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Abstract. Spreads of orthogonal vector spaces are used to construct many translation planes of
even order qm, for odd m > 1, having a collineation with a (qm − 1)-cycle on the line at infinity
and on each of two affine lines.
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1 Introduction

In [13, 14] we used the relationship between symplectic and orthogonal geometries in
characteristic 2 in order to construct new affine planes: flag-transitive planes in [13], and
semifield planes in [14]. In this paper we continue those papers by proving the following
theorem (where ρ(m) denotes the number of prime factors of m, counting multiplicities,
and logarithms are always to the base 2):

Theorem 1.1. Let q ≥ 4 be a power of 2, and letm > 1 be an odd integer. Then there are
more than q3ρ(m)−2

pairwise nonisomorphic translation planes of order qm, with kernel
of order q, for which there is a collineation of order qm − 1 having a (qm − 1)-cycle on
the line at infinity and on each of two affine lines.

For better estimates on the number of planes in the theorem, see Theorem 9.2 and
Corollary 9.3. These planes are constructed using explicitly defined prequasifields (cf.
(4.2)). They are nearly flag-transitive affine planes: their collineation groups have 2 or
3 flag-orbits. (In [6, p. 794] these are called “triangle-transitive planes”, which suggests
even more transitivity than we obtain.)

∗This research was supported in part by NSF grants DMS 9301308 and DMS 0753640.
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The proof combines methods in [8] and [18]: these planes arise using symplectic and
orthogonal spreads together with changing from fields to proper subfields, keeping track
of these field changes using kernels of the associated planes. We settle the isomorphism
problem for these planes using an elementary Sylow argument (Proposition 5.2 and The-
orem 8.5). A similar argument is used in [13, Proposition 5.1] (and in [9, III.C]) for
flag-transitive planes; but no such argument is possible for the semifield planes in [14].
We also relate the present planes to those in [13]:

Theorem 1.2. There is a natural bijection between the set of isomorphism classes of flag-
transitive planes in [13] and a subset of the isomorphism classes of nearly flag-transitive
planes in Theorem 1.1; each plane in [13] is a Baer subplane of the corresponding plane
in Theorem 1.1.

Our prequasifields all have the form (F,+, ∗) with F a finite field and x∗y = yL(xy)
for an additive mapL : F → F such that x→ xL(x) is a permutation of F . Some of these
maps L are essentially in [8, II p. 312], and also appear in [1]. In view of Theorem 1.1,
one of our goals is to produce large numbers of such maps L.

The planes studied in [7, 8, 10–14] and here are symplectic translation planes. Re-
markable results of Maschietti [16] use line ovals to distinguish such planes among all
translation planes of characteristic 2.

2 Up and down: from symplectic to orthogonal spreads and back

Throughout this paper, all fields are finite of characteristic 2. We briefly review some of
the background required from [3] and [8, 14]. The best background source is probably
[11], with the coding-theoretic aspects discarded.

Spreads. Consider a 2m-dimensional vector space W over K = GF(q). A spread in
W is a family S of qm + 1 subspaces of dimension m that partition the nonzero vectors.
The corresponding affine translation plane A = A(S) has as points the vectors of V
and as lines all cosets of members of S [3, pp. 131–133]. The collineations fixing 0 and
stabilizing every member of S generate a field K(A), called the kernel of the plane. This
is the largest field over which the members of S can be viewed as subspaces.

The full collineation group of A is

Aut A = Wo(Aut A)0 = Wo ΓL(W )S ,

where ΓL(W )S = (Aut A)0 denotes the setwise stabilizer of S, and is a group of semi-
linear transformations over K(A). More generally, any isomorphism between translation
planes sends the kernel of one to the kernel of the other.

One standard way translation planes are constructed is through the use of coordinatiz-
ing quasifields or prequasifields [3, p. 129]. We will see these starting in Section 3.

Symplectic spreads. If there is also a nondegenerate alternating bilinear form ( , ) on W
such that each X ∈ S is totally isotropic (i.e., (X,X) = 0), then S is called a symplectic
spread and A(S) is a symplectic translation plane.
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Orthogonal spreads. Consider a 2m+2-dimensional vector space V overK = GF(q),
equipped with a nondegenerate quadratic form Q of maximal Witt index. This means that
there are m + 1-spaces X that are totally singular (i.e., Q(X) = 0). Moreover, V has
(qm+1 − 1)(qm + 1) nonzero singular vectors.

An orthogonal spread of V is a family Σ of qm + 1 totally singular m + 1-spaces
that partition the set of nonzero singular vectors. Note that an orthogonal spread is not a
spread in the sense of the earlier definition. We recall that there are two types of totally
singular m + 1-spaces such that totally singular m + 1-spaces X and Y have the same
type if and only if dimX ∩ Y ≡ m + 1 (mod 2) [17, pp. 170–172]. Thus, if V has an
orthogonal spread then m must be odd.

Down: from orthogonal spreads to symplectic spreads. There is also a symplectic
structure on the orthogonal vector space V , determined by the nondegenerate alternating
bilinear form (u, v) := Q(u+ v)−Q(u)−Q(v). If z is any nonsingular point of V , then
z⊥/z inherits the nondegenerate alternating bilinear form (u + z, v + z) := (u, v) for
u, v ∈ z⊥. If X ∈ Σ then 〈X ∩ z⊥, z〉/z is an m-dimensional totally isotropic subspace.
Moreover,

Σ/z := {〈X ∩ z⊥, z〉/z | X ∈ Σ} (2.1)

is a symplectic spread of z⊥/z.

Up: from symplectic spreads to orthogonal spreads. This process can be reversed:
any symplectic spread S of z⊥/z can be lifted to an essentially unique orthogonal spread
ΣS of V such that ΣS/z = S (see [4,5] and [8, I]). We will exhibit such a lifting explicitly
in (3.7).

The simplest example of this lifting process was studied at length in [8, I]. It arises
from the orthogonal spread Σ that determines the desarguesian plane A(S), and hence is
called the (orthogonal) desarguesian spread.

Down: from symplectic spreads to symplectic spreads. Given a vector space V over
a field F , with associated nondegenerate alternating bilinear form ( , ), if K is a subfield
of F and T : F → K is the trace map, then T ( , ) defines a nondegenerate alternating
K-bilinear form on the K-space V . If S is a symplectic spread of the F -space V then S
is also a symplectic spread of the K-space V .

Scions. Let S be a symplectic spread. Suppose that S ′ is another symplectic spread aris-
ing via a (repeated) up and down process of passing between symplectic and orthogonal
geometries, or passing to subfields, as above. Then we call S ′ a scion of S [18]. If S ′ is a
scion of S then A(S ′) will be called a scion of A(S).

Instances of this notion are crucial for Theorem 1.1.

Groups. For a symplectic vector space W , let ΓSp(W ) (or ΓSp(WK) if we need to
specify the underlying field K) denote the subgroup of ΓL(W ) consisting of those g ∈
ΓL(W ) that preserve the symplectic structure, so that (ug, vg) = k(u, v)α for some
k ∈ K∗, some α ∈ Aut(K) and all u, v ∈ W . Similarly, for an orthogonal vector
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space V , let ΓO+(V ) (or ΓO+(VK)) denote the group of all g ∈ ΓL(V ) that preserve the
orthogonal structure determined by the quadratic form Q, so that Q(vg) = kQ(v)α for
some k ∈ K∗, some α ∈ Aut(K) and all v ∈ V .

Equivalences. The automorphism group of an orthogonal spread Σ is the set-stabilizer
ΓO+(V )Σ of Σ in ΓO+(V ). Two orthogonal spreads are equivalent if some element
of ΓO+(V ) sends one to the other. According to [8, Theorem 3.5 and Corollary 3.6]
(cf. [12]), equivalences among orthogonal spreads are closely related to isomorphisms
among the affine planes they spawn:

Theorem 2.2. Let Si be a symplectic spread in the symplectic K-space Wi, i = 1, 2,
such that A(S1) and A(S2) are isomorphic.

(i) There is a K-semilinear map g : W1 → W2 sending S1 to S2 and preserving the
symplectic structure.

(ii) Suppose that there are orthogonal spreads Σi in an orthogonal vector space V , and
nonsingular points zi of V , such that Si = Σi/zi for i = 1, 2. Then some element
of ΓO+(V ) sends Σ1 to Σ2 and z1 to z2.

Moreover, Aut A(S1) = Wo
(
K(A(S1))∗ ΓSp(W )S1

)
in (i) [8, Theorem 3.5 and

Corollary 3.6].

Methodological remarks. The common thread in [2, 7, 8, 10, 13, 14] and the present
paper is the use of scions of desarguesian planes. In those references and here, the specific
up and down process employed is designed to preserve subgroups of SL(2, qm) that fix
nonsingular points in the 2m + 2-dimensional orthogonal space obtained by lifting the
desarguesian spread. A start in this direction can be seen in [8], using subgroups of
order qm + 1, qm or qm − 1 in order to obtain flag-transitive, semifield and nearly flag-
transitive planes, respectively. These groups also appear in [13], in [14] and here, but
using arbitrarily long chains of subfields and hence of up and down moves. Moreover, up
to conjugacy (the normalizers of) these groups are precisely the stabilizers in SL(2, qm)
of nonsingular points in the space underlying the (orthogonal) desarguesian spread; no
further planes can be obtained in this up and down manner that are preserved by other
subgroups of SL(2, qm).

Slight variations on these constructions are used in [7, 14] to obtain affine planes
whose full collineation groups are unusually small.

At the moment, every known symplectic plane in characteristic 2 having odd dimen-
sion over its kernel is a scion of a desarguesian plane. There must be many others, but we
have no idea where to look for them.

3 Prequasifields

Consider finite fields F ⊇ K of characteristic 2, with corresponding trace map T : F →
K, where [F : K] is odd.
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Hypothesis 3.1. P∗ = (F, ∗,+) satisfies the following for all x, y, z ∈ F , all k ∈ K,
and some l ∈ F ∗.

(i) (x+ y) ∗ z = x ∗ z + y ∗ z,
(ii) xy = 0⇒ x ∗ y = 0,

(iii) x ∗ y = x ∗ z ⇒ x(y + z) = 0,
(iv) k(x ∗ y) = (kx) ∗ y,
(v) T (x(x ∗ y)) = T (lxy)2, and

(vi) z(x ∗ y) = (z−1x) ∗ (zy) if z 6= 0.

Here (i)–(iii) are precisely the definition of a prequasifield. (This is not a quasifield
since it does not necessarily have an identity element.) The associated spread

S∗ := {S∗[s] | s ∈ F ∪∞}

of the K-vector space F 2 consists of the following K-subspaces (cf. (iv)):

S∗[s] := {(x, x ∗ s) | x ∈ F}, s ∈ F, and S∗[∞] := {(0, y) | y ∈ F}. (3.2)

The kernel K(A(S)) contains K since S consists of K-subspaces.
Conditions (v) and (vi) are of special interest. Namely, (v) implies that S∗ is a sym-

plectic spread with respect to the alternating K-bilinear form(
(x, y), (v, w)

)
:= T (xw + yv), (3.3)

while (vi) produces collineations of the affine plane A(S∗), and automorphisms of the
orthogonal spread Σ∗, discussed in the next proposition.

Remark 3.4. A slight modification of the multiplication ∗ would allow us to assume that
l = 1 (namely, use x ∗′ y := x ∗ (ly)). Instead we will choose l so that the formula for the
binary operation ∗ is as nice as possible.

Equip the K-vector space V := F ⊕K ⊕ F ⊕K with the nondegenerate quadratic
formQ(x, a, y, b) := T (xy)+ab. We can identify the symplecticK-spaces 〈0, 1, 0, 1〉⊥/
〈0, 1, 0, 1〉 and F 2. Define φζ : F 2 → F 2 and ϕζ : V → V , ζ ∈ F ∗, by

(x, y)φζ = (ζ−1x, ζy) and (x, a, y, b)ϕζ = (ζ−1x, a, ζy, b), respectively. (3.5)

Proposition 3.6. Suppose that P∗(F, ∗,+) satisfies Hypothesis 3.1.
(i) The symplectic spread S∗ is invariant under the cyclic group G := {φζ | ζ ∈ F ∗}

of symplectic isometries of F 2. Moreover, G induces a group of collineations of
the affine plane A(S∗) that regularly permutes qm − 1 points at infinity, fixes the
remaining two points, and regularly permutes qm− 1 points of each of the two lines
joining either of these two points to 0.

(ii) S∗ lifts to an orthogonal spread Σ∗ = {Σ∗[s] | s ∈ F ∪ {∞}} of V , where

Σ∗[∞] = 0⊕ 0⊕ F ⊕K
Σ∗[s] =

{(
x, a, x ∗ s+ ls(a+ T (lxs)), T (lxs)

)
| x ∈ F, a ∈ K

}
, s ∈ F.

(3.7)
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Here Σ∗/〈0, 1, 0, 1〉 is S∗. The group Ĝ := {ϕζ | ζ ∈ F ∗} consists of isometries
of V , and acts on Σ∗ by stabilizing Σ∗[0] and Σ∗[∞] and regularly permuting the
remaining members of Σ∗.

(iii) CV (Ĝ) = {(0, a, 0, b) | a, b ∈ K}, and the nonsingular points fixed by Ĝ are
〈0, λ, 0, 1〉, λ ∈ K∗.

(iv) For each λ ∈ K∗, the symplectic spread Σ∗/〈0, λ2, 0, 1〉 is coordinatized by a pre-
quasifield P◦ = (F, ◦,+), defined by

x ◦ y := x ∗ y + lyT (lxy) + lλyT (lλxy) = x ∗ y + ly(1 + λ2)T (lxy),

that satisfies Hypothesis 3.1 with lλ in place of l.

Proof. These are straightforward calculations, most of which are given in [14, Theo-
rem 2.18]. Hypothesis 3.1(v) is proved as follows:

z(x ◦ y) = z(x ∗ y) + (1 + λ2)lzyT (lxy)

= (z−1x) ∗ (zy) + (1 + λ2)l(zy)T
(
l(z−1x)(zy)

)
= (z−1x) ◦ (zy).

For (iv), note that(
x, λ2T (lxs), x ∗ s+ ls(λ2T (lxs) + T (lxs)), T (lxs)

)
=
(
x, 0, x ∗ s+ ls(1 + λ2)T (lxs)), 0)

)
+ T (lxs)(0, λ2, 0, 1

)
. 2

We will need some elementary properties of trace functions.

Lemma 3.8. Suppose that F ⊇ F ′ ⊇ K are fields with [F : K] odd and corresponding
trace maps T : F → K and T ′ : F → F ′. If x ∈ F and u ∈ F ′, then

(i) TT ′(x) = T (x),
(ii) T (ux) = T (uT ′(x)),

(iii) T
(
uxT ′(x)

)
= T (ux2), and

(iv) T ′(u) = u and T (1) = 1.

Proof. See [14, Lemma 2.14] for assertions (i), (ii), (iv). For (iii), use (i): T
(
uxT ′(x)

)
=

TT ′
(
uxT ′(x)

)
= T

(
uT ′
(
xT ′(x)

))
= T

(
uT ′(x)T ′(x)

)
= TT ′(ux2) = T (ux2). 2

4 Nearly flag-transitive planes

Nearly flag-transitive planes were defined in Section 1. We now give examples that are
scions of desarguesian planes (cf. Section 2).

Let F = F0 ⊃ · · · ⊃ Fn be a chain of fields, with [F : Fn] odd and corresponding
trace maps Ti : F → Fi. If 1 ≤ i ≤ n let Vi be the Fi-vector space F ⊕ Fi ⊕ F ⊕ Fi,
equipped with the quadratic form Qi(x, a, y, b) := Ti(xy) + ab.
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Proposition 4.1. For 1 ≤ i ≤ n let λi ∈ F ∗i ; set λ0 = 1 and ci :=
∏i
j=0 λj whenever

0 ≤ i ≤ n. If

x ∗ y := xy2 +
n∑
i=1

[
ci−1yTi(ci−1xy) + ciyTi(cixy)

]
, (4.2)

then P∗(F, ∗,+) satisfies Hypothesis 3.1 with l = cn. Furthermore, A(S∗) is a symplec-
tic nearly flag-transitive scion of a desarguesian plane.

Thus, ci is any element of F ∗1 such that ci/ci−1 = λi ∈ Fi when i ≥ 1; but (4.2)
makes it clear that we will want to require that ci−1 6= ci. We begin with some observa-
tions concerning the sum in (4.2):

Lemma 4.3. (i) x∗y = y
(
xy+f1(xy)

)
, where f1(u) :=

∑n
i=1(1+λ2

i )ci−1Ti(ci−1u)
is in F1.

(ii) Tj
(
x2 +

∑j
i=1

[
ci−1xTi(ci−1x) + cixTi(cix)

])
= Tj(cjx)2 whenever x ∈ F and

1 ≤ j ≤ n.

(iii) If j < i ≤ n and x, y ∈ F , then Tj(ci−1x)Ti(ci−1y) + Tj(cix)Ti(ciy) =
[ci−1/cj ](1 + λ2

i )Tj(cjx)Ti(ci−1y).

Proof. (i) x ∗ y = xy2 + y
∑n
i=1

(
ci−1Ti(ci−1xy) + λici−1Ti(λici−1xy)

)
, λi ∈ F ∗i .

(ii) Use x2 = c0xT0(c0x) and Lemma 3.8(iii):

Tj

(
x2 +

j∑
i=1

[
ci−1xTi(ci−1x) + cixTi(cix)

])

=
j−1∑
i=0

[
Tj(cixTi+1(cix)) + Tj(cixTi(cix))

]
+ Tj

(
cjxTj(cjx)

)
=

j−1∑
i=0

[
Tj
(
(cix)2)+ Tj

(
(cix)2)]+ Tj

(
(cjx)2) = Tj(cjx)2.

(iii) Since ci = λici−1 and ci−1/cj =
∏i−1
l=j+1 λl ∈ Fj+1 ⊂ Fj ,

Tj(ci−1x)Ti(ci−1y) + Tj(cix)Ti(ciy) = (1 + λ2
i )Tj(ci−1x)Ti(ci−1y)

= [ci−1/cj ](1 + λ2
i )Tj(cjx)Ti(ci−1y). 2

We now give two proofs that P∗ satisfies Hypothesis 3.1.

First proof of Proposition 4.1 (geometric). We apply the up and down process along the
chain (Fi)n0 of fields, beginning with the desarguesian spread. Define P∗j = (F, ∗j ,+)
by

x ∗j y = xy2 +
j∑
i=1

[
ci−1yTi(ci−1xy) + ciyTi(cixy)

]
.



168 William M. Kantor and Michael E. Williams

Clearly, x∗0 y = xy2 coordinatizes the desarguesian plane. Since x(x∗0 y) = (xy)2, P∗0

satisfies Hypothesis 3.1, with F = K, T = 1 and l = c0 = 1.
Suppose that 0 ≤ j − 1 ≤ n − 1 and P∗j−1 = (F, ∗j−1,+) satisfies Hypothesis 3.1

with K = Fj−1, T = Tj−1 and l = cj−1. Then P∗j−1 also satisfies Hypothesis 3.1 with
K = Fj , T = Tj and l = cj−1, since TjTj−1 = Tj by Lemma 3.8(i). In the preceding
section we saw that this implies that P∗j−1 defines a symplectic spread S∗j−1 in F 2, and
hence also an orthogonal spread Σ∗j−1 in the orthogonal space Vj−1 = F ⊕ Fj ⊕ F ⊕ Fj
admitting the group Ĝ in Proposition 3.6(ii). By Proposition 3.6(iv), Σ∗j/〈0, λ2

j , 0, 1〉 is
(equivalent to) the symplectic spread of the Fj-vector space F 2 coordinatized by P∗j ,
and P∗j satisfies Hypothesis 3.1 with K = Fj , T = Tj and l = λjcj−1 = cj .

Hence, the desired result holds by induction. 2

Second proof of Proposition 4.1 (algebraic). For completeness, as in [14, p. 908] we give
a direct proof that P∗ satisfies Hypothesis 3.1. Parts (i), (ii), (iv) and (vi) are straightfor-
ward calculations, and (v) holds by Lemma 4.3(ii) with l = cj , so we focus on part (iii):
we assume that x ∗ y1 = x ∗ y2, and deduce that x(y1 + y2) = 0. Let z = xy1 and
w = xy2. By (4.2), x(x ∗ y1) = x(x ∗ y2) becomes

z2 +
n∑
i=1

[
ci−1zTi(ci−1z) + cizTi(ciz)

]
= w2 +

n∑
i=1

[
ci−1wTi(ci−1w) + ciwTi(ciw)

]
. (4.4)

We use backwards induction to show that

Tj(cjz) = Tj(cjw) whenever 0 ≤ j ≤ n. (4.5)

Applying Tn to (4.4), by Lemma 4.3(ii) we obtain Tn(cnz)2 = Tn(cnw)2, so that (4.5)
holds when j = n.

Now suppose that, for some j such that 0 ≤ j < n, whenever j < l ≤ n we
have Tl(clz) = Tl(clw) (and then also Tl(cl−1z) = Tl(cl−1w) since cl = λlcl−1 with
λl ∈ F ∗l ). We must show that Tj(cjz) = Tj(cjw). By our induction hypothesis, (4.4)
states that

{
z2 +

j∑
i=1

[
ci−1zTi(ci−1z) + cizTi(ciz)

]}
+

n∑
i=j+1

[
ci−1zTi(ci−1z) + cizTi(ciz)

]
=
{
w2+

j∑
i=1

[
ci−1wTi(ci−1w)+ciwTi

(
ciw)

]}
+

n∑
i=j+1

[
ci−1wTi(ci−1w)+ciwTi(ciw)

]
.
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Apply Tj , using Lemma 4.3(ii) and the fact that Ti(ci−1z), Ti(ciz) ∈ Fj for i ≥ j + 1:

Tj(cjz)2 +
n∑

i=j+1

[
Tj(ci−1z)Ti(ci−1z) + Tj(ciz)Ti(ciz)

]
= Tj

(
cjw)2 +

n∑
i=j+1

[
Tj(ci−1w)Ti(ci−1w) + Tj(ciw)Ti(ciw)

]
.

By Lemma 4.3(iii),

Tj(cjz)2 +
n∑

i=j+1

[ci−1/cj ](1 + λ2
i )Tj(cjz)Ti(ci−1z)

= Tj(cjw)2 +
n∑

i=j+1

[ci−1/cj ](1 + λ2
i )Tj(cjw)Ti(ci−1w).

By induction, Ti(λici−1z) = Ti(λici−1w) if i ≥ j + 1, so that

[
Tj(cjz) + Tj(cjw)

]2 =
[
Tj(cjz) + Tj(cjw)

] n∑
i=j+1

[ci−1/cj ](1 + λ2
i )Ti(ci−1z).

If Tj(cjz) 6= Tj(cjw), then

Tj(cjz) + Tj(cjw) =
n∑

i=j+1

[ci−1/cj ](1 + λ2
i )Ti(ci−1z) ∈ Fj+1

since ci−1/cj , λi ∈ Fj+1 for i ≥ j + 1. Since Tj+1(λj+1cjz) = Tj+1(λj+1cjw) by our
inductive hypothesis, from Lemma 3.8(i),(iv) we obtain

Tj(cjz) + Tj(cjw) = Tj+1
(
Tj(cjz) + Tj(cjw)

)
= Tj+1(cjz) + Tj+1(cjw) = 0,

which contradicts the fact that Tj(cjz) 6= Tj(cjw).
By induction, this proves (4.5). In particular, xy1 = z = T0(c0z) = T0(c0w) = w =

xy2, as required. 2

Definition 4.6. Let (Fi)n0 be a chain of distinct fields with [F0 : Fn] odd, and let (λi)n0 be
a sequence of elements with λ0 = 1 and λi ∈ F ∗i , 1 ≤ i ≤ n. Then we call

(
(Fi)n0 , (λi)

n
0

)
a defining pair for various objects obtained along the chain (Fi)n0 :
• the prequasifield P∗

(
(Fi)n0 , (λi)

n
0

)
in (4.2),

• the symplectic spread S∗
(
(Fi)n0 , (λi)

n
0

)
in (3.2), and

• the orthogonal spread Σ∗
(
(Fi)n0 , (λi)

n
0

)
in (3.7).

It is a reduced defining pair if λi 6= 1 for all i ≥ 1.

Each defining pair
(
(Fi)n0 , (λi)

n
0

)
determines a reduced defining pair

(
(F ′i )

n′

0 , (λ
′
i)
n′

0

)
obtained by deleting all entries Fj and λj with j ≥ 1 and λj = 1. Then

(
(Fi)n0 , (λi)

n
0

)
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and
(
(F ′i )

n′

0 , (λ
′
i)
n′

0

)
determine the same prequasifield by (4.2) or Lemma 4.3(i). Hence,

we will only consider reduced defining pairs. Since λn 6= 1 for a reduced pair, we have
|Fn| > 2: each of our nearly flag-transitive scions of the desarguesian plane has kernel
properly containing GF(2).

When n = 1, a reduced pair is (F, 1), and produces the desarguesian plane by (4.2).
In Lemma 4.3(i) we introduced the function f1(x). Later we will need a slightly more

general function:

Lemma 4.7. Let
(
(Fi)n0 , (λi)

n
0

)
be a reduced defining pair. For 1 ≤ j ≤ n and for all

x ∈ F set

fj(x) := (1 + λ2
j)Tj(cj−1x) + λj

n∑
i=j+1

[ci−1/cj ](1 + λ2
i )Ti

(
ci−1x

)
.

Then Fj is the subfield of F generated by fj(F ).

Proof. Since λj 6= 1, x → (1 + λ2
j)Tj(cj−1x) maps onto Fj . This proves the lemma

if j = n. If j < n then
∑n
i=j+1[ci−1/cj ](1 + λ2

i )Ti
(
ci−1x

)
∈ Fj+1 since ci−1/cj ,

λi ∈ Fj+1. Thus, fj maps onto Fj
/

(λjFj+1). Since [Fj : Fj+1] ≥ 3, this implies that
the subfield of Fj generated by fj(F ) has size > |Fj |1/2 and hence is Fj . 2

5 Isomorphisms between nearly flag-transitive planes

We digress for a general though elementary observation concerning symplectic nearly
flag-transitive planes that permits us to decrease the amount of calculation used in the
proof of Theorem 1.1 (cf. [9, III.C]). Let F be a finite field of characteristic 2, let K,
T , F 2 and G be as in Section 3 (but here we can allow m to be even), and consider the
G-invariant nondegenerate alternating K-bilinear form (3.3) on the K-space F 2. Then G
leaves invariant the totally isotropic subspaces X := F ⊕ 0 and Y := 0⊕ F .

Assume that we do not have both |F | = 64 and |K| = 2. By Zsigmondy’s Theorem
[19], there is a Sylow p-subgroup P of G that acts irreducibly on both X and Y . By
checking orders we find that P is a Sylow subgroup of ΓSp(F 2,K).

Lemma 5.1. (i) CΓL(F 2,K)(P ) = {(x, y)→ (ax, by) | a, b ∈ F ∗}, and
(ii) NΓSp(F 2,K)(P ) = {(x, y)→ (kaxα, ka−1yα) | k ∈ K∗, a ∈ F ∗, α ∈ Aut(F )}〈θ〉

where θ : (x, y)→ (y, x).

Proof. By Schur’s Lemma, CΓL(F 2,K)(P |X) is the multiplicative group of a field of size
|X|, and hence is isomorphic to F ∗. The same holds for CΓL(F 2,K)(P |Y ). No semilinear
transformation can centralize P and interchange X and Y (note that θ inverts P ). This
proves the first assertion.

For the second one, note that all scalars are in CΓSp(F 2,K)(P ), so that we can view
CΓSp(F 2,K)(P ) as G×K∗. All field automorphisms are present in NΓSp(F 2,K)(P ). Any
g ∈ NΓSp(F 2,K)(P ) acts on the pair {X,Y } and hence has the form (x, y)→ (axα, byα)
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or (x, y) → (ayα, bxα) for some a, b, α. By (3.3), T (abzα) = kT (z)β for some β ∈
Aut(F ), k ∈ K∗, and all z ∈ F . Thus, ab = k, as asserted. 2

The following consequence is analogous to [13, Proposition 5.1]:

Proposition 5.2. Let S and S ′ be G-invariant symplectic spreads in the K-space F 2,
both containing the G-invariant subspaces F ⊕ 0 and 0 ⊕ F , such that G is transitive
on the remaining members of both S and S ′. If A(S) and A(S ′) are isomorphic, then
S ′ = Sα or Sθα for some α ∈ Aut(F ), where θ is as above.

Proof. By Theorem 2.2(i), we may assume that the given isomorphism is induced by a
symplectic transformation f of the K-space F 2. Let P be the Sylow subgroup of G
used above. Then P and P f are Sylow subgroups of (Aut A(S ′)) ∩ Sp(F 2,K), so that
P fh = P for some h ∈ (Aut A(S ′)) ∩ Sp(F 2,K). Now fh ∈ ΓSp(F 2,K) is an
isomorphism A(S) → A(S ′) that normalizes P . Since K∗ and G leave both spreads
invariant, the second part of the preceding lemma concludes the proof. 2

6 Kernels

Our first use of the preceding section is to calculate the kernels of our nearly flag-transitive
scions of desarguesian planes. See [13, Section 6] for an argument based on the same idea.

Theorem 6.1. If
(
(Fi)n0 , (λi)

n
0

)
is a reduced defining pair, then Fn is the kernel of the

associated plane A
(
(Fi)n0 , (λi)

n
0

)
.

Proof. By (4.2), the kernel K of A
(
(Fi)n0 , (λi)

n
0

)
contains Fn. Since |Fn| > 2, we can

apply Section 5 (with K = Fn). Let P be as in that section. Then P normalizes K, hence
induces semilinear transformations on the K-space F 2, and hence centralizes K∗ in view
of |P |. By Lemma 5.1(i), each element of K∗ has the form h : (x, y)→ (ax, by) for some
a, b ∈ F ∗. We must show that a = b ∈ Fn.

In the notation of (3.2), S∗[s]g = S∗[s] for each s. By Lemma 4.3(i),

(ax)s2 + sf1(axs) = (ax) ∗ s = b(x ∗ s) = b
(
xs2 + sf1(xs)

)
for all x ∈ F, s ∈ F ∗. Then (a − b)xs = −f1(axs) + bf1(xs). Vary x in order to see
that the left side produces either 0 or F . However, the right side lies in the 2-dimensional
F1-subspace F1 + bF1 of F , which is not all of F since [F : F1] ≥ 3. Hence, (a − b)xs
must be 0, so that a = b.

Thus, f1(ax) = af1(x) for all x ∈ F .
Suppose that a /∈ Fn, and choose j ≤ n such that a ∈ Fj−1 − Fj . By Lemma 4.3(i),

n∑
i=1

(1 + λ2
i )ci−1Ti(ci−1ax) = a

n∑
i=1

(1 + λ2
i )ci−1Ti(ci−1x)

for all x ∈ F , and hence fj(ax) = afj(x) in the notation of Lemma 4.7. By that lemma,
fj(F ) generates Fj , so that fj(x) 6= 0 and hence a = fj(ax)/fj(x) ∈ Fj for some x.

This contradiction proves that a = b ∈ Fn, as required. 2
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7 Interchanging X and Y

In the next section we will determine all isomorphisms among the nearly flag-transitive
planes A

(
(Fi)n0 , (λi)

n
0

)
. We first need to see what happens when X and Y are inter-

changed using the symplectic map θ : (x, y)→ (y, x).

Theorem 7.1. θ is an isomorphism A
(
(Fi)n0 , (λi)

n
0

)
→ A

(
(Fi)n0 , (λ

−1
i )n0

)
for any re-

duced defining pair
(
(Fi)n0 , (λi)

n
0

)
.

We will prove this by induction on n, using the following inductive step:

Lemma 7.2. In Proposition 3.6, assume that θ sends S∗ to S∗′ , where (F,+, ∗′) satisfies
Hypothesis 3.1(i)–(iv),(vi) and T (x(x ∗′ y)) = T (l−1xy) for all x, y ∈ F . Define x ◦ y
as in Proposition 3.6(iv), so that S◦ = Σ∗/〈0, λ2, 0, 1〉; and similarly define

x ◦′ y := x ∗′ y + (1 + λ−2)l−1yT (l−1xy),

so that S◦′ = Σ∗′/〈0, λ−2, 0, 1〉. Then Sθ◦ = S◦′ .
Moreover, if θ sends the line y = x ∗ s to y = x ∗ s′ for a permutation s→ s′ of F ∗,

then it also sends y = x ◦ s to y = x ◦′ s′.

Proof. By Proposition 3.6(ii), S∗ and S∗′ lift to unique orthogonal spreads Σ∗ and Σ∗′
(respectively) of V = F ⊕ K ⊕ F ⊕ K containing X̂ := F ⊕ K ⊕ 0 ⊕ 0 and Ŷ :=
0⊕ 0⊕ F ⊕K. For the present proof it is convenient to write Ŝ∗ := Σ∗ and Ŝ∗′ := Σ∗′ .

Note that θ lifts to a unique orthogonal map θ̂ : (x, a, y, b) → (y, b, x, a) sending
X̂ ↔ Ŷ and fixing 〈0, 1, 0, 1〉. For, θ lifts to a unique isometry of 〈0, 1, 0, 1〉⊥ fixing
〈0, 1, 0, 1〉, and hence to a unique isometry of V sending X̂ to the subspace Ŷ of the same
type.

EachZ ∈S∗ lifts to the subspaceZˆof singular points of the hyperplane of 〈0,1,0,1〉⊥
that contains 〈0, 1, 0, 1〉 and projects onto Z in 〈0, 1, 0, 1〉⊥/〈0, 1, 0, 1〉; and then lifts
further to the unique totally singular subspace Ẑ of V that contains Zˆ and has the same
type as X̂ and Ŷ .

Similarly, Zθ ∈ Sθ∗ lifts to (Zθ)ˆand then to Ẑθ. Since θ sends Z to Zθ, θ̂ sends lifts
to lifts: (Ẑ)θ̂ = Ẑθ. Consequently, by hypothesis, Ŝ∗θ̂ = Ŝθ∗ = Ŝ∗′ .

Since λ ∈ K, θ̂ sends 〈0, λ2, 0, 1〉 to 〈0, 1, 0, λ2〉 = 〈0, λ−2, 0, 1〉 and 〈0, λ2, 0, 1〉⊥ to
〈0, λ−2, 0, 1〉⊥, and hence also Ŝ∗/〈0, 1, 0, λ2〉 = S◦ to Ŝ∗′/〈0, λ−2, 0, 1〉 = S◦′ , using
the multiplications ◦ and ◦′ of the prequasifields in Proposition 3.6(iv) and the present
lemma. This proves the first assertion of the lemma.

If s ∈ F ∗ and Z = S∗[s] as in (3.2), then Zθ = S∗′ [s′] by the definition of s′, so that
Ẑ θ̂ = Ẑθ = Σ∗′ [s′]. Then

(
Ẑ θ̂ ∩ 〈0, λ−2, 0, 1〉⊥

)
/〈0, λ−2, 0, 1〉 = Σ◦′ [s′], which is also[(

Ẑ ∩ 〈0, λ2, 0, 1〉⊥
)
/〈0, λ2, 0, 1〉

]θ̂ = Σ◦[s]θ̂.
If x ∈ F and b ∈ K, then

(x, λ2b, y, b) = (x, 0, y, 0) + b(0, λ2, 0, 1)

(y, b, x, λ2b) = (y, 0, x, 0) + λ2b(0, λ−2, 0, 1).
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Thus, the map 〈0, λ2, 0, 1〉⊥/〈0, λ2, 0, 1〉 → 〈0, λ−2, 0, 1〉⊥/〈0, λ−2, 0, 1〉 induced by θ̂
behaves like θ, and sends Σ◦[s] to Σ◦′ [s′], as required. 2

Proof of Theorem 7.1. We use induction. When n = 0, x ∗ y = xy2 = x ∗′ y, λ = 1 =
λ−1, and θ is a collineation of the corresponding desarguesian plane interchanging the
lines y = xs and y = xs−1 for s 6= 0.

Suppose that the theorem holds for some n−1 ≥ 0. By the lemma (with l = cn−1 and
λ = λn as in the first proof of Proposition 4.1), since Sθ∗ = S∗′ we also have Sθ◦ = S◦′ .
The element “l” for ∗′ is c−1

n−1 by our inductive hypothesis. The definition of ◦′ shows
that the element “λ” for ◦′ in Proposition 3.6(iv) is λ−1

n . Hence, that proposition implies
that “l” for ◦′ is λ−1

n c−1
n−1 = c−1

n , so that S◦′ is the spread for A
(
(Fi)n0 , (λ

−1
i )n0

)
. 2

Remark 7.3. We conclude with computational remarks concerning the preceding results
that are not needed for Theorem 1.1.

(1) As in Hypothesis 3.1(vi), we have z(x ∗′ y) = (z−1x) ∗′ (zy) if z 6= 0. For,
(x, y) → (z−1x, zy) is a collineation of the plane determined by ∗ and hence also of the
plane determined by ∗′.

(2) Since y = x ∗ s implies that x = y ∗′ s′, for all x ∈ F we have

x = (x ∗ s) ∗′ s′.

(3) There is an element c ∈ F ∗ such that s′ = cs−1. For, by (1), (2) and Hypothe-
sis 3.1(v), if t 6= 0 then

{(t−1x) ∗ (ts)} ∗′ (ts)′ = t−1x

= t−1{(x ∗ s) ∗′ s′}
= {t(x ∗ s)} ∗′ (t−1s′)

= {(t−1x) ∗ (ts)} ∗′ (t−1s′).

Thus, (ts)′ = t−1s′. Use s = 1 in order to obtain t′ = t−1c with c = 1′, as required.
(4) For the planes in Theorem 7.1, s′ = s−1. Namely, this holds for desarguesian

planes (when n = 0), and hence it holds by induction using the final part of the lemma.
(5) By the lemma together with Proposition 3.6(iv) and (2),

x ◦ y = x ∗ y + µlyT (lxy)
x ◦′ y = x ∗′ y + µ′l′yT (l′xy)

x = (x ∗ y) ∗′ y′

where µ = 1 + λ2, µ′ = 1 + λ−2 and l′ = l−1. Hence, again by (2),

x = (x ◦ y) ◦′ y′

= {x ∗ y + µlyT (lxy)} ◦′ y′

= {x ∗ y + µlyT (lxy)} ∗′ y′ + µ′l′y′T (l′y′{x ∗ y + µlyT (lxy)})
= x+ µT (lxy) · (ly) ∗′ y′ + µ′l′y′T (l′y′(x ∗ y)) + µ′l′y′µT (lxy)T (l′y′ly).
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By (3), yy′ = c for some constant c. By (1) and Hypothesis 3.1(vi),

(ly) ∗′ y′ = y−1(l ∗′ c) = l−1y−1(1 ∗′ (cl))
y′(x ∗ y) = (xy′−1) ∗ (y′y) = (xyc−1) ∗ c = c((xy) ∗ 1).

Also, v → T (l−1c(v ∗ 1)) is a linear functional F → K, so for a unique a ∈ F ∗ we have
T (l−1c(v ∗ 1)) = T (av) for all v ∈ F . It follows that

0 =

µT (lxy)l−1y−1(1 ∗′ (cl)) + l−1µ′cy−1T (l−1c((xy) ∗ 1)) + µ′µl−1cy−1T (lxy)T (c) =

µT (lxy)l−1y−1(1 ∗′ (cl)) + cµ′l−1y−1T (axy) + µ′µcl−1y−1T (lxy)T (c).

Hence, for all v ∈ F ,

0 = µ(1 ∗′ (cl))T (lv) + cµ′T (av) + cµ′µT (lv)T (c)

T (av) = {µ(1 ∗′ (cl)) + cµ′µT (c)}(cµ′)−1T (lv).

Since the left side is in K, it follows that

a = {µ(1 ∗′ (cl)) + cµ′µT (c)}(cµ′)−1l.

Thus, we have proved that the parameters c and a are related as follows:

a(cµ′) = µl(1 ∗′ (cl)) + clµ′µT (c)

T (av) = T (cl−1(v ∗ 1)).
(7.4)

These parameters evidently depend somehow on ∗ and λ.
(6) These parameters can, however, be determined in the situation of Theorem 7.1. We

assume that we are passing from the case n − 1 to n, just as in the proof of the theorem.
We have c = 1 by (4), and we use µ = µn, T = Tn and l = cn−1. By Lemma 4.3(i)
and (7.4),

Tn(av) = Tn
(
c−1
n−1

{
v +

n−1∑
i=1

(1 + λ2
i )ci−1Ti(ci−1v)

})
= Tn(c−1

n−1v) +
n−1∑
i=1

Tn
(
(1 + λ2

i )c
−1
n−1ci−1Ti(ci−1v)

)
= Tn(c−1

n−1v) +
n−1∑
i=1

TnTi
(
(1 + λ2

i )c
−1
n−1ci−1ci−1v

)
= Tn(c−1

n−1v) +
n∑
i=1

Tn(c−1
n−1c

2
i−1v) +

n∑
1

Tn(c−1
n−1c

2
iv)

= Tn(c−1
n−1v) + Tn(c−1

n−1v) + Tn(c−1
n−1c

2
n−1v),
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so that a = cn−1. Also, since c′i−1cn−1 = c−1
i−1cn−1 ∈ Fi and cl = cn,

µnl(1 ∗′ (cl)) = µncn−1
{
c2
n−1 +

n−1∑
i=1

(1 + λ′2i )c′i−1cn−1Ti(c′i−1cn−1)
}

= µncn−1
{
c2
n−1 +

n−1∑
i=1

(1 + λ′2i )c′i−1cn−1c
′
i−1cn−1

}
= µncn−1

{
c2
n−1 +

n−1∑
i=1

c′2i−1c
2
n−1 +

n−1∑
i=1

c′2i c
2
n−1

}
= µncn−1{c2

n−1 + c2
n−1 + c−2

n−1c
2
n−1}

= µncn−1,

while

a(cµ′) + clµ′nµnT (c) = cn−1µ
′
n + cn−1µ

′
nµn

= cn−1µ
′
n(1 + µn)

= cn−1µn,

as required in (7.4).

8 Isomorphisms among nearly flag-transitive scions

Our goal in this section is Theorem 8.5, which completely solves the isomorphism prob-
lem for the planes A

(
(Fi)n0 , (λi)

n
0

)
. As in [13, Lemma 5.3] and [14, Proposition 3.38],

we first need to know when two of our spreads coincide. While the required result offers
no surprises, proving it appears to be harder than one might expect, in fact slightly harder
than in the preceding two references:

Proposition 8.1. Let
(
(Fi)n0 , (λi)

n
0

)
and

(
(F ′i )

n′

0 , (λ
′
i)
n′

0

)
be reduced defining pairs with

F0 = F = F ′0. They determine the same prequasifield (i.e., the exact same multiplication)
if and only if n = n′, Fi = F ′i and λi = λ′i whenever 1 ≤ i ≤ n.

Proof. We may assume without loss of generality that n′ ≥ n. We will prove that

Fj = F ′j and λj−1 = λ′j−1 whenever 1 ≤ j ≤ n.

For this purpose we use induction to prove that, for each j with 1 ≤ j ≤ n,

Fl = F ′l whenever 0 ≤ l ≤ j, and λl = λ′l whenever 0 ≤ l < j. (8.2)

When j = 1, we have λ0 = 1 = λ′0 by definition. We must show that F1 = F ′1. By
hypothesis, x∗y = x◦y for all x, y ∈ F . Then Lemma 4.3(i) implies that yf1(z) = yf ′1(z)
for all z ∈ F (where z = xy, and f1 and f ′1 are as in that lemma). Thus, F1 = F ′1 by
Lemma 4.7, and (8.2) holds when j = 1.
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Now assume that (8.2) holds for some j with 1 ≤ j < n. Then c′k =
∏k
i=0 λ

′
i =∏k

i=0 λi = ck whenever 0 ≤ k < j.
We first show that λj = λ′j . By Lemma 4.3(i), if x, y ∈ F ∗ then

xy2 +
j−1∑
i=1

(1 + λ2
i )ci−1yTi(ci−1xy)

+ cj−1

[
(1 + λ2

j)yTj(cj−1xy) +
n∑

i=j+1

(1 + λ2
i )[ci−1/cj−1]yTi(ci−1xy)

]

= xy2 +
j−1∑
i=1

(1 + λ2
i )ci−1yTi(ci−1xy)

+ cj−1

[
(1 + λ′j

2)yTj(cj−1xy) +
n′∑

i=j+1

(1 + λ′i
2)[c′i−1/cj−1]yT ′i (c

′
i−1xy)

]
.

By our inductive hypothesis,

(1 + λ2
j)Tj(cj−1xy) +

n∑
i=j+1

(1 + λ2
i )[ci−1/cj−1]Ti(ci−1xy)

= (1 + λ′j
2)Tj(cj−1xy) +

n′∑
i=j+1

(1 + λ′i
2)[c′i−1/cj−1]T ′i (c

′
i−1xy).

(8.3)

Let x = c−1
j−1. By Lemma 3.8(iv), if y ∈ Fj then

(1 + λ2
j)y + λj

n∑
i=j+1

(1 + λ2
i )[ci−1/cj ]Ti([ci−1/cj−1]y)

= (1 + λ′j
2)y + λ′j

n′∑
i=j+1

(1 + λ′i
2)[c′i−1/cj ]T

′
i ([c
′
i−1/cj−1]y),

where 1 + λ2
i , ci−1/cj =

∏i−1
j+1 λj ∈ Fj+1 and 1 + λ′2i , c

′
i−1/cj ∈ F ′j+1 for i ≥ j + 1.

Then
(λj + λ′j)

2y = λjg(y) + λ′jg
′(y) for all y ∈ Fj ,

for additive maps g : Fj → Fj+1 and g′ : Fj → F ′j+1. Since [Fj : Fj+1] ≥ 3 and
[Fj : F ′j+1] ≥ 3, we have | ker g| ≥ (2/3)|Fj | and | ker g′| ≥ (2/3)|Fj |, so that there
is some y 6= 0 in ker g ∩ ker g′. Then (λj + λ′j)

2y = 0, so that λj = λ′j , as claimed.
Next we show that Fj+1 = F ′j+1. By induction and the preceding paragraph, we have

Fi = F ′i and λi = λ′i whenever i ≤ j. Now (8.3) states that cjfj+1(xy) = cjf
′
j+1(xy)

for all x, y ∈ F ∗, in the notation of Lemma 4.7. Then Fj+1 = F ′j+1 by that lemma.
By induction, this proves (8.2).
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It remains to prove that n = n′ and λn = λ′n. By (8.3) with j = n,

(1 + λ2
n)Tn(cn−1xy) = (1 + λ′2n )Tn(cn−1xy) +

n′∑
i=n+1

(1 + λ′2i )[c′i−1/cn−1]T ′i (c
′
i−1xy)

for all x, y ∈ F . If n′ = n, then the latter sum is empty and hence λn = λ′n, as claimed.
On the other hand, if n′ > n, then

(λ2
n + λ′2n )Tn(cn−1x) = λ′−1

n

n′∑
i=n+1

(1 + λ′2i )[c′i−1/c
′
n]T ′i (c

′
i−1x) (8.4)

for all x ∈ F , where 1+λ′2i , c
′
i−1/c

′
n ∈ F ′n+1 for i ≥ n+1. If λn 6= λ′n, vary x and obtain

Fn on the left side of (8.4) and a subset of λ′−1
n F ′n+1 on the right side, which is impossible

since Fn = F ′n ⊃ F ′n+1. Thus, λn = λ′n and (8.4) yield (1 + λ′2n+1)T ′n+1(c′nx) =∑n′

i=n+2 (1 + λ′2i )[c′i−1/c
′
n]T ′i (c

′
i−1x) ∈ F ′n+2 for all x. As above, vary x in order to

obtain a contradiction. 2

Theorem 8.5. Suppose that
(
(Fi)n0 , (λi)

n
0

)
and

(
(F ′i )

n′

0 , (λ
′
i)
n′

0

)
are reduced defining

pairs with F0 = F = F ′0. Then A
(
(Fi)n0 , (λi)

n
0

)
and A

(
(F ′i )

n′

0 , (λ
′
i)
n′

0

)
are isomor-

phic if and only if n′ = n, F ′i = Fi for all i, and there is a sign ε = ±1 and a field
automorphism α ∈ Aut(F1) such that λ′i = (λεi )

α whenever 1 ≤ i ≤ n.

Proof. If n′ = n, F ′i = Fi and λ′i = λαi whenever 1 ≤ i ≤ n, for some α ∈ Aut(F1),
then extend α to β ∈ Aut(F ) and observe that (4.2) implies that (x ∗ s)β = xβ ◦ sβ
for all x, s ∈ F ; the map (x, y) → (xβ , yβ) induces an isomorphism A(S∗) → A(S◦).
Similarly, Theorem 7.1 takes care of the case λ′i = (λ−1

i )α for all i.
Assume that the two planes are isomorphic. Then, by Theorem 6.1, both have kernel

K := Fn = F ′n′ , which has order greater than 2 (see Definition 4.6). By Theorem 2.2, we
may assume that an isomorphism between the two planes is induced by an element g ∈
ΓSp(F 2,K). By Proposition 5.2, we may assume that g has the form (x, y) → (xα, yα)
or (x, y)→ (yα, xα) for all x, y ∈ F and some α ∈ Aut(F ).

Case 1. g : (x, y) → (xα, yα) with α ∈ Aut(F ). In the notation of (3.2), S∗[∞]g =
S◦[∞] and, for each s ∈ F , there is some s′ ∈ F such that S∗[s]g = S◦[s′]. Then
(x ∗ s)α = xα ◦ s′ for all x ∈ F .

We claim that s′ = sα. For, since [F : F1] ≥ 3 and [F : F ′1] ≥ 3, we have | kerT1| ≥
(2/3)|F | and | kerT ′1| ≥ (2/3)|F |, so that there is some x ∈ F ∗ such that T1(xs) = 0 =
T ′1(xαs′). By Lemma 3.8(i), Ti(ci−1xs) = TiT1(ci−1xs) = Ti

(
ci−1T1(xs)

)
= 0 and

T ′j(c
′
j−1x

αs′) = T ′jT
′
1(c′j−1x

αs′) = T ′j
(
c′j−1T

′
1(xαs′)

)
= 0 whenever 1 ≤ i ≤ n and

1 ≤ j ≤ n′ (recall that c0 = 1, ci−1 ∈ F1, c
′
j−1 ∈ F ′1). By Lemma 4.3(i), x ∗ s = xs2

and xα ◦ s′ = xαs′2. Hence xαs2α = (x ∗ s)α = xα ◦ s′ = xαs′2, so that sα = s′, as
claimed. Thus, (x ∗ s)α = xα ◦ sα.

By Lemma 4.3(i) for ∗ and for ◦, (x ∗ s)α = xα ◦ sα implies that ◦ arises from the re-
duced defining pair

(
(Fi)n0 , (λ

α
i )n0
)

as well as from
(
(F ′i )

n′

0 , (λ
′
i)
n′

0

)
. By Proposition 8.1,

n′ = n, F ′i = Fi and λ′i = λαi whenever 1 ≤ i ≤ n.
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Finally, since all λi belong to F1 we can replace α by α|F1 in order to obtain the
desired conclusion.

Case 2. g : (x, y) → (yα, xα) with α ∈ Aut(F ). In the notation of Theorem 7.1, θg
is an isomorphism A

(
(Fi)n0 , (λ

−1
i )n0

)
→ A

(
(F ′i )

n′

0 , (λ
′
i)
n′

0

)
sending (x, y) → (xα, yα).

Now apply Case 1. 2

Corollary 8.6. Suppose that
(
(Fi)n0 , (λi)

n
0

)
is a reduced defining pair with n ≥ 1. Then

some collineation of A(
(
(Fi)n0 , (λi)

n
0

)
) interchanges X and Y if and only if λiλαi = 1

for all i and some α ∈ Aut(F1).

Proof. By the remark following Theorem 2.2, if g is a collineation interchanging X and
Y , then gk is symplectic for some k in the kernel of the plane. Then k fixes X and Y ,
so that gk also interchanges X and Y . Using (gk)θ in the preceding Case 2, we see that
λi = (λ−1

i )α for all i. 2

Remark 8.7. If λα1 = λ−1
1 6= 1 then α has even order. Since m is odd, this means that

q must be a square. We will consider the case of an involutory field automorphism in
Section 10.

When n = 1 the planes in the corollary are among those studied in [8, II Section 6],
where the interchanging collineation was not noticed.

Remark 8.8. While Aut A
(
(Fi)n0 , (λi)

n
0

)
always contains all translations and the mul-

tiplicative group of the kernel of A
(
(Fi)n0 , (λi)

n
0

)
, we just saw that it also contains the

Galois group Gal(F/F1).

9 Enumeration

Notation 9.1. Let m = m0 be an odd composite integer. Let σ = (mi)
l(σ)
0 be any

sequence of l(σ) + 1 distinct integers such that ml(σ) ≥ 1 and mi divides mi−1 for
1 ≤ i ≤ l(σ). Let q be a power of 2 such that qml(σ) ≥ 4.

Theorem 9.2. (i) For σ = (mi)
l(σ)
0 , there are at least

∏l(σ)
i=1 (qmi − 2)/(2m1 log q)

pairwise nonisomorphic symplectic nearly flag-transitive scions of the desarguesian
plane AG(2, qm) obtained by applying the up and down process along the chain(

GF(qmi)
)l(σ)

0 , all having kernel GF(qml(σ)).

(ii) There are at least
∑
σ

{∏l(σ)
i=1 (qmi−2)

}
/(2m1 log q) pairwise nonisomorphic sym-

plectic nearly flag-transitive scions of the desarguesian plane of order qm. Here the
sum runs over all sequences σ as above.

Proof. (i) There are
∏l(σ)
i=1 (qmi−2) reduced defining pairs obtained from the stated chain

(Fi)
l(σ)
0 . By Proposition 4.1, these reduced pairs determine

∏l(σ)
i=1 (qmi − 2) symplectic

nearly flag-transitive scions of the desarguesian plane. Now apply Theorem 8.5.
(ii) Again use Proposition 4.1 and Theorem 8.5. 2
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An elementary calculation using the definition of ρ(m) in Section 1 yields the

Corollary 9.3. If q ≥ 4 is a power of 2 and m > 1 is odd, then the number of planes in
the theorem of order qm with kernel GF(q) is greater than q3ρ(m)−2

and less than qm.

This completes the proof of Theorem 1.1.

10 The Baer perspective: flag-transitive subplanes

In Corollary 8.6 we saw that a field automorphism α of even order such that λiλαi = 1
for all i produces a collineation (x, y)→ (yα, xα) of A

(
(Fi)n0 , (λi)

n
0

)
. This collineation

is involutory if and only if α is; this case is the topic of this section. We will see that
this produces a Baer subplane that is one of the flag-transitive planes studied in [13],
and that each of the latter planes arises in this manner from a unique one of the planes
A
(
(Fi)n0 , (λi)

n
0

)
) (cf. Theorem 1.2).

Write xα = x̄ for all x ∈ F , and consider a plane A
(
(Fi)n0 , (λi)

n
0

)
such that λiλ̄i = 1

for all i, so that θ̃ : (x, y) → (ȳ, x̄) is a Baer involution. Then θ̃ sends the line y = x ∗ s
to y = x ∗ s̄−1 by Remark 7.3(4). Thus,

The lines through 0 fixed by θ̃ are y = x ∗ s with ss̄ = 1. (10.1)

Moreover, θ̃ normalizes the group G in Proposition 3.6(i), since φθ̃ζ = φζ̄−1 . Thus, CG(θ̃)
consists of the qm/2 +1 linear transformations (3.5) for which ζζ̄ = 1. Since our subplane
has order qm/2, it follows that CG(θ̃) is flag-transitive on this Baer subplane.

Consider the chain (F •i )n0 of subfields of F such that F •i is the set of fixed points in
Fi of our involutory field automorphism. Then [Fi : F •i ] = 2 and [F •0 : F •i ] = [F : Fi] for
each i. Let T •i : F •0 → F •i be the trace map, and define Tn+1 = T •n+1 = 0. Note that

Ti(x) = T •i (x) if x ∈ F •i . (10.2)

For, if |Fi| = qr then, as the integer j goes from 0 to r − 1, if j is even then j/2 goes
from 0 to (r − 1)/2, and if j is odd then (r + j)/2 goes from (r + 1)/2 to r − 1. In the
latter case, xq

j/2
= xq

(r+j)/2
. Thus, T •i (x) =

∑r−1
j=0 x

qj/2
=
∑r−1
k=0 x

qk = Ti(x).
If 0 ≤ i ≤ n+ 1 write

Wi := kerT •i+1|F•i ; (10.3)

for example, Wn+1 = F •n . Then the flag-transitive symplectic planes studied in [13] are
produced by the spreads{

ζ
(
W0c̄0 ⊕W1c̄1 ⊕ · · · ⊕Wnc̄n

)
| ζ ∈ F, ζζ̄ = 1

}
(10.4)

of the F •n -space F corresponding to defining pairs
(
(Fi)n0 , (λi)

n
0

)
such that λiλ̄i = 1 for

all i. (We have slightly changed the notation in [13] so as not to conflict with the notation
used earlier in the present paper.) The flag-transitive group in [13] consists of all maps
x → ζx with ζ ∈ F and ζζ̄ = 1. By [13, Corollary 4.5], we can restrict to reduced
defining pairs.
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Theorem 10.5. The spread (10.4) coincides with the spread on the flag-transitive sub-
plane of fixed points in A

(
(Fi)n0 , (λi)

n
0

)
of the Baer involution θ̃ : (x, y)→ (ȳ, x̄).

Proof. By (10.1), θ̃ fixes the line y = x ∗ 1 of our subplane {(x, x̄) | x ∈ F}. As a set of
points of our subplane, that line is {(x, x̄) | x ∈ Z}, where

Z := {x ∈ F | x̄ = x ∗ 1} = {x ∈ F | x+ x̄ =
n∑
1

(1 + λ2
i )ci−1Ti(ci−1x)} (10.6)

(cf. Lemma 4.3(i)). In the notation of (3.5), φζ̄ sends (x, x̄) to (ζx, ζx) if ζζ̄ = 1. Thus,
in view of the above remark concerning the flag-transitive group in [13], it suffices to
prove that

Z = W0c̄0 ⊕W1c̄1 ⊕ · · · ⊕Wnc̄n.

Since both sides are lines of affine planes of order |F |1/2 = |F ′0|, it suffices to prove that

Wj c̄j ⊆ Z for 0 ≤ j ≤ n. (10.7)

Consider x = fjc
−1
j = fj c̄j ∈ Wj c̄j , so that fj = f̄j ∈ F •j and T •j+1(fj) = 0. Then

also Tj+1(fj) = 0 by (10.2).
If i− 1 ≥ j then ci−1c

−1
j =

∏i−1
1 λk/

∏j
1 λk =

∏i−1
j+1 λk ∈ Fj+1. By Lemma 3.8(i),

Ti(ci−1c
−1
j fj) = TiTj+1(ci−1c

−1
j fj) = Ti

(
ci−1c

−1
j Tj+1(fj)

)
= 0.

If 1 ≤ i ≤ j then ci−1c
−1
j =

∏i−1
1 λk/

∏j
1 λk = 1/

∏j
i λk ∈ Fi. By Lemma 3.8(iv),

Ti(ci−1c
−1
j fj) = ci−1c

−1
j fj . Since x = fjc

−1
j , x̄ = fjcj and ci = λici−1,

n∑
i=1

(1 + λ2
i )ci−1Ti(ci−1x) =

j∑
i=1

(1 + λ2
i )ci−1(ci−1c

−1
j fj)

=
j∑
i=1

c2
i−1c

−1
j fj +

j∑
i=1

c2
ic
−1
j fj

= c2
0c
−1
j fj + c2

jc
−1
j fj

= x+ x̄

for any x ∈Wj c̄j . By (10.6), this proves (10.7) and hence the theorem. 2

Proof of Theorem 1.2. Let
(
(Fi)n0 , (λi)

n
0

)
and

(
(F ′i )

n′

0 , (λ
′
i)
n′

0

)
be reduced defining pairs

with F0 = F = F ′0, 1 6= λi = λ̄−1
i ∈ F ∗i and 1 6= λ′i = λ̄′−1

i ∈ F ∗i for all i. By [13,
Theorem 5.2], the corresponding flag-transitive planes in [13] are isomorphic if and only
if n = n′ and there is some β ∈ Aut(F ) such that λ′i = λβi for all i; since all λi ∈ F1
we can restrict β to Aut(F1). By Theorem 8.5, the same is true for the corresponding
nearly flag-transitive planes A

(
(Fi)n0 , (λi)

n
0

)
and A

(
(F ′i )

n′

0 , (λ
′
i)
n′

0

)
. Thus, Theorem 10.5

implies the required result. 2
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11 Equivalence of orthogonal spreads

We now discuss equivalence for orthogonal spreads. By Proposition 3.6(ii), each defining
pair

(
(Fi)n0 , (λi)

n
0

)
with F = F0 and Fn ⊃ K ⊇ GF(2) determines an orthogonal spread

Σ∗
(
(Fi)n0 , (λi)

n
0

)
of V = F ⊕K ⊕ F ⊕K.

Theorem 11.1. Assume that
(
(Fi)n0 , (λi)

n
0

)
and

(
(F ′i )

n′

0 , (λ
′
i)
n′

0

)
are reduced defining

pairs, with F0 = F = F ′0 and Fn, F ′n′ ⊃ K ⊇ GF(2), producing orthogonal spreads
Σ∗
(
(Fi)n0 , (λi)

n
0

)
and Σ◦

(
(F ′i )

n′

0 , (λ
′
i)
n′

0

)
of the O+(2m + 2,K)-space V as well as

planes A(S∗) and A(S◦). Then Σ∗ and Σ◦ are equivalent if and only if A(S∗) and
A(S◦) are isomorphic, hence if and only if n′ = n, F ′i = Fi and λ′i = (λεi )

α whenever
1 ≤ i ≤ n, for some ε = ±1 and α ∈ Aut(F1).

Proof. By Proposition 3.6(ii),

A(S∗) ∼= A(Σ∗/〈0, 1, 0, 1〉) and A(S◦) ∼= A(Σ◦/〈0, 1, 0, 1〉).

By Theorem 2.2(ii), if there is an isomorphism A(S∗)→ A(S◦), then there is an equiva-
lence Σ∗ → Σ◦ fixing 〈0, 1, 0, 1〉.

For the converse, suppose that g ∈ ΓO+(2m + 2,K) sends Σ∗ to Σ◦. The Sy-
low subgroup P ≤ G of Sp(2m,K) used in Section 5 induces a Sylow subgroup P̂ of
O+(2m + 2,K) lying in Ĝ (the group Ĝ was defined in Lemma 3.6(ii)). Hence, as in
the proof of Proposition 5.2, we may assume that g normalizes P̂ . By Lemma 3.6(iii),
CV (P ) = {(0, a, 0, b) | a, b ∈ K} is an invariant subspace of g. Since g ∈ ΓO+(V ),
it permutes the set {〈0, λ2, 0, 1〉 | λ ∈ K∗} of nonsingular points of this subspace.
If 〈0, 1, 0, 1〉g = 〈0, λ2, 0, 1〉, then g induces an isomorphism A(Σ∗/〈0, 1, 0, 1〉) →
A(Σ◦/〈0, λ2, 0, 1〉). If λ = 1 then A(S∗) ∼= A(S◦), as claimed.

Suppose that λ 6= 1. By the first proof of Proposition 4.1,K is the smallest member of
the chain of fields that determines A(Σ◦/〈0, λ2, 0, 1〉). Since λ ∈ K − {1}, Theorem 6.1
implies thatK is the kernel of this plane. However, the same theorem also implies that Fn
is the kernel of the isomorphic plane A(Σ∗/〈0, 1, 0, 1〉). Since Fn ⊃ K, this contradiction
shows that λ = 1.

The final assertion of the theorem is just Theorem 8.5. 2

Theorem 11.2. There are more than
∑
σ

{∏l(σ)
i=1 (qmi − 2)

}
/(2m1 log q) inequivalent

orthogonal spreads of the K-space V , each admitting the group Ĝ as isometries (cf.
Proposition 3.6(ii)). Here the sum runs over all sequences σ in (9.1) such that Fn ⊃ K.

Proof. This immediately follows from Theorems 9.2 and 11.1. 2

12 Concluding remarks

1. Subplanes. Consider a plane A
(
(Fi)n0 , (λi)

n
0

)
, and let 1 ≤ j ≤ n. If all λi ∈ Fj , then

(x, y) → (x|Fj |, y|Fj |) is a collineation whose set of fixed points is F 2
j . The group of all
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(x, y) → (ζ−1x, ζy), ζ ∈ F ∗j , acts nearly flag-transitively on the resulting subplane Aj ;
in fact,

Aj ∼= A
(
(Fi)nj , (λ

′
i)
n
j

)
,

where λ′j = 1 and λ′i = λ′i whenever j < i ≤ n. For, let c′i := ci/cj =
∏i
l=j λ

′
l ∈ Fj

whenever j ≤ i ≤ n. If x, y ∈ Fj and we write y′ = cjy, then

x ∗ y = xy′2 +
n∑

i=j+1

[
c′i−1y

′Ti(c′i−1xy
′) + c′iy

′Ti(c′ixy
′)
]
,

since xy2 +
∑j
i=1

[
ci−1yTi(ci−1xy)+ciyTi(cixy)

]
= xy2 +

∑j
i=1

[
xy2c2

i−1 +xy2c2
i

]
=

xy2c2
j = xy′2 by Lemma 3.8(iv).

Thus, the scions of the desarguesian plane AG(2, |F |) breed scions of its subplanes
AG(2, |Fj |).

2. Automorphism groups. Straightforward use of [15] shows that, for each nondesar-
guesian plane A

(
(Fi)n0 , (λi)

n
0

)
, the group (Aut A)0 normalizes P and hence is contained

in the group NΓSp(F 2,K)(P ) in Lemma 5.1. However, since [15] uses the classification of
the finite simple groups, it would be far preferable to have a direct and elementary proof
of this geometric result — even one that is highly computational.

Similar remarks apply to ΓO(V )Σ, as well as to the flag-transitive planes in [13] and
Section 10.

Acknowledgement. Section 7 benefited greatly from Tim Penttila’s patient listening and
helpful questions.
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