}. 
Note that Q (D, P) (D, P) (iD, DP) is an extra special group 

f · . . f S f 1 ?2n-l (. .. \. . f S (?n .1" I . I o lSOInetnes 0 0 on er.... ,l.e., It IS a S11 )group 0 p, .... ,IL) t lat IS t le 
central product of 11-2 dihedral groups and a quaternion group, all of order 8). Its 
center Z(Q) is (-I) and will be identified with 1F2, while Q/Z(Q) will be identified 
with lF~n-2. There is a nonsingular quadratic form fJ' Q/Z(Q) -t 1F2 such that 
f'(.rZ(Q)) .r2 E Z(Q); its associated skew-sYIIlInetric bilinear form, defined 
by (.rZ(Q),1IZ(Q)) [.r,1I], is the same one used earlier for A.2n_l. Moreover, 
S-lJ!S (-l);o(")J", and {J" I f'('II) I} is a basis of L. 

If H. {Hj}] is an OD of the Lie algebra A.2 n_l obtained using matrices J" 
as above, then {Hj n L}] is an OD of the present algebra L. The totally isotropic 
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(n-l )-spaces of ~n-2 associated with H. are still totally isotropic, but they are not 
totally singular with respect to 'P. Nevertheless, we see that ILny .,ym'l)lectic "I)Tend 
of ~n-Z .give., TiM; to ILn OD of L [Bo] (d. [KKUl, p. 294]). Moreover, this 
discussion helps to clarify the remark made earlier that there was an extraspecial 
group lurking behind the Apn_1 construction. 

Constructions within the Lie algebra Dt 

This Lie algebra L can be identified with the space of all skew-symmetric 2t X 2t 
matrices over iC. If E,j denotes the 2t X 2t matrix with ij-entry 1 and all others 
0, and if E(i,j) E,j - Ejl> then {E(i,j) lIS i < j S 2t} is a basis of L. 
There is a natural way to obtain an OD given in [KKU6]. A IHLTILllel clIL.,., of 
the set X {I, ... , 2t} is a partition K of X into t pairs; a IHLTILlleli.,m. of X is a 
partition II of the set of 2-element subsets of X into 2t - 1 parallel classes [Cal. 
Then H. = {H", IK E II} is an OD of L, where H", is the subspace spanned by 
{E(i,j) I {i,j} E K}. SO there are quite a lot of OD's of these Lie algebras. 

EXAMPLE 1. Let 2t 2n , identify {1, ... ,2t} with 1F2, and let II be the set of 
parallel classes of lines of the affine space AG(n,2). Explicitly, for a E IF2 - {O} 
let Ha be the subspace spanned by {E(u,v) I v 'II + a}. This produces a 
multiplicative OD since [Ha, Hb] HaH for all distinct nonzero a, bE 1F2. 

EXAMPLE 2. Let G be any group of order 2t - 1. Identify X with {O} U G. Let 
II {Ka I a E G}, where Ka {O,a} U { {:ca, a} 11 i' :c E G}. This defines 
a parallelism, and G ads on both X and II in an obvious manner (and is even 
transitive on II). The resulting OD's are studied at length in [KKU6]. 

These examples represent a negligible proportion of the parallelisms of a 2t­
set. See rCa, pp. 64-67] for asymi)t~)tic estimates of the number of inequivalent 
parallelisms. 

There is an obvious diagonal group underlying H. for any II: the subgroup of 
GL(2t, iC) consisting of all diagonal matrices with ±1 on the diagonal induces a 

2! 
group Z~ -1 of diagonal transformations of L with resped to the basis consisting 
of the E(i,j)'s (once again -1 E GL(2t,iC) induces the identity OIl L). The 
stabilizer Aut II of II in Su also acts on H.. If t ::: 4 and H. is an 0 D arising from 
a parallelism II, then Aut H. i., i'rtedncible on L if ILnd only if one of the follo"Win.g 
hold., [Iv2]: 

2t 2n , II is as in Example 1; 

2t 12, Aut II "" PSL(2,1l); or 
2t 28, Aut II "" 2Gz(3). 

This is proved using the classification of finite 2-transitive groups. 
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Further constructions 

There is a similar construction for the algebra L of type Bi. Namely, this time L 
can be viewed as the set of aU skew-symmetric (2t - 1) X (2t - 1) matrices over iC, 
so just restrict the preceding types of OD's for Di to the matrices whose last row 
and column consist entirely of O's. Moreover, in [T2] it is shown that any aD H. 
of an algebra of type Bi must have this form if Aut H. is irreducible on L. 

There is also an entirely different construction of OD's for Lie algebras of type 
Dzn-l, one very similar to that used for type Czn-l [Bo] (d. [KKUl, p. 294]). 

The following general construction technique for an ODin any L is given in 
[KKU2]: Let <P be the root system, <p+ the set of positive roots with respect 
to some ordering, and L Ho EB EB iC:r" a Cartan decomposition relative to the 

aEifl 

Cartan subalgebra Ho. Assume Hmt H. {Ho, ... , Hh} is an aD and that, for 
o < i <; h, the Cartan subalgebra H, is spanned by elements of the form :r"+c,,:r_,, 
with a E <p+ and c" E iC*. Let <P, be the set of positive roots a associated in this 
manner with H,. Then <p+ is partitioned by the sets <P" and a, /'J E <P, =? a + (J, 
a - (J rf. <Pi W"fI:I}(;T.,e/y, eVe"ty IHLTiiiion of <p+ inio h .<r;i., <P, hfLvin.g ihi., l)"rol!eTiy 
lrrodnce., fLn aD. 

In [KKU2] it is show that the only simple Lie algebras L admitting OD's 
arising in this manner are those of type ill, BU-l or Du with t ::: 2, E 7 , Es and 
Gz. This result is used, in turn, to determine all multiplicative OD's. 

EXAMPLE. If <P has type Gz and al, az is a base, use the partition {al' 3al +2az}, 
{al + az, 3al + az}' {2al + az, az}. The resulting aD, with Aut H. "'" 23 SL(3, 2) 
(nonsplit), is studied in detail in [KKU5]. 

As remarked earlier, part of the original motivation for the study of OD's was 
the search for interesting lattices: ones invariant under aU or most of Aut H.. See 
Kostrikin's survey [Kof for indications of this, together with pointers towards 
further literature. 
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