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1. Introduction

Given a matrix group G = 〈X〉 � GL(d,q), specified by a set X of generators, it seems that a full
structural exploration of G is necessary in order to answer even the simplest questions concerning G ,
such as finding |G| or testing the membership of any given matrix in G (cf. [LG,BB]). Currently, the
standard approach to such an exploration is to set up a recursive scheme of homomorphisms, break-
ing the input into the image and kernel [LG,NS,O’B,Se]. This reduction bottoms out at an absolutely
irreducible matrix group G that is simple modulo scalars. At this terminal stage of the recursion, one
finds the name (i.e., the isomorphism type) of G , and then sets up an identification with a standard
quasisimple group.

For a prime power q = pe , we write ch(q) = p, and for a Lie-type simple group G defined over
GF(q) we write ch(G) = p. For a quasisimple matrix group G one proceeds using the following steps.
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(1) Find the characteristic ch(G) of G . Our previous method for this step [KS2] found the character-
istic by examining interactions among the orders of a random selection of group elements. This
ran in polynomial time, but was not practical.

(2) Determine the “name” of G . At present, the principal approach for this step is the black box
Monte Carlo algorithm in [BKPS], which once again involves examining properties of the orders
of a collection of randomly chosen elements.

(3) Produce a “constructive isomorphism” H → G from the (probable) concrete group H to G , for
example using [BLGNPS], [KS1] or [KM]. This allows computations in G to be performed using the
natural permutation or matrix representation (if H is alternating or classical), or the Lie algebra
or Bruhat decomposition in the case of an exceptional group of Lie type.

The purpose of the present paper is to produce a practical algorithm for Step (1) that once again
uses only arithmetic. In the algorithmic part of [KS2] we had to compute element orders and in [BKPS]
we worked with primitive prime divisor properties of element orders without needing to compute the
orders. In this paper, we need to determine whether the orders of random group elements are greater
than a bound N linear in the input dimension, and then compute the exact orders only if they are
less than N . As a practical consideration, we mention that, similarly to [BKPS] and [KS2], the present
methodology involves only one preprocessing to find random group elements, since we never leave
the original group.

There is, however, a very different approach to Step (1). A recent algorithm [LO] recursively passes
to smaller and smaller subgroups by using random element selections to compute centralizers of
involutions in Lie-type groups of odd characteristic; it is efficient both in the polynomial-time and
practical senses. Moreover, it is a black-box algorithm that assumes the availability of an oracle to
compute element orders. By contrast, in this paper we use arithmetic rather than group theory; but
our algorithm is restricted to matrix groups since its proof of correctness depends on results on cross-
characteristic representations of Lie-type groups. Our algorithm has the added benefit that, if the input
group is a cross-characteristic projective representation of a Lie-type group G , then the algorithm also
provides a short list for the possible isomorphism types of G .

Our new approach to Step (1) is motivated by the following observation, which was obtained by
extensive computer calculation:

Fact 1.1. For a simple group G, let

m1 = m1(G) and m2 = m2(G), m1 > m2,

denote the two largest element orders of G. Let F be the family of simple groups G of Lie type of rank at most
66 and defined over a field of size at most 105 , excluding the cases P�+(d,2e), P�−(d,2e), and PSp(d,2e)

for d > 36.
If G, H ∈ F with nonisomorphic G, H of different defining characteristics, and if m1(G) = m1(H)

and m2(G) = m2(H), then {G, H} = {PSL(2,25), G2(3)} with m1 = 13 and m2 = 12, {G, H} = {2 B2(8),

PSL(2,13)} with m1 = 13 and m2 = 7, or {G, H} = {PSp(4,3) ∼= PSU(4,2),PSU(4,3)} with m1 = 12 and
m2 = 9.

The computer verification of Fact 1.1, as well as all other computations in this paper, were per-
formed using GAP [GAP4]. We programmed formulae as in Appendix A for m1(G) and m2(G) for all
Lie-type groups G except PSp(d,2e), P�+(d,2e) and P�−(d,2e) with d > 36, and evaluated them in
the indicated range. The difficulties with formulae encountered in characteristic 2 are described at the
end of Section 2, where we also observe that there are no such difficulties with special linear, unitary
and exceptional groups. Then we collected the pairs {G, H} with m1(G) = m1(H) and m2(G) = m2(H),
and discarded those with ch(G) = ch(H).

The goal of this paper is to turn the observation in Fact 1.1 into a general theorem and to provide
an algorithm for Step (1). Along the way, we have obtained nonalgorithmic results interesting in their
own right, and the bulk of the paper consists of the proofs of those results.

Let m3(G) denote the third largest element order for G .
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Theorem 1.2. Let G and H be simple groups of Lie type of odd characteristic. If mi(G) = mi(H) for 1 � i � 3,
then ch(G) = ch(H).

We can “almost” prove that the two largest element orders determine the characteristic. Our main
result is the following

Theorem 1.3. Let G and H be simple groups of Lie type of odd characteristic. If m1(G) = m1(H) and m2(G) =
m2(H), then one of the following holds:

(i) ch(G) = ch(H);
(ii) {G, H} = {PSL(2,q), G2(p)} with q composite, p prime, and q = 2p2 + 2p + 1; or

(iii) G and H are symplectic of dimension at least 8 or unitary of dimension at least 4, defined over a prime
field (the groups G, H need not be of the same type).

In the proof of Theorem 1.2, we consider the third largest element order only in the ambiguous
cases listed in parts (ii) and (iii) of Theorem 1.3. There are infinite families of pairs of nonisomorphic
groups satisfying (i), for example PSp(2m,q) and �(2m + 1,q) for odd composite q, and PSU(q,q)

and PSU(q + 1,q) for any odd prime power q /∈ {3,9}. We conjecture that the only example in (ii) is
{G, H} = {PSL(2,25), G2(3)}, and that there are no examples in (iii); both of these conjectures seem
to involve difficult number theory.

Our main proof method is to consider the first three terms of the continued fraction expansion of
m1/(m1 − m2), and determine the characteristic as a function of these terms. We include the rather
large set of groups in (iii) because, for these groups, m1/(m1 − m2) is an integer and hence the
continued fraction expansion provides only one term and our method breaks down. The brute force
approach, trying to prove that the Diophantine system of equations m1(G) = m1(H), m2(G) = m2(H),
has no solution for two sets of {m1,m2} formulae taken from different characteristics, seems to be
hopeless. Of course there are a few groups that can be defined over fields of different characteris-
tics (and one might, in fact, argue that the groups PSU(4,2) ∼= PSp(4,3) and PSU(4,3) mentioned in
Fact 1.1 do not constitute a genuine counterexample to the claim that m1,m2 determine the charac-
teristic). If we include the sporadic groups then there are a few more examples of groups with the
same m1,m2 values: for M11 and M12 we have m1 = 11 and m2 = 8; for P�+(8,2) and J2 we have
m1 = 15 and m2 = 12; for 3 D4(2) and He we have m1 = 28 and m2 = 21; for PSp(8,2), Co3, and Fi22
we have m1 = 30 and m2 = 24; and for Co1 and Fi23 we have m1 = 60 and m2 = 42.

The two largest orders of semisimple elements (i.e., elements whose order is not divisible by ch(G))
also determine the characteristic:

Theorem 1.4. Let m′
1 = m′

1(G) and m′
2 = m′

2(G), m′
1 > m′

2 , denote the two largest orders of semisimple
elements in a simple group G of Lie type. If G and H are simple groups of Lie type of odd characteris-
tic such that m′

1(G) = m′
1(H) and m′

2(G) = m′
2(H), then either ch(G) = ch(H) or {G, H} ⊂ {G2(2)′ ∼=

PSU(3,3),PSU(4,3),PSU(3,5)} with m′
1 = 8 and m′

2 = 7.

In Section 2, we give the two largest element orders in Lie-type simple groups defined over fields
of odd characteristic, and explain why we had to exclude the groups of characteristic 2 from our the-
orems. Section 3 contains the proof of Theorem 1.3. Theorem 1.2 is proved in Section 4. The proof of
Theorem 1.4 is in Section 5. That section also introduces a variant (m∗

1,m∗
2) of (m1,m2), and formulae

for these pairs (m∗
1,m∗

2) are the basis of the algorithmic application. The algorithm is described in
Section 6, where we prove the following

Theorem 1.5. There is a Monte Carlo algorithm which, when given an absolutely irreducible group K �
GL(d, pe) such that K/Z(K ) is isomorphic to a simple group G of Lie type, outputs a list of numbers
which contains the characteristic of G. The running time is O (ξ log2 d log log d + μd3(log3 d(log log d)2 +
log2 d log log d log pe)), where ξ is the cost of constructing a (nearly) uniformly distributed random element
of K and μ is the cost of a field operation in GF(pe).

The output list has at most 6d members. Moreover, if d < 3 · 105 then the output list has length one: the
algorithm computes ch(G).
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In polynomial time, this algorithm returns a list of at most 6d numbers including ch(G) that are candi-
dates for the characteristic. The estimate 6d is very crude, and is irrelevant for practical performance.
In fact, the algorithm of Theorem 1.5 computes ch(G) if d < 973 455/3 = 324 485, where 973 455 is a
lower bound for the largest semisimple element order in groups PSp(d,2e), P�+(d,2e) and P�−(d,2e)

of characteristic 2 and rank greater than 18. Moreover, in Remark 6.6 we shall indicate how to lower
the output length to at most two (either to p, or to 2 and at most one odd number) for any value of d.
This improvement is asymptotically slower, but still runs in polynomial time. It is even likely that the
algorithm of Theorem 1.5 computes the characteristic for inputs in all dimensions. This would follow
from proving the purely group-theoretic Conjecture 5.9.

If ch(G) 
= p then our algorithm has an added benefit: it also outputs a very short list for the
possible isomorphism types of the simple group G , so Step (2) at the beginning of this introduction
becomes far easier. The algorithm has been implemented in GAP: since 2006 it has been part of the
matrix recognition package recog [NS].

Recall that a randomized algorithm is called Monte Carlo if its output may be incorrect, but the
probability of erroneous output can be bounded from above by the user. The projective order of g ∈
GL(d, pe) is the smallest nonnegative integer k = ‖g‖ such that gk is a scalar matrix. For a prime
power q and prime r, we say that r is a primitive prime divisor of qm − 1, in notation r is a ppd#(q;m)

number, if r | qm − 1 and r � qi − 1 for all i < m.

2. The two largest element orders

Appendix A to this paper contains tables that list the two largest element orders in simple groups
G of Lie type with ch(G) odd. We often have to distinguish between the cases where q is prime or
composite.

Theorem 2.1. Tables A.1–A.7 are correct.

Proof. We give a general indication how these formulae were derived, and then provide details in two
cases: P�−(2m,q) (which is the most complicated of the classical group cases) and the exceptional
groups of Lie type.

Semisimple elements. These are contained in maximal tori. In the classical (linear) groups GL(d,q),
Sp(d,q), GU(d,q), and SOε(d,q), maximal tori are direct products of cyclic groups Zi of order q ji + 1
or q ji − 1 for exponents ji whose sum is d in the special linear and unitary cases, and �d/2
 in the
symplectic and orthogonal cases; moreover, there are restrictions on the ± signs occurring in the
terms q ji ± 1 [Ca].

In the special linear and unitary cases, let T = ∏k
i=1 Zi , |Zi | = q ji ± 1, be a maximal torus in

GL(d,q) or GU(d,q) (only minus signs occur in the special linear case, while q ji ± 1 = q ji − (−1) ji

in the unitary case). Let g ∈ T ∩ SL(d,q) or T ∩ SU(d,q). Let M be the least common multiple of the
numbers (q ji −1)/(q −1) in the special linear and (q ji ±1)/(q +1) in the unitary case, for i = 1, . . . ,k.
Then gM is a scalar matrix on each g-invariant subspace in the natural representation of GL(d,q) or
GU(d,q), so g(q±1)M = 1. Note that (qi1 − 1,qi2 − 1) is divisible by q − 1 in the special linear case,
while (qi1 ± 1,qi2 ± 1) is divisible by q + 1 in the unitary case. Here q ± 1 is factored out of |T |
because we consider T ∩ SL(d,q) or T ∩ SU(d,q), and after that the center (of order (d,q ± 1)) of the
resulting group is also factored out. We need the resulting subgroup T of G to be cyclic, as otherwise
the largest element order in T would be at least a factor q ± 1 smaller than |T | and hence too small.
Therefore, there are k � 3 factors q ji ± 1, and k � 2 except when (d,q + 1) = q + 1 in the unitary case.
Straightforward calculations show that the projective image of g ∈ T ∩ SL(d,q) or T ∩ SU(d,q) in the
corresponding simple group G has order at most the numbers m1(G),m2(G) in Table A.1 or A.2, and
those numbers occur as orders.

Similarly, in the symplectic and orthogonal cases, as above T = ∏k
i=1 Zi � Sp(d,q) or SOε(d,q),

|Zi | = q ji ± 1, and M denotes the least common multiple of the numbers (q ji ± 1)/2. If g ∈ T then
gM = ±1 on each g-invariant subspace and so g2M = 1. If k � 4, or if there are two cyclic groups with
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(qi1 ± 1,qi2 ± 1) > 2, then 2M is either a polynomial in q of degree less than �d/2
, or the leading
coefficient of 2M is at most 1/8 and so 2M < m2 in the corresponding table. (In the polynomials that
arise here, all nonzero coefficients have absolute value one or two times the leading coefficient, so the
leading term dominates.) Once we know that we have to consider tori that are products of at most
three cyclic subgroups Zi , it is straightforward to discover how to choose the exponents ji in order
to maximize the corresponding element orders m1,m2. We will do this below for P�−(2m,q).

The maximal tori of the exceptional groups are more explicitly known than in the classical groups,
and the above process is therefore easier (see below).

Nonsemisimple elements. We also have to consider the maximal orders of nonsemisimple elements.
Such elements are in parabolic subgroups, which are obtained by deleting sets of nodes from the
Dynkin diagram. Also, if q = pe and the maximal semisimple order, written as a polynomial in p, is a
polynomial of degree k, then the maximal order of a nonsemisimple element is a polynomial of degree
at most k − e + 1. (More details of such arguments will be given below for the groups P�−(2m,q)

and for the exceptional groups.) In particular, for composite q, the numbers m1,m2 are orders of semisimple
elements.

The group P�−(2m,q): semisimple elements. Each semisimple element of SO−(2m,q) = SO−(V ) lies
in a maximal torus T , and T is a direct product arising from an orthogonal decomposition of V :

V = (2a1)
+ ⊥ · · · ⊥ (2as)

+ ⊥ (2b1)
− ⊥ · · · ⊥ (2bt)

−

T = (
qa1 − 1

) × · · · × (
qas − 1

) × (
qb1 + 1

) × · · · × (
qbt + 1

)
(2.1)

with t odd and the integers in parentheses representing cyclic groups of the indicated orders. We are
looking for elements of large order in such a torus, and the existence of elements whose orders are
in Table A.6 shows that the two largest semisimple element orders in the simple group are at least
(qm + 1)/(4,qm + 1).

When q = 3 any terms q ± 1 can disappear due to factoring by (4,3m + 1). Therefore this case
requires additional care and leads to a small number of special situations listed in Table A.6, so here
we will only deal with the case q � 5.

There are various elementary requirements:

(i) The gcd of any two terms qc ± 1 must be 2, since we seek elements of order � (qm +
1)/(4,qm + 1). Therefore we cannot have two factors of the form qai − 1, since q > 3.

(ii) If |T | = (q j − 1)(qm− j + 1), then j > m − j since |T | > qm . In particular, there is no q − 1 factor.
(iii) There are at most 3 factors qc ± 1, since each factor is even and we are only factoring from |T |

by (4,qm + 1).
There are only two such factors when (4,qm + 1) = 2.
Therefore, in (2.1) we have to consider only the following three possibilities:

V : (2 j1)
− (2 j1)

− ⊥ (2 j2)
+ (2 j1)

− ⊥ (2 j2)
− ⊥ (2 j3)

−

T : (q j1 + 1) (q j1 + 1)(q j2 − 1) (q j1 + 1)(q j2 + 1)(q j3 + 1).

(iv) If |T | = (qa + 1)(qb + 1)(qc + 1), then 4 divides exactly one of the indicated factors. (In fact, three
factors can occur precisely when a Sylow 2-subgroup of T has the form Z2 ×Z2 ×Z2a with a � 2.
For then the spinor norm condition produces a subgroup Z2 ×Z2a , and factoring out -1 produces
a cyclic group Z2a . Note that it is essential to have a � 2 here so that the product of the three
involutions in the indicated cyclic factors of T is in the subgroup of index 2 corresponding to
spinor norm 0.)
It follows that q ≡ 3 (mod 4) and exactly one of the exponents a,b, c is odd.
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We need to handle small dimensions separately, as is evident from Table A.6. When 8 � 2m � 14,
we list the possibilities for T allowed by the above requirements:

P�−(8,q) q4 + 1
(
q3 − 1

)
(q + 1)

P�−(10,q) q5 + 1
(
q3 − 1

)(
q2 + 1

)
P�−(12,q) q6 + 1

(
q5 − 1

)
(q + 1)

P�−(14,q) q7 + 1
(
q5 − 1

)(
q2 + 1

)
(q + 1)

(
q2 + 1

)(
q4 + 1

)
.

In each of the first three cases, the listed orders, divided by (qm + 1,4), are the two largest
semisimple element orders and appear in Table A.6. For P�−(14,q), the first two are largest when
q ≡ 1 (mod 4), while the second and third are largest when q ≡ 3 (mod 4).

Suppose now that m is even. Then (qm−1 − 1)(q + 1) is the largest order. By (i) and (ii), since
m > 6 we see that (qm−3 − 1)(q3 + 1) or (qm−2 − 1)(q2 + 1) is the second largest order depending on
whether 4 divides m − 2 or not. Thus, Table A.6 holds for semisimple elements when m is even.

As Table A.6 indicates, the situation is more complicated when m is odd. Here (qm−1 − 1)(q + 1)

is not allowed by (i), but (qm−2 − 1)(q2 + 1) can occur. The next smallest possible factorization using
just two factors is (qm−4 − 1)(q4 + 1). When q ≡ 1 (mod 4) there are only 2 factors by (iii), and the 2
largest element orders are (qm−2 − 1)(q2 + 1)/2 and (qm−4 − 1)(q4 + 1)/2, as in Table A.6.

We are left with the case q ≡ 3 (mod 4), where we can obtain larger element orders using three
factors. For example, if (m − 3)/2 is even then |T | can be (qm−3 + 1)(q2 + 1)(q + 1); and it is easy to
check that the next largest possibility is |T | = (qm−5 + 1)(q4 + 1)(q + 1), as in Table A.6.

Finally, assume that m ≡ 1 (mod 4), and write m = 2e−1a + 1 with e � 2 and a odd. We search for
a suitable torus of order (q + 1)(qi + 1)(q j + 1) with i + j = 2e−1a and i > j. Here (i) forces i/(i, j)
or j/(i, j) to be even, and then i + j = 2e−1a implies that i and j are even. By a similar argument,
assuming that a � 3 we have i = 2e−1i∗, j = 2e−1 j∗ with i∗ + j∗ = a. This produces a torus of largest
order when i∗ = a − 1; the order is (q + 1)(q2e−1(a−1) + 1)(q2e−1 + 1), yielding an entry in Table A.6.
The next order of this form is (q +1)(q2e−1(a−2) +1)(q2e +1), which is recorded in Table A.6 if a > 3. If
a = 3 then the preceding order is the same as the largest one, and we need a different type of order.
The next possibilities use (q2 + 1)(qi + 1)(q j + 1) with i + j = 2e−13 − 1. Since 2m > 14, the largest
of these occurs when {i, j} = {3,2e−13 − 4}, as in Table A.6. The same type of argument takes care of
the case a = 1.

The groups P�−(2m,q): all elements. It remains to deal with nonsemisimple elements g = us = su
with s semisimple and u 
= 1 unipotent. Previously we dealt with a torus first and then sought an
element g , now we need to be slightly more careful. Let Z denote the center of �−(2m,q) = �−(V ),
of order (4,qm + 1)/2. We have |g| > qm/2 and |g Z | > 2qm/(4,qm + 1) (since g is in �−(V ) rather
than SO−(V )).

The various eigenvalues of s over the algebraic closure of GF(q) cannot all be distinct, since u
must act nontrivially on some eigenspace of s. Thus, s decomposes V as V = V 1 ⊥ V 2 with V 1 and
V 2 sharing no eigenvalue over any extension field, where V 1 is the perpendicular sum of r copies of
a nondegenerate 2c-space W on each of which s acts the same: as a linear transformation of order
dividing qc ± 1 and hence of determinant 1. Let gi denote the restriction of g to V i . Then g1 is the
commuting product of s|V 1 and a unipotent element, and hence has determinant 1: gi is in SO−(V i)

though not necessarily in �−(V i).
If W has type �−(2c,q), then the homogeneity of g1 implies that V 1 can be viewed as a GF(q2c)-

space. Then |g1| � (qc + 1)pk , where k = �logp(rc)� using the p-exponent of �±(2rc,qc). Similarly, if
W has type �+(2c,q), then |g1| � (qc − 1)pk .

By induction, |g2| < 2qm−rc since dim V 2 = 2(m − rc), so that |g| < (qc + 1)pk2qm−rc . Also |g| >

qm/(qm + 1,4). It follows that q = p, c = 1 and r = 2.
Moreover, V 1 is of type P�+(4,q) and |g1| divides q ± 1. Consequently, we cannot repeat this

argument using g2 in place of g , so that p cannot divide |g2|. Thus, u has order p and [V , u] ⊆ V 1.
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Since |g1| divides q ± 1, this means that u is a long root element of G and |g1| = p(q ± 1). Now
|g| > qm/(qm + 1,4) implies that |g1| = p(q + 1).

At this point we again need to examine semisimple elements g2 ∈ SO−(2m−4,q) with |g2| > qm−2,
where there are at most two factors in the decomposition (2.1) associated to g2, neither of which has
order q + 1. The latter additional information greatly simplifies the preceding semisimple case, and
leads to the remaining entries in Table A.6.

Exceptional groups of Lie type. First consider the largest two semisimple orders. Here the structure of
maximal tori was collected in [KS2] from the literature; this information was also recently recomputed
in [H]. With one exception, it is easy to read off the two largest orders of semisimple elements from
the tables in [KS2] or [H]. The only difficulty concerns the maximal torus Zq4+1 × Z(q+1)(q2+1) in
2.E7(q). If q ≡ 3 (mod 4) then this torus has a cyclic homomorphic image in E7(q), while if q ≡
1 (mod 4) then the homomorphic image is noncyclic, leading to different polynomials for m1 in the
two congruence classes modulo 4 in Table A.7.

Note that each of the two largest semisimple orders is larger than qk , where k is the absolute rank
of G (the rank over the algebraic closure of GF(q)).

It remains to deal with nonsemisimple elements. Here we can write such an element using its
Jordan decomposition: g = su = us with s semisimple and u 
= 1 unipotent. The centralizers of unipo-
tent elements of exceptional groups of odd characteristic were described in [LiS, pp. 185–198]. It
is straightforward to deduce that, for a nontrivial unipotent u ∈ G , CG(u) has an element of order
greater than qk only if u belongs to a long root group (or a short root group in the case G2(3e),
where there is a graph automorphism interchanging the long and short root groups); recall that the
maximal semisimple order, written as a polynomial in p, is a polynomial of degree k.

Thus, suppose that u belongs to a long root group X . Then NG(X) is a maximal parabolic subgroup,
and has a Levi decomposition NG(X) = Q L with Q unipotent and L a Levi factor. We may assume
that g = us with u ∈ Q and s ∈ O p′

(L). Therefore, |g| is largest when s is an element of largest order
in O p′

(L), a group of Lie type of rank one less than that of G .
Moreover, L is a classical group except when G = E8(q) and L = 2.E7(q). Thus, using the classical

group case, or the semisimple case for 2.E7(q), it is straightforward to verify that Table A.7 contains
all instances where nonsemisimple elements have largest or second largest order.

Characteristic 2. We next describe the obstacles for groups of characteristic 2. For special linear and
unitary groups, the above argument remains valid: semisimple elements of the two largest orders
must come from tori that are the products of at most 3 cyclic groups, and usually at most 2.

Exceptional groups also do not cause any problems in characteristic 2. Explicit lists of the maximal
tori are known (collected in [KS2] from the literature, and also calculated independently in [H]),
making a list as in Table A.7 straightforward in the semisimple case. Nonsemisimple elements need
to be considered only in exceptional groups defined over GF(2), for which all element orders are
known.

However, for symplectic and orthogonal groups there is no bound on the number of cyclic factors
in the tori we have to consider, because there are arbitrarily large collections of pairwise relatively
prime integers of the form 2 j ± 1, and we have to consider partitions of �d/2
 into a sum of such
integers j. For each concrete value of d, in principle it is possible to determine the tori giving the
two largest semisimple element orders. However, we do not have general formulae for all d: these
depend in some manner on delicate number-theoretic data involving partitions of the integer �d/2
.
Moreover, when q = 2, m1 and m2 can be even and divisible by different powers of 2. For example,
m1(PSp(26,2)) = 2(21 + 1)(22 + 1)(24 + 1)(25 − 1), m2(PSp(26,2)) = 22(21 + 1)(22 + 1)(28 + 1) and
m1(PSp(36,2)) = 23(21 +1)(22 +1)(24 +1)(28 +1), m2(PSp(36,2)) = (21 +1)(22 +1)(24 +1)(211 −1).
Hence, although groups of characteristic 2 were included in the computations establishing Fact 1.1, we
had to exclude such groups from Theorem 1.3.

Computer checks. The order formulae in Tables A.1–A.7 were also checked experimentally using GAP,
by constructing the appropriate quasisimple matrix groups over a large variety of fields and comput-
ing the projective orders of large samples of random elements.
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3. Proof of Theorem 1.3

Before going into the details of the proof, we outline the basic idea. As we have seen in Section 2,
the maximal orders m1,m2 can be viewed as polynomials in the underlying field size q. Our goal is to
construct low-degree polynomials in q as functions of m1 and m2. We use these polynomials to read
off the value of q (or at least ch(q)). For example, we consider the greatest common divisor (m1,m2),
and a0 := �m1/(m1 − m2)
. Here are some examples where q can be found as a simple function of
m1,m2 and a0. For most d and q, if q is prime and G is an orthogonal group defined over GF(q) then
2(m1 −m2)/(m1,m2)−1 = q; if G is orthogonal or symplectic and q is composite, then a0 −2 ∈ {q,q2};
and if G is unitary and q is composite then a0 − 1 = q. There are exceptions to these rules, mostly in
low rank, that we have to recognize; and of course we also have to identify the exceptional groups
from the pair (m1,m2). To help identify which family of groups the input belongs to, we not only
consider a0 but the first three terms a0,a1,a2 of the continued fraction decomposition

m1

m1 − m2
= a0 + 1

a1 + 1
a2+ 1

...

. (3.1)

We also consider variants

m1

m1 − m2
= b0 − 1

b1 + 1
b2+ 1

...

m1

m1 − m2
= a0 + 1

a1 + 1 − 1
a′

2+ 1
...

m1

m1 − m2
= b0 − 1

b1 + 1 − 1
b′

2+ 1
...

. (3.2)

We use connections between the quantities (m1,m2), a0, b0, a1, b1, a2, a′
2, b2, b′

2 to determine ch(G).
Some of these connections are trivial and provide no useful information regarding ch(G) (for example,
if m1/(m1 − m2) is not an integer then b0 = a0 + 1, and if a1 = 1 then a2 = b1 − 1); moreover, the
continued fraction decompositions may end before a2, a′

2, b2, b′
2 are defined. If the continued fraction

terminates before ai is defined then we write “ai = fail.” We also use the notation “ai 
= fail” if the
continued fraction has an ith term. Similar definitions hold for a′

i , bi , b′
i .

Examining Tables A.1–A.7, we see that low-rank classical groups often have different formulae for
m1,m2 than in the “generic” case. Also, small values of q (in particular, q = 3) often behave differently,
and when we write the integers ai , bi as polynomials of q, for small values of q the leading term may
not be the dominant one. When both q and the rank are small, the behavior of m1 and m2 is so
different that we have to treat those cases individually.

For any fixed bound B , it is clear from Tables A.1–A.7 that there are only finitely many groups G
with m1(G) < B . Hence, we can check that Theorem 1.3 holds for the groups in the set

S0 := {
PSL(2,5),PSL(2,7),PSL(4,3),PSL(4,5),PSL(5,3),PSL(5,5),PSL(5,7),

PSL(5,19),PSL(5,23),PSL(5,25),PSL(8,3),PSU(3,3),PSU(3,5),PSU(3,9),

PSU(4,3),PSU(10,9),PSp(4,3),PSp(6,3),PSp(6,5),PSp(6,7),PSp(6,11),

PSp(8,3),PSp(8,5),PSp(8,7),�(7,3),P�+(8,3),P�+(20,3),P�+(20,5),

P�+(20,11),P�−(10,3),P�−(10,5),P�−(10,7),P�−(10,9),P�−(10,13),

P�−(10,125),P�−(18,3),P�−(18,5),P�−(18,7),P�−(18,19),P�−(18,31),

2G2(3)′, 3 D4(3), 3 D4(5), F4(3), E6(3), E6(5), E6(9), E6(11), E7(3), E8(3)
}

:
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for G ∈ S0, with the exceptions mentioned in Fact 1.1, there is no simple group H � G of Lie type
with m1(G) = m1(H), m2(G) = m2(H), and ch(G) 
= ch(H) (recall that Fact 1.1 includes groups of
characteristic 2).

We will focus on the set C := S \ S0, where S denotes the set of simple groups of Lie type of
odd characteristic. In the rest of this section, we prove Theorem 1.3 for the family C by providing an
algorithm which, given m1(G), m2(G), identifies whether G belongs to the exceptions described in
Theorem 1.3(ii), (iii), and computes ch(G) as a function of m1(G) and m2(G) if this is not the case.

We partition C based on properties of m1(G) and m2(G), so that all groups within a partition class
have a common formula to compute ch(G). This partition is not natural, and its definition was aided
by extensive computer experiments.

We first partition C into five sets:

C1 := {
G ∈ C

∣∣ m1 − m2 > (m1,m2)
2 > 1

}
C2 := {

G ∈ C
∣∣ (m1,m2)

2 � m1 − m2 > (m1,m2) > 1
}

C3 := {
G ∈ C

∣∣ m1 − m2 = (m1,m2) > 1
}

C4 := {
G ∈ C

∣∣ (m1,m2) = 1 & m1 � (m1 − m2)
3/2}

C5 := {
G ∈ C

∣∣ (m1,m2) = 1 & m1 > (m1 − m2)
3/2}.

The set C1 contains most orthogonal, symplectic and unitary groups defined over fields of com-
posite size, and for most of these groups either a0 − 1 or a0 − 2 is a power of q. Our task is to
separate those groups in C1 that do not satisfy this last condition. To this end, we further partition C1
as follows:

C11 := {
G ∈ C1

∣∣ a1 > 1 & (3a1)
2 < a0

}
C12 := {

G ∈ C1
∣∣ (3a1)

2 � a0 & a2 = fail & a0 = a1
}

C13 := {
G ∈ C1

∣∣ (3a1)
2 � a0 & a2 = fail & a0 
= a1

}
C14 := {

G ∈ C1
∣∣ (3a1)

2 � a0 & a2 
= fail & a0 = a1 + 1
}

C15 := {
G ∈ C1

∣∣ a1 = 1 & b1 = (m1,m2)
}

C16 := {
G ∈ C1

∣∣ a1 = 1 & b1 < a0 & b′
2 = 2

}
C17 := {

G ∈ C1
∣∣ a1 = 1 & b1 < a0 & b′

2 = 9
}

C18 := {G ∈ C1 | a1 = 1 & b1 < a0 & b2 = 4}
C19 := {G ∈ C1 | a1 = 1 & b1 < a0 & b1 − 4b2 = 6}
C110 := {

G ∈ C1
∣∣ a1 = 1 & b1 > a0 > 5 & a0 ≡ 1 (mod 2)

}

C111 := C1 \
10⋃

i=1

C1i .

Remark 3.1. The assertions in Propositions 3.2–3.10 can be verified by straightforward but tedious
checking using the formulae in Tables A.1–A.7. We express the integers ai,bi as polynomials in q.
These expressions may not be valid for small values of q. For example, for G = E6(q), if q � 5 is
prime then a0 = q2 − 1, a1 = 1, and a2 = q; but for q = 3 we have a2 = q + 1, so we placed the
group E6(3) in S0. It is also possible that the parameters of a group “accidentally” satisfy a condition
designed for another class. Still considering the set of groups G = {E6(q) | q � 5 prime}, all groups
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in G belong to C15. However, E6(5) also satisfies the defining condition of C16 so we placed E6(5)

in S0. It is also possible that infinite subfamilies satisfy some accidental numerical property, and in
this case we have to devise a refinement of our partition classes Ci j... . The primary example is the
subfamily PSL(16k + 14,q), where the generic behavior occurs only for q > 151 (cf. Proposition 3.10
and the class C549a). The exact determination of which groups had to be placed in S0, and the check
of validity of Propositions 3.2–3.10 for small rank and field size, were aided by computer calculations.
Computer experiments also helped to find the appropriate definitions of the classes Ci j... .

Proposition 3.2. For G ∈ C ,

(1) G ∈ C11 if and only if G = P�−(2e + 2,q) for some e � 5 and composite q ≡ 3 (mod 4). In this case,
ch(G) = ch(2a1 + 3).

(2) G ∈ C12 if and only if G = PSp(6,q) or G = �(7,q) for some composite q. In this case, ch(G) = ch(a0).
(3) G ∈ C13 if and only if G = G2(q) for some composite q ≡ 1 (mod 3). In this case, ch(G) = ch(a0 + 1).
(4) G ∈ C14 if and only if G = 2 E6(q) for some prime q. In this case, ch(G) = ch(a0).
(5) G ∈ C15 if and only if G = E6(q) for some prime q. In this case, ch(G) = ch(b1 − 1).
(6) G ∈ C16 if and only if G = P�+(16,3e) for some e � 2. In this case, ch(G) = 3.
(7) G ∈ C17 if and only if either G = P�+(16,q) for some composite q ≡ 1 (mod 3) or G = P�−(18,q) for

some prime q ≡ 7 (mod 12). In this case, ch(G) = ch(3b1 + 1).
(8) G ∈ C18 if and only if either G = P�+(16,q) for some composite q ≡ 2 (mod 3) or G = P�−(18,q) for

some prime q ≡ 11 (mod 12). In this case, ch(G) = ch(3b1 − 1).
(9) G ∈ C19 if and only if G = P�−(18,q) for some composite q ≡ 3 (mod 4). In this case, ch(G) =

ch(b1 − 3).
(10) G ∈ C110 if and only if G = P�−(14,q) for some composite q ≡ 3 (mod 4). In this case, ch(G) = ch(a0).
(11) G ∈ C111 if and only if G is on the following list: PSp(2k,q) or �(2k + 1,q) with k � 5 and q composite;

PSU(d,q) with d � 8, d /∈ {9,15} and q composite; P�+(8k,q) with k � 3 and q composite; P�+(8k +
4,q) with k � 1; P�+(4k + 2,q) with k � 2 and q composite, except P�+(16k + 2,q) with k � 2 and
q ≡ 1 (mod 4) composite; P�−(8k,q) with k � 2 and q composite; P�−(18,q) with q ≡ 1 (mod 4);
P�−(8k + 2,q) with k � 3 and all q, except k ∈ {2e | e � 2} ∪ {7 · 2e | e � 0} ∪ {3} and q ≡ 3 (mod 4)

composite; P�−(8k + 4,q) with k � 2 and q composite; P�−(8k + 6,q) with k � 2 and q ≡ 1 (mod 4);
P�−(8k + 6,q) with k � 2 and composite q ≡ 3 (mod 4) except k = 3; 3 D4(q) with q prime; F4(q) with
q composite; E8(q) with q 
≡ 1 (mod 3) composite and q 
≡ 1 (mod 12) prime.
In this case, a0 = q2m + 2 or a0 = q2m + 1 for some m � 0, and so ch(G) = ch(a0 − 2) if a0 is odd and
ch(G) = ch(a0 − 1) if a0 is even.

The set C2 contains most orthogonal groups defined over prime fields. Let r := 2(m1 − m2)/

(m1,m2) − 1; for most such groups, r = q. However, we need to separate those groups in C2 that
do not satisfy r = q. Partition C2 as follows:

C21 := {G ∈ C2 | a1 > a0}
C22 := {

G ∈ C2
∣∣ (m1,m2) = 4

}
C23 := {G ∈ C2 | 2a0 − r = 1}
C24 := {G ∈ C2 | 2a0 − r = 3}
C25 := {

G ∈ C2
∣∣ (m1,m2) 
= 4 & 2 � a0/a1 < 4

}

C26 := C2 \
5⋃

i=1

C2i .

Proposition 3.3. For G ∈ C ,

(1) G ∈ C21 if and only if G = PSU(15,q) for some composite q. In this case, ch(G) = ch(a0 − 1).
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(2) G ∈ C22 if and only if either G = �(2k + 1,3) for some k � 4, or G = P�+(4k + 2,3) for some k � 2, or
G = P�−(4k,3) for some k � 2. In this case, ch(G) = 3.

(3) G ∈ C23 if and only if G = 2 E6(q) for some composite q. In this case, ch(G) = ch(a0).
(4) G ∈ C24 if and only if either G = PSU(7,q) for some composite q or G = E8(q) for some composite q ≡

7 (mod 12) or some q ≡ 1 (mod 12). In this case, ch(G) = ch(a0 − 1).
(5) G ∈ C25 if and only if G = P�−(2k,q) for some k ∈ {13} ∪ {7 · 2e + 1 | e � 1} and composite q ≡

3 (mod 4). In this case, ch(G) = ch(a0 − 2).
(6) G ∈ C26 if and only if G is on the following list: F4(q) for some prime q; �(2k + 1,q) for some k � 4 and

prime q � 5; P�+(2k,q) for some k � 5, k 
≡ 2 (mod 4) and prime q � 5; P�+(8k,3) for some k � 2;
P�−(8k,q) for some k � 1 and prime q � 5; P�−(8k + 6,q) for some k � 1 and prime q ≡ 3 (mod 4).
In this case, r = q and so ch(G) = ch(r).

The set C3 contains most symplectic and unitary groups defined over prime fields. In C3, we lose
our major tool because the continued fraction expansion of m1/(m1 − m2) does not provide numbers
ai,bi for i � 1. Partition the set C3 as follows; C38 isolates the potential examples in Theorem 1.3(iii).

C31 := {
G ∈ C3

∣∣ m1 > a3/2
0 & a0 = 2

}
C32 := {

G ∈ C3
∣∣ m1 > a3/2

0 & 2 < a0 = (m1,m2) − 1
}

C33 := {
G ∈ C3

∣∣ m1 > a3/2
0 & 2 < a0 < (m1,m2) − 1 & 4a0 − 2 = (m1,m2)

}
C34 := {

G ∈ C3
∣∣ m1 > a3/2

0 & 2 < a0 < (m1,m2) − 1 & 4a0 − 2 
= (m1,m2)
}

C35 := {
G ∈ C3

∣∣ m1 > a3/2
0 & a0 = 3(m1,m2) − 1

}
C36 := {

G ∈ C3
∣∣ m1 > a3/2

0 & a0 > 3(m1,m2) − 1 & 8a0 − 4 = (m1,m2)
2}

C37 := {
G ∈ C3

∣∣ m1 > a3/2
0 & a0 > 3(m1,m2) − 1 & 8a0 − 4 
= (m1,m2)

2}
C38 := {

G ∈ C3
∣∣ m1 � a3/2

0

}
.

Proposition 3.4. For G ∈ C ,

(1) G ∈ C31 if and only if G = P�+(8,q). In this case, ch(G) = ch(4m1 + 1).
(2) G ∈ C32 if and only if G = PSU(3,q) for some prime q ≡ 1 (mod 3). In this case, ch(G) = ch(a0).
(3) G ∈ C33 if and only if G = PSp(4,q) for some prime q. In this case, ch(G) = ch(2a0 − 1).
(4) G ∈ C34 if and only if G = �7(q) for some prime q. In this case, ch(G) = ch(a0 − 1).
(5) G ∈ C35 if and only if G = PSU(3,q) for some prime q ≡ 2 (mod 3). In this case, ch(G) = ch(a0).
(6) G ∈ C36 if and only if G = PSp(6,q) for some prime q. In this case, ch(G) = ch(2a0 − 1).
(7) G ∈ C37 if and only if G = E7(q) for some prime q ≡ 1 (mod 4). In this case, ch(G) = ch(2(m1,m2) + 1).
(8) G ∈ C38 if and only if G = PSp(2k,q) for some k � 4 and prime q or G = PSU(d,q) for some d � 4 and

prime q.

The set C4 contains mostly low-rank groups, and the characteristics of its members are easy to
determine. Partition C4 as follows:

C41 := {
G ∈ C4

∣∣ b1 > 1 & a0 ≡ 0 (mod 2)
}

C42 := {
G ∈ C4

∣∣ b1 > 1 & a0 ≡ 1 (mod 2)
}

C43 := {
G ∈ C4

∣∣ b1 = 1 & a0 ≡ 1 (mod 2) & a1 ≡ 1 (mod 2)
}

C44 := {
G ∈ C4

∣∣ b1 = 1 & a0 ≡ 1 (mod 2) & a1 ≡ 0 (mod 2)
}
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C45 := {G ∈ C4 | b1 = 1 & a0 = 2}
C46 := {

G ∈ C4
∣∣ b1 = 1 & a0 > 2 & a0 ≡ 0 (mod 2)

}
.

Proposition 3.5. For G ∈ C ,

(1) G ∈ C41 if and only if G = PSL(6,q) for some q. In this case, ch(G) = ch(a0 + 1).
(2) G ∈ C42 if and only if G = PSU(6,q) for some composite q. In this case, ch(G) = ch(a0).
(3) G ∈ C43 if and only if G = P�+(16k + 2,q) for some k � 2 and composite q ≡ 1 (mod 4). In this case,

ch(G) = ch(a0 − 2).
(4) G ∈ C44 if and only if either G = 3 D4(q) for some composite q or G = E7(q) for some composite q ≡

1 (mod 4). In this case, ch(G) = ch(a0).
(5) G ∈ C45 if and only if G = PSL(2,q) for some prime q. In this case, ch(G) = m1 .
(6) G ∈ C46 if and only if G is on the following list: PSU(d,q) for some d ∈ {5,9} and composite q; PSp(8,q)

for some composite q; �(9,q) for some composite q; P�−(2k,q) for some k ∈ {4,6} and composite q;
P�−(14,q) for some q ≡ 1 (mod 4). In this case, ch(G) = ch(a0 − 1).

The set C5 contains most of the special linear groups. This is quite a difficult category to handle,
because in special linear groups a0 is not a small-degree polynomial in the size of the defining field.
As a preliminary step, we partition C5 into four parts:

C51 := {
G ∈ C5

∣∣ fail ∈ {a1,a2} or max{a1,b1} = 2
}

C52 := {G ∈ C5 \ C51 | b1 > 2}
C53 := {

G ∈ C5 \ C51
∣∣ a1 > 2 & a′

2 > 1
}

C54 := {
G ∈ C5 \ C51

∣∣ a1 > 2 & a′
2 = 1

}
.

Now partition C51 as follows, where C511 isolates the potential examples in Theorem 1.3(ii).

C511 := {G ∈ C51 | m1 − m2 = 1}
C512 := {G ∈ C51 | a1 > 2 & a2 = fail & a0 − 3a1 = 4}
C513 := {G ∈ C51 | a1 > 2 & a2 = fail & a0 − 3a1 = −3}
C514 := {G ∈ C51 | a1 = 2 & a2 = 3}
C515 := {G ∈ C51 | a1 = 2 & a2 = 11}
C516 := {

G ∈ C51
∣∣ a1 = 2 & a′

2 = 11
}

C517 := {
G ∈ C51

∣∣ a1 = 2 & a′
2 = 5

}
C518 := {

G ∈ C51
∣∣ a1 = 2 & a′

2 > 1 & a′
2 /∈ {5,11}}

C519 := {G ∈ C51 | b1 = 2}.

Proposition 3.6. For G ∈ C ,

(1) G ∈ C511 if and only if G = G2(q) for some prime q or G = PSL(2,q) for some composite q or G =
PSp(4,q) for some composite q.

(2) G ∈ C512 if and only if G = PSU(3,q) for some composite q ≡ 2 (mod 3). In this case, ch(G) = ch(a0 − 2).
(3) G ∈ C513 if and only if G = PSL(3,q) for some q ≡ 1 (mod 3). In this case, ch(G) = ch(a0 + 1).
(4) G ∈ C514 if and only if G = PSL(4k + 3,5) for some k � 0. In this case, ch(G) = 5.
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(5) G ∈ C515 if and only if G = PSL(8k,3) for some k � 2. In this case, ch(G) = 3.
(6) G ∈ C516 if and only if G = PSL(4k + 3,7) for some k � 1. In this case, ch(G) = 7.
(7) G ∈ C517 if and only if G = PSL(16k + 2,3) for some k � 1. In this case, ch(G) = 3.
(8) G ∈ C518 if and only if G = 2G2(32e+1) for some e � 1. In this case, ch(G) = 3.
(9) G ∈ C519 if and only if G = PSL(4k + 3,3) for some k � 0. In this case, ch(G) = 3.

For the groups G = G2(3) and H = PSL(2,25) we have m1(G) = m1(H) = 13 and m2(G) =
m2(H) = 12. We conjecture that this is the only example in C511 where m1 and m2 do not determine the
characteristic. The following lemma, pointed out by László Seress, may be the first step toward prov-
ing this conjecture.

Partition C511 as follows.

C5111 := {G ∈ C511 | m1 = 13}
C5112 := {G ∈ C511 | m1 
= 13 & 2m1 − 1 square}
C5113 := {G ∈ C511 | m1 
= 13 & 2m1 − 1 nonsquare}.

Lemma 3.7. For G ∈ C511 ,

(1) G ∈ C5111 if and only if either G = G2(3) or G = PSL(2,25).
(2) G ∈ C5112 if and only if either G = PSL(2,q) for some square q or G = PSp(4,q) for some composite q. In

this case, ch(G) = ch(2m1 − 1).
(3) G ∈ C5113 if and only if either G = PSL(2,q) for some composite but nonsquare q, or G = G2(q) for some

prime q > 3.

Proof. Suppose that m1 
= 13. If G = PSL(2,q) for some square (and so necessarily composite) q then,
by Table A.1, 2m1 − 1 = q and if G = PSp(4,q) for some composite q then 2m1 − 1 = q2. Conversely,
if 2m1 − 1 is a square then clearly G 
= PSL(2,q) for a nonsquare q and it is enough to prove that
G 
= G2(p) for any prime p > 3.

If G = G2(p) then 2m1 − 1 = 2p2 + 2p + 1, so it is enough to prove that the Diophantine equation
2p2 + 2p + 1 = x2 has no solution for a prime p > 3. If p2 + (p + 1)2 = x2 then (p, p + 1, x) is a
Pythagorean triple of relatively prime integers, so there exist integers u, v such that p = u2 − v2,
p + 1 = 2uv , and x = u2 + v2. Since p = (u − v)(u + v) is a prime, we must have u − v = 1 and
u + v = p. This implies that u = (p + 1)/2, v = (p − 1)/2, and then p + 1 = 2uv = (p2 − 1)/2, for
which the only positive solution is p = 3. �

Partition C52 as follows, where C523, C524, and C527 are the first instances in our partitions that
isolate special linear groups in infinitely many dimensions over infinitely many fields.

C521 := {G ∈ C52 | b1 − a0 = −2}
C522 := {G ∈ C52 | b1 − a0 = 3}
C523 := {G ∈ C52 | b1 − a0 < −2 & b1 � b2}
C524 := {

G ∈ C52
∣∣ b1 − a0 < −2 & b1 − 5b2 ∈ {4,5,6,7,8}}

C525 := {G ∈ C52 | b1 − a0 < −2 & b1 = 8 & b2 = 3}
C526 := {G ∈ C52 | b1 − a0 < −2 & b1 = 8 & b2 = 2}
C527 := {

G ∈ C52
∣∣ b1 − a0 < −2 & b1 > b2 & b1 
= 8 & b1 − 5b2 /∈ {4,5,6,7,8}}.

Proposition 3.8. For G ∈ C ,

(1) G ∈ C521 if and only if G = PSU(4,q) for some composite q. In this case, ch(G) = ch(a0).
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(2) G ∈ C522 if and only if G = PSL(4,q) for some q. In this case, ch(G) = ch(a0 + 1).
(3) G ∈ C523 if and only if G = PSL(16k + 10,q) for some k � 0. In this case, ch(G) = ch(b1).
(4) G ∈ C524 if and only if G = PSL(8k + 4,q) for some k � 1 and q > 5. In this case, ch(G) = ch(b1 − 2).
(5) G ∈ C525 if and only if G = PSL(8k + 4,3) for some k � 1. In this case, ch(G) = 3.
(6) G ∈ C526 if and only if G = PSL(8k + 4,5) for some k � 1. In this case, ch(G) = 5.
(7) G ∈ C527 if and only if G = PSL(16k + 6,q) for some k � 1. In this case, let q0 be the smallest integer such

that b1 � q3
0 + 2q2

0 + 4q0 + 30. Then q = q0 and so ch(G) = ch(q0).

We are left with the most complicated cases: C53 and C54. Here, the groups PSL(16k + 14,q) cause
difficulties: if q � 17 then a2 = �(q + 1)/17
 and if q < 17 then a2 follows no simple pattern (but a2
is independent of k). Moreover, if 17 � q � 31 then a′

2 follows no simple pattern. Hence the cases
q � 31 have to be handled one at a time.

Define C53x = {G ∈ C53 | a′
2 = x}, 2 � x � 11, and C5312 = {G ∈ C53 | a′

2 > 11}. We partition C532 and
C533 further:

C532a := {G ∈ C532 | a1 = 5}
C532b := {G ∈ C532 | a1 = 12}
C532c := {G ∈ C532 | a1 = 596}
C532d := {

G ∈ C532
∣∣ a1 ∈ {14 467,18 325,22 815,27 985}}

C532e := {
G ∈ C532 \ (C532a ∪ C532b ∪ C532c ∪ C532d)

∣∣
(6a1 + 5)3 + (6a1 + 5)2 + 2(6a1 + 5) + 4 = a0

}
C532 f := {

G ∈ C532 \ (C532a ∪ C532b ∪ C532c ∪ C532d)
∣∣

(6a1 + 5)3 + (6a1 + 5)2 + 2(6a1 + 5) + 4 
= a0
}

C533a := {G ∈ C533 | a0 − 3a1 = −1}
C533b := {G ∈ C533 | a0 − 3a1 = 6}
C533c := {G ∈ C533 | a0 − 3a1 > 6 & a1 = 10}
C533d := {G ∈ C533 | a0 − 3a1 > 6 & a1 = 11 193}.

Proposition 3.9. The sets C536 and C538 are empty. For G ∈ C ,

(2a) G ∈ C532a if and only if either G = E7(7) or G = PSL(8k,7) for some k � 1. In this case, ch(G) = 7.
(2b) G ∈ C532b if and only if G = PSL(4k + 1,9) for some k � 1. In this case, ch(G) = 3.
(2c) G ∈ C532c if and only if G = PSL(16k + 14,9) for some k � 0. In this case, ch(G) = 3.
(2d) G ∈ C532d if and only if G = PSL(16k + 14,q) for some k � 0 and q ∈ {25,27,29,31}. In this case, let q0

be the unique positive integer such that a1 = q3
0 − 2q2

0 + 4q0 − 8. Then q = q0 and so ch(G) = ch(q0).
(2e) G ∈ C532e if and only if G = E6(q) for some composite q ≡ 2 (mod 3). In this case, ch(G) = ch(6a1 + 5).
(2f) G ∈ C532 f if and only if G = PSL(4k + 3,3e) for some k � 1 and e � 2. In this case, ch(G) = 3.
(3a) G ∈ C533a if and only if either G = G2(3e) or G = PSL(3,3e) for some e � 2. In this case, ch(G) = 3.
(3b) G ∈ C533b if and only if G = PSU(3,q) for some composite q ≡ 1 (mod 3). In this case, ch(G) =

ch(a0 − 2).
(3c) G ∈ C533c if and only if G = PSL(4k + 1,7) for some k � 2. In this case, ch(G) = 7.
(3d) G ∈ C533d if and only if G = PSL(16k + 14,23) for some k � 0. In this case, ch(G) = 23.

(4) G ∈ C534 if and only if either G = PSL(8k,5) for some k � 1 or G = P�−(10,q) for some q > 13, q ≡
1 (mod 3). In this case, if a1 = 3 then ch(G) = 5 while if a1 > 3 then ch(G) = ch(�√a0
).

(5) G ∈ C535 if and only if G = PSL(16k + 14,19) for some k � 0. In this case, ch(G) = 19.
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(7) G ∈ C537 if and only if G = E6(q) for some composite q ≡ 1 (mod 3). In this case, ch(G) = ch(6a1 + 7).
(9) G ∈ C539 if and only if G = PSL(4k + 3,q) for some k � 1 and q > 13, q ≡ 1 (mod 3). In this case,

ch(G) = ch(3a1 + 1).
(10) G ∈ C5310 if and only if either G = PSL(4k + 3,13) for some k � 1 or G = PSL(16k + 14,17) for some

k � 0. In this case, if a1 = 4 then ch(G) = 13 and if a1 = 4395 then ch(G) = 17.
(11) G ∈ C5311 if and only if G = PSL(16k + 14,7) for some k � 0. In this case, ch(G) = 7.
(12) G ∈ C5312 if and only if G = PSL(16k + 2,q) for some k � 1 and q > 3. In this case, ch(G) = ch(a1 + 1).

In C54, we have to deal with three doubly infinite families where a2 → ∞ as q → ∞. In addition to
the groups PSL(16k + 14,q) with a2 = �(q + 1)/17
 for q � 37, the set C54 also contains PSL(4k + 1,q)

with a2 = �(q − 3)/4
 for q � 11 and k � 2, and PSL(8k,q) with a2 = �(q + 1)/5
 for q � 9 and k � 1.
Define

C54x := {G ∈ C54 | a2 = x} for x ∈ {2,3,4,5,8}
C549 := {

G ∈ C54
∣∣ a2 ∈ {6,7} or a2 � 9

}
.

For x ∈ {2,3,4,9} we partition C54x further:

C542a := {
G ∈ C542

∣∣ a1 ∈ {7,9,11,14}}
C542b := {G ∈ C542 | a1 = 16}
C542c := {

G ∈ C542
∣∣ a1 /∈ {7,9,11,14,16} & a1 ≡ 0 (mod 2)

}
C542d := {

G ∈ C542
∣∣ a1 /∈ {7,9,11,14,16} & a1 ≡ 1 (mod 2)

}
C543a := {G ∈ C543 | a0 − 3a1 = 5}
C543b := {G ∈ C543 | a0 − 3a1 = −2}
C543c := {G ∈ C543 | a0 − 3a1 > 5 & a1 � 20}
C543d := {G ∈ C543 | a0 − 3a1 > 5 & a1 > 20}
C544a := {

G ∈ C544
∣∣ a1 ∈ {17,21}}

C544b := {G ∈ C544 | a1 = 22}
C544c := {

G ∈ C544
∣∣ a1 /∈ {17,21} & a1 ≡ 1 (mod 2)

}
C544d := {

G ∈ C544
∣∣ a1 
= 22 & a1 ≡ 0 (mod 2)

}
C549a := {G ∈ C549 | a1 > 5a2 + 8}
C549b := {

G ∈ C549
∣∣ a1 � 5a2 + 8 & a1 ≡ 0 (mod 2)

}
C549c := {

G ∈ C549
∣∣ a1 � 5a2 + 8 & a1 ≡ 1 (mod 2)

}
.

Proposition 3.10. For G ∈ C ,

(2a) G ∈ C542a if and only if either G = PSL(8k,q) for some k � 1 and q ∈ {9,11,13}, or G = E7(11), or
G = PSL(4k + 1,11) for some k � 1. In this case, if a1 = 14 then ch(G) = 11 and otherwise ch(G) =
ch(a1 + 2).

(2b) G ∈ C542b if and only if either G = PSL(4k + 1,13) for some k � 1 or G = PSL(16k + 14,3) for some
k � 0. In this case, if a0 ≡ 0 (mod 3) then ch(G) = 3 and if a0 ≡ 1 (mod 3) then ch(G) = 13.

(2c) G ∈ C542c if and only if G = P�−(10,3e) for some e � 3. In this case, ch(G) = 3.
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(2d) G ∈ C542d if and only if G = PSL(16k +14,q) for some k � 0 and q ∈ {5,37,41,43,47,49}. In this case,
let q0 be the smallest integer such that a1 � q3

0 − 2q2
0 + 4q0 − 6. Then q0 = q and so ch(G) = ch(q0).

(3a) G ∈ C543a if and only if G = PSU(3,3e) for some e � 3. In this case, ch(G) = 3.
(3b) G ∈ C543b if and only if either G = PSL(3,q) for some q � 11, q ≡ 2 (mod 3) or G = G2(q) for some

composite q ≡ 2 (mod 3). In this case, ch(G) = ch(a0 + 1).
(3c) G ∈ C543c if and only if G = PSL(8k,17) for some k � 1 or G = PSL(4k + 1,17) for some k � 1. In this

case, ch(G) = 17.
(3d) G ∈ C543d if and only if G = PSL(16k + 14,q) for some k � 0 and q ∈ {11,53,59,61}. In this case, let

q0 be the smallest integer such that a1 � q3
0 − 2q2

0 + 4q0 − 6. Then q0 = q and so ch(G) = ch(q0).
(4a) G ∈ C544a if and only if either G = PSL(8k,q) for some k � 1 and q ∈ {19,23}, or G = E7(q) for some

q ∈ {19,23}. In this case, ch(G) = ch(a1 + 2).
(4b) G ∈ C544b if and only if G = PSL(4k + 1,19) for some k � 2. In this case, ch(G) = 19.
(4c) G ∈ C544c if and only if G = PSL(16k + 14,q) for some k � 0 and q ∈ {67,71,73,79,81,83}. In this

case, let q0 be the smallest integer such that a1 � q3
0 −2q2

0 +4q0 −6. Then q0 = q and so ch(G) = ch(q0).
(4d) G ∈ C544d if and only if G = PSL(4k + 3,q) for some k � 1 and q � 11, q ≡ 2 (mod 3). In this case,

ch(G) = ch(3a1 − 1).
(5) G ∈ C545 if and only if G occurs on the following list: PSL(5,q) for q ∈ {27,29}; PSL(4k + 1,q) for some

k � 2 and q ∈ {23,25}; PSL(8k,q) for some k � 1 and q ∈ {25,27}; E7(27); PSL(16k + 14,q) for some
k � 0 and q ∈ {89,97}; and E6(3e) for some e � 3.
In this case, if a1 ∈ {26,28,30,32} then ch(G) = ch(a1 − 3); if a1 ∈ {23,25} then ch(G) = ch(a1 + 2);
if a1 = 689 475 then ch(G) = 89; if a1 = 894 235 then ch(G) = 97; for all other values of a1 , ch(G) = 3.

(8) G ∈ C548 if and only if G occurs on the following list: PSL(5,q) for q ∈ {41,43}; PSL(4k + 1,37) for
some k � 2; PSL(8k,q) for some k � 1 and q ∈ {41,43}; E7(43); PSL(16k + 14,q) for some k � 0 and
q ∈ {137,139,149,151}; and P�−(10,q) for some q � 11, q ≡ 2 (mod 3).
In this case, if a1 ∈ {40,44,46} then ch(G) = ch(a1 − 3); if a1 ∈ {39,41} then ch(G) = ch(a1 + 2); if
a1 = 2 534 355 then ch(G) = 137; if a1 = 2 647 525 then ch(G) = 139; if a1 = 3 264 135 then ch(G) =
149; if a1 = 3 397 945 then ch(G) = 151; for all other values of a1 , ch(G) = ch(3a1 + 2).

(9a) G ∈ C549a if and only if G = PSL(16k + 14,q) for some k � 0 and q ∈ {13} ∪ {q � 101 | q /∈
{137,139,149,151}}. In this case, let q0 be the smallest integer such that a1 � q3

0 − 2q2
0 + 4q0 − 6.

Then q0 = q and so ch(G) = ch(q0).
(9b) G ∈ C549b if and only if either G = PSL(5,q) for some q ∈ {31,37} ∪ {q | q � 47} or G = PSL(4k + 1,q)

for some k � 2 and q ∈ {3}∪{q � 27 | q 
= 37}. In this case, if a1 = 8 then ch(G) = 3 and for other values
of a1 , ch(G) = ch(a1 − 3).

(9c) G ∈ C549c if and only if either G = PSL(8k,q) for some k � 1 and q ∈ {29,31,37} ∪ {q | q � 47}, or
G = E7(q) for some q ∈ {31} ∪ {q � 47 | q ≡ 3 (mod 4)}, or G = PSL(4k + 1,5) for some k � 2. In this
case, if a1 = 9 then ch(G) = 5 and for other values of a1 , ch(G) = ch(a1 + 2).

The preceding propositions complete the proof of Theorem 1.3.

4. Proof of Theorem 1.2

In the ambiguous cases appearing in Theorem 1.3(ii), (iii), the three largest element orders mi are
listed in Table 1. For special linear groups q is composite; in all other cases q is prime. For the unitary
groups in Table 1, a(n) denotes the smallest odd integer a � 3 satisfying (a,n − a) = 1; we use a(n)

only for values of n for which a(n) < n/2.

Proof of Theorem 1.2. Suppose first that G ∈ C5113 in Lemma 3.7, corresponding to the ambiguity
in Theorem 1.3(ii). If m1/2 � m3 then G = PSL(2,q) and ch(G) = ch(2m1 − 1). On the other hand, if
m1/2 < m3 then G = G2(q) and ch(G) = ch(m3).

If G ∈ C38 in Lemma 3.4, corresponding to the ambiguity in Theorem 1.3(iii), then define a :=
�m1/(m1 − m3)
. By straightforward checking of Table 1, we find that a < 2m1/3 if and only if G
is symplectic and q > 3; in this case, ch(G) = ch((m1 − m2)/2). Also, a < 2m1/3 and m1 − m2 =
m2 − m3 = 6 if and only if G is symplectic and q = 3. Finally, a � 2m1/3 and m1 − m2 = m2 − m3 = 6
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Table 1
Some m1, m2, m3.

G Restrictions m1 m2 m3

PSL(2,9) 5 4 3
PSL(2,q) 9 < q ≡ 1 (4)

q+1
2

q−1
2

q−1
4

PSL(2,q) q ≡ 3 (4)
q+1

2
q−1

2
q+1

4

G2(q) q2 + q + 1 q2 + q q2

PSU(2k + 1,q) k ∈ {2,4} q2k+q
(q+1,2k+1)

(q2k−1)
(q+1,2k+1)

q2k+1+1
(q+1)(q+1,2k+1)

PSU(2k + 1,q) k /∈ {2,4} q2k+q
(q+1,2k+1)

q2k−1
(q+1,2k+1)

(qa′ +1)(q2k+1−a′ −1)
(q+1)(q+1,2k+1)

a′ := a(2k + 1)

PSU(4,3) 12 9 8
PSU(6,5) 630 624 521

PSU(2k,q) k > 3 q2k−2 + q q2k−2 − 1 q(q3+1)(q2k−5+1)
q+1

q + 1 | 2k
3 � 2k + 1

PSU(2k,q) k > 2 q2k−2 + q q2k−2 − 1 (q3+1)(q2k−4−1)
q+1

q + 1 | 2k
3 | 2k + 1

PSU(2k,q) k ∈ {2,3} q2k−1+1
(q+1,2k)

q2k−1−q
(q+1,2k)

q2k−1
(q+1)(q+1,2k)

q + 1 � 2k

PSU(2k,q) k � 4 q2k−1+1
(q+1,2k)

q2k−1−q
(q+1,2k)

(qa(2k)+1)(q2k−a(2k)+1)
(q+1)(q+1,2k)

q + 1 � 2k

PSp(2k,3) k � 4 3k + 9 3k + 3 3k − 3

PSp(4k,q) k � 2,q > 3 q2k + q q2k − q q(q+1)(q2k−2+1)
2

PSp(4k + 2,q) k � 2,q > 3 q2k+1 + q q2k+1 − q (q+1)(q2k+1)
2

Table 2
Exceptions in the semisimple case.

G Restrictions m′
1 m′

2

P�+(8,3) 20 14
P�−(10,3) 80 65
P�−(14,3) 820 728

P�−(2e + 2,3) e � 4 32e−1 − 1 (32e−2−1 − 1)(32e−2+1 − 1)

P�−(2e3 + 2,3) e � 3 (32e + 1)(32e−1 + 1) 33·2e−1 − 1
PSU(4,3) 8 7
PSU(6,5) 624 521

do not both hold if and only if G is unitary. In this case, a ∈ {q,q + 1} and so ch(G) = ch(a) if a is odd
and ch(G) = ch(a − 1) if a is even. �
5. Proof of Theorem 1.4 and a variant

We first note the following

Theorem 5.1. With the exceptions listed in Table 2, the formulae for m′
1 , m′

2 coincide with the appropriate line
for composite q in Tables A.1–A.7 in Appendix A.

Proof. This is contained in the proof of Theorem 2.1: that proof started with the determination of the
two largest semisimple element orders in each group. �
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Proof of Theorem 1.4. The proof closely follows the one in Section 3. For reasons similar to the ones
discussed in Remark 3.1, we exclude the following set of groups from the general argument:

S ′
0 := {

PSL(5,11),PSU(3,7),PSU(6,5),PSU(6,7),PSU(8,3),PSU(8,7),

PSU(16,3),PSU(16,7),PSp(10,3),PSp(12,3),PSp(14,3),�(9,3),�(11,3),

�(13,3),�(15,3),P�+(10,3),P�+(14,3),P�+(16,3),P�+(16,5),P�+(16,7),

P�+(16,13),P�+(16,19),P�+(16,31),P�−(8,3),P�−(26,7),P�−(26,11),

P�−(26,19), E6(7), E6(11), E6(13), E6(17), E6(19), G2(3), G2(5), G2(7)
}
.

Since for any fixed bound B there are only finitely many groups G with m′
1(G) < B , we can check that

Theorem 1.4 holds for the groups in the set S0 ∪ S ′
0. Namely, if G ∈ S0 ∪ S ′

0 and {m′
1(G),m′

2(G)} 
=
{8,7}, then there is no simple group H � G of Lie type with m′

1(G) = m′
1(H), m′

2(G) = m′
2(H), and

ch(G) 
= ch(H).
Let C′ := S \ (S0 ∪ S ′

0). We partition C′ into five classes C′
i , 1 � i � 5, as defined near the beginning

of Section 3, however using the values m′
1 and m′

2 instead of m1 and m2. For example, C′
1 = {G ∈ C′ |

m′
1 − m′

2 > (m′
1,m′

2)
2 > 1}. We also compute the numbers ai , bi , a′

2, b′
2 as in Eqs. (3.1) and (3.2), but

using the continued fraction decompositions of m′
1/(m

′
1 − m′

2) instead of m1/(m1 − m2).
For 2 � i � 5, we partition C′

i exactly into the subcategories described in Section 3 (but, of course,
using m′

1 and m′
2 instead of m1 and m2 in the definitions). For C′

1, the definition of C′
1 j for 1 � j � 3

and 6 � j � 11 is the same as in Section 3. However, we define C′
14 and C′

15 as

C′
14 := {

G ∈ C′
1

∣∣ a0 = 6 & a1 � 5 & a2 � 5
}

C′
15 := {

G ∈ C′
1

∣∣ a1 = 1 & b1 − a0 = 3
}
.

The observations made in Remark 3.1 are valid for the proofs of the following Propositions 5.2–5.6
as well.

Proposition 5.2. Let G ∈ C′ .

(1) G ∈ C′
11 if and only if G = P�−(2e + 2,q) for some e � 5 and q ≡ 3 (mod 4). In this case, if a1 > 2

then ch(G) = ch(2a1 + 3). If a1 = 2 and a0 = 401 then ch(G) = 7 and if a1 = 2 and a0 
= 401 then
ch(G) = 3.

(2) G ∈ C′
12 if and only if G = PSp(6,q) or G = �(7,q) for some q. In this case, ch(G) = ch(a0).

(3) G ∈ C′
13 if and only if either G = G2(q) for some q ≡ 1 (mod 3) or G = PSp(8k + 6,3),

�(8k + 7,3),P�+(8k + 6,3) for some k � 2. In this case, if a0 > 6 then ch(G) = ch(a0 + 1) and if
a0 = 6 then ch(G) = 3.

(4) G ∈ C′
14 if and only if G = PSp(8k+2,3),PSp(8k+4,3),�(8k+3,3), �(8k+5,3), or P�+(8k+2,3)

for some k � 2. In this case, ch(G) = 3.
(5) G ∈ C′

15 if and only if G = P�−(2e3 + 2,3) for some e � 2. In this case, ch(G) = 3.
(6) G ∈ C′

16 if and only if G = P�+(16,3e) for some e � 2. In this case, ch(G) = 3.
(7) G ∈ C′

17 if and only if G = P�+(16,q) for some q ≡ 1 (mod 3). In this case, ch(G) = ch(3b1 + 1).
(8) G ∈ C′

18 if and only if G = P�+(16,q) for some q ≡ 2 (mod 3). In this case, ch(G) = ch(3b1 − 1).
(9) G ∈ C′

19 if and only if G = P�−(18,q) for some q ≡ 3 (mod 4). In this case, ch(G) = ch(b1 − 3).
(10) G ∈ C′

110 if and only if G = P�−(14,q) for some q > 3, q ≡ 3 (mod 4). In this case, ch(G) = ch(a0).
(11) G ∈ C′

111 if and only if G is on the following list: PSp(2k,q) or �(2k + 1,q) with k � 5 and q � 5;
PSp(8k,3), �(8k + 1,3) with k � 2; PSU(d,q) with d � 8, d /∈ {9,15} for all q; P�+(4k,q) with k � 3,
except k = 4; P�+(4k + 2,q) with k � 2 and q � 5, except P�+(16k + 2,q) with k � 2 and q ≡
1 (mod 4); F4(q) for all q; E8(q) with q ≡ 0,2 (mod 3); and all groups P�−(2k,q) with k � 8, with two
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families of exceptions: (i) k ∈ {2e + 1 | e � 4} ∪ {2e7 + 1 | e � 1} ∪ {13} and q ≡ 3 (mod 4); and (ii)
P�−(2e3 + 2,3) with e � 3.
In this case, a0 = qm + 2 or a0 = qm + 1 for some m � 1 and so ch(G) = ch(a0 − 2) if a0 is odd and
ch(G) = ch(a0 − 1) if a0 is even.

Proposition 5.3. Let G ∈ C′ .

(1) G ∈ C′
21 if and only if G = PSU(15,q) for some q. In this case, ch(G) = ch(a0 − 1).

(2) C′
22 and C′

26 are empty.
(3) G ∈ C′

23 if and only if G = 2 E6(q) for some q. In this case, ch(G) = ch(a0).
(4) G ∈ C′

24 if and only if either G = PSU(7,q) for some q or G = E8(q) for some q ≡ 1 (mod 3). In this case,
ch(G) = ch(a0 − 1).

(5) G ∈ C′
25 if and only if either G = P�−(2k,q) for some k ∈ {7 ·2e +1 | e � 1} and q ≡ 3 (mod 4) or k = 13

and q > 19, q ≡ 3 (mod 4). In this case, ch(G) = ch(a0 − 2).

Proposition 5.4. Let G ∈ C′ .

(1) G ∈ C′
31 if and only if G = P�+(8,q) for some q. In this case, ch(G) = ch(4m1 + 1).

(2) For 2 � i � 8, the sets C′
3i are empty.

Proposition 5.5. For G ∈ C′ ,

(1) G ∈ C′
41 if and only if G = PSL(6,q) for some q. In this case, ch(G) = ch(a0 + 1).

(2) G ∈ C′
42 if and only if G = PSU(6,q) for some q or G = P�+(16k + 2,5) for some k � 2. In this case, if

a0 > 7 then ch(G) = ch(a0) and if a0 = 7 then ch(G) = 5.
(3) G ∈ C′

43 if and only if G = P�+(16k + 2,q) for some k � 2 and q > 5, q ≡ 1 (mod 4). In this case,
ch(G) = ch(a0 − 2).

(4) G ∈ C′
44 if and only if G = 3 D4(q) for some q or G = E7(q) for some q ≡ 1 (mod 4). In this case, ch(G) =

ch(a0).
(5) C′

45 is empty.
(6) G ∈ C′

46 if and only if G is on the following list: PSU(d,q) for some d ∈ {5,9} and all q; PSp(8,q) for all
q; �(9,q) for all q; P�−(2k,q) for some k ∈ {4,6} and all q; P�−(14,q) for some q ≡ 1 (mod 4). In this
case, ch(G) = ch(a0 − 1).

Proposition 5.6. For all classes C5i j... considered in Propositions 3.6, 3.8–3.10, C′
5i j... ⊇ C5i j... \ S ′

0 with one
exception:

(1) C511 \ C′
511 = {G2(q) | q prime}.

Moreover, for the classes different from C′
511 , the stronger condition C′

5i j... = C5i j... \ S ′
0 holds with the following

exceptions:

(2) C′
511 \ C511 = {PSL(2,q) | q prime} ∪ {PSp(4,q) | q prime},

(3) C′
512 \ C512 = {PSU(3,q) | q ≡ 2 (mod 3) prime},

(4) C′
521 \ C521 = {PSU(4,q) | q prime},

(5) C′
532e \ C532e = {E6(q) | q ≡ 2 (mod 3) prime},

(6) C′
533b \ C533b = {PSU(3,q) | q ≡ 1 (mod 3) prime},

(7) C′
537 \ C537 = {E6(q) | q ≡ 1 (mod 3) prime}, and

(8) C′
543b \ C543b = {G2(q) | q ≡ 2 (mod 3) prime}.

In each of the cases (2)–(8), the groups in C′
5i j... \ C5i j... are of the form X(q) for a type X and prime q so that

X(q) with composite q is in C5i j... . Moreover, the formulae given in Propositions 3.6, 3.8–3.10, for computing
ch(X(q)) in C5i j... , are also valid for prime q.

Hence, for G ∈ C′
5 , m′

1(G) and m′
2(G) determine ch(G) as described in Propositions 3.6, 3.8–3.10.
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These propositions finish the proof of Theorem 1.4. Note that, for the potential counterexamples in
Theorem 1.3(ii), (iii), we have {m1(G),m2(G)} 
= {m′

1(G),m′
2(G)}, so these potential counterexamples

do not arise. �
In our algorithmic application Theorem 1.5, we need a variant of Theorems 1.3 and 1.4. For, when

{m1(G),m2(G)} 
= {m′
1(G),m′

2(G)}, elements of order m′
1(G), m′

2(G) are more frequent in G than el-
ements of order m1(G), m2(G) [Lü]. Hence, in a computation of the characteristic based on large
element orders, it is preferable to use Theorem 1.4 instead of Theorem 1.3 because a smaller sample
of random element orders already contains m′

1(G) and m′
2(G). We will take a large enough sample of

group element orders so that the quantities m′
1, m′

2 occur with high probability. Unfortunately, this
does not imply that the two largest element orders we encounter are indeed m′

1 and m′
2. If our sam-

ple contains m′
1 and m′

2 then the two largest orders m∗
1 > m∗

2 in the sample behave as in the following
definition:

Definition 5.7. Let G be a simple group of Lie type. Define m∗
1(G) > m∗

2(G) to be any two element
orders for G such that

m∗
2(G) � m′

2(G), and

if m∗
2(G) < m′

1(G) then m∗
1(G) = m′

1(G).

For example, if mi(G) denotes the ith largest element order in G and m′
1(G) = m3(G) and m′

2(G) =
m5(G), then the possible pairs (m∗

1,m∗
2) are (m1,m2), (m1,m3), (m2,m3), (m3,m4), and (m3,m5).

Using the methods of Section 2, we obtained formulae for all possible pairs (m∗
1(G),m∗

2(G)) for all
Lie-type groups G except PSp(d,2e), P�+(d,2e), and P�−(d,2e) with d > 36. For groups defined over
prime fields, there can be many possible pairs.

Fact 5.8. Let F ∗ be the family of simple groups G of Lie type of rank at most 66 and defined over a field of size
at most 105 , except exclude P�+(d,2e), P�−(d,2e), PSp(d,2e) for d > 36; also let F ∗ contain the groups
PSL(2,q), 2 B2(q), and 2G2(q) for q < 1010 .

If G, H ∈ F ∗ have different defining characteristics but m∗
1(G) = m∗

1(H) and m∗
2(G) = m∗

2(H) for some val-
ues m∗

1 , m∗
2 for these groups, then the pair {G, H} occurs in Table 3 or {G, H} = {PSL(2,2p2 + 2p + 1), G2(p)}

for some prime p.

There are 1017 primes p < 105 for which 2p2 + 2p + 1 is a prime; also 2p2 + 2p + 1 is a proper
prime power just once in this range, for p = 3 (compare Theorem 1.3(ii)).

Proof sketch for Fact 5.8. Just as for Fact 1.1, we verified Fact 5.8 by computer calculations. We pro-
grammed the formulae for (m∗

1(G),m∗
2(G)) mentioned above and evaluated them in the indicated

range with the exception of the groups PSL(2,q) for prime q > 105. Then we collected the pairs {G, H}
with m∗

1(G) = m∗
1(H) and m∗

2(G) = m∗
2(H), and discarded those with ch(G) = ch(H).

To finish the proof, we have to show that, if m∗
1 := m∗

1(G), m∗
2 := m∗

2(G) for G = PSL(2,q) with
prime q > 105, then the only way to have m∗

1 = m∗
1(H), m∗

2 = m∗
2(H) for some group H of character-

istic different from q is when H = G2(p) for a prime p satisfying q = 2p2 + 2p + 1. There are two
possibilities: (m∗

1,m∗
2) = (q, (q + 1)/2) or (m∗

1,m∗
2) = ((q + 1)/2, (q − 1)/2).

First, suppose that (m∗
1,m∗

2) = (q, (q+1)/2). If a simple group H satisfies m1(H) < 2m′
2(H)−1 then

m∗
1(H) < 2m∗

2(H) − 1 for all possible pairs (m∗
1(H),m∗

2(H)) and so (m∗
1(H),m∗

2(H)) 
= (q, (q + 1)/2).
Hence it is enough to consider groups H with m1(H) � 2m′

2(H) − 1. The groups satisfying this con-
dition are PSL(2, r), PSp(4, r), PSp(6, r), PSp(8, r) for prime r, P�+(8, r) for r � 4, and a few small
examples: PSL(4,2), PSL(6,2), PSU(3,3) ∼= G2(2)′ , PSU(4,2), 2 B2(8), 2 F4(2)′ , 3 D4(2). It is easy to see
that in the symplectic and orthogonal families m∗

1(H) = 2m∗
2(H) − 1 is impossible. Some of the small

examples lead to lines in Table 3, but of course only involving PSL(2,q) with q < 105.
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Table 3
Exceptional pairs.

m∗
1 m∗

2 Groups

5 3 PSL(2,4) ∼= PSL(2,5), PSL(2,9) ∼= PSp(4,2)′
5 4 PSL(2,9) ∼= PSp(4,2)′, PSp(4,3) ∼= PSU(4,2)

6 5 PSL(2,11), PSp(4,3) ∼= PSU(4,2)

7 3 2G2(3)′ ∼= PSL(2,8), G2(2)′ ∼= PSU(3,3)

7 4 G2(2)′ ∼= PSU(3,3), PSL(2,7) ∼= PSL(3,2)

7 6 G2(2)′ ∼= PSU(3,3), PSL(2,13)

8 7 G2(2)′ ∼= PSU(3,3), PSU(3,5), PSU(4,3)

9 8 PSL(2,17), PSU(4,3)

12 9 PSp(4,3) ∼= PSU(4,2), PSU(4,3)

13 7 2 B2(8), PSL(2,13)

13 8 G2(3), 2 F4(2)′
13 12 G2(3), PSL(2,25), 2 F4(2)′
15 13 PSp(4,5), PSU(3,4)

20 13 PSL(4,3), PSp(4,5)

20 15 P�+(8,3), PSp(4,5), PSp(6,3)

21 20 PSL(2,41), PSp(8,2), F4(2)

30 20 PSp(4,5), PSp(6,3)

30 24 PSp(6,3), PSp(8,2), F4(2)

63 60 PSU(4,5), PSU(7,2)

91 85 PSL(3,16), PSp(4,13)

If (m∗
1,m∗

2) = ((q + 1)/2, (q − 1)/2) then at least one of m∗
1(H), m∗

2(H) arises from a semisimple
element and, by Definition 5.7, we must have m′

1(H) ∈ {m∗
1,m∗

2}. All groups H with m′
1(H) < 5 · 109

are included in F ∗ , with the exception of PSp(d,2e), P�+(d,2e), and P�−(d,2e) with d > 36. For
groups H in F ∗ with m′

1(H) < 5 · 109, we checked whether pairs {m′
1(H),m′

1(H) ± 1} occur among
our formulae for m∗

i , and for all such pairs we computed whether they are of the form {(q + 1)/2,

(q − 1)/2} for some prime q. There are such pairs, listed in Table 3, and also for larger q in the case
of the groups H = G2(p) with q = 2p2 + 2p + 1.

The last remaining case is {m∗
1,m∗

2} = {(q + 1)/2, (q − 1)/2} = {m′
1(H), m′

1(H) ± 1} for some or-
thogonal or symplectic group H defined over GF(2e) and of rank greater than 18. If 2e > 2 then
the only possibility is m∗

1(H) = m′
1(H) and m∗

2(H) = m′
2(H); both of these numbers are odd, so

m∗
1(H) − m∗

2(H) = 1 is impossible. If 2e = 2 and H has rank m � 33 then m′
1(H) > 2m > 5 · 109 and it

cannot be equal to (q ± 1)/2 for q < 1010. Hence only the cases PSp(d,2), P�+(d,2), and P�−(d,2)

remain, with 38 � d � 64. For these groups H , we determined m′
1(H) and then proved the impossibil-

ity of the pair {m∗
1,m∗

2} = {m′
1(H),m′

1(H) ± 1} using the following simple observation: in most cases,
the two numbers m′

1(H)± 1 do not divide the order of H so they cannot be element orders in H . The
only cases not eliminated by this trivial requirement are also easily handled as follows:

(1) H = PSp(44,2) or P�−(44,2), m′
1(H) − 1 = 28(27 − 1)(28 + 1). In the natural representation, for

an element g of this order, g28
must have invariant subspaces of dimension 14 and 16 and a fixed

point space of dimension 14. However, PSp(14,2) has no element of order 28, a contradiction.
(2) H = PSp(52,2) or P�+(52,2), m′

1(H)−1 = 211(25 −1) ·2113. Here 2113 is a ppd#(2;44)-number,
so an element of this order must have invariant subspaces of dimension 10 and 44. Since 10 + 44
is greater than the dimension of H , we obtain a contradiction.

(3) H = PSp(56,2) or P�+(56,2), m′
1(H) − 1 = 213(23 − 1) · 11 · 23 · 37. Here 23 is ppd#(2;11) and

37 is ppd#(2;36), 22 + 36 > dim(H), a contradiction.
(4) H = PSp(62,2) or P�−(62,2), m′

1(H) + 1 = 232. This is not an element order in PSp(62,2).
(5) H = PSp(62,2), m′

1(H) − 1 = 2(231 − 1). For an element g of this order, g2 must act irreducibly
in 62 dimensions and also have fixed points, a contradiction. �

Fact 5.8 suggests the following conjecture.
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Conjecture 5.9. For any two simple groups G, H of Lie type, if m∗
1(G) = m∗

1(H) and m∗
2(G) = m∗

2(H) for
some m∗

1,m∗
2 as in Definition 5.7, then either ch(G) = ch(H), or {G, H} occurs in Table 3, or {G, H} =

{G2(p),PSL(2, r)} for some primes p, r satisfying r = 2p2 + 2p + 1.

It is conceivable that, for the family of groups G of odd characteristic, Conjecture 5.9 could be
proved by the method of Theorem 1.3, since we have the list of possible pairs (m∗

1(G),m∗
2(G)). How-

ever, there are many more cases to consider than in Theorem 1.3, and the modifications required for
the proof are not as straightforward as in the case of Theorem 1.4.

6. The algorithmic application

Given an absolutely irreducible K � GL(d, pe) such that K modulo scalars is isomorphic to a simple
group G of Lie type, we describe a Monte Carlo algorithm that returns a list of at most 6d numbers
including ch(G). We shall prove that, with high probability, the output is correct; and that if d �
324 485 then the list contains only one number. If Conjecture 5.9 is true then the output list contains
only one number for all input dimensions.

We need the following number-theoretic definition and elementary lemma.

Definition 6.1. Let pi denote the ith prime number. For a positive integer n, let σ(n) denote the
number of different prime divisors of n, let k(n) be the minimum k such that

∏k
i=1 pi � n, and let

α(n) :=
k(n)∏
i=1

(
1 − 1

pi

)
.

Lemma 6.2. Let n,m > 1 be integers.

(a) If m < n, then the cyclic group Zm contains at least α(n)m elements of order m.
(b) If m � n then for any fixed prime divisor p of m, Zm contains at least α(n)m elements of order at least n

and of order divisible by p.

Proof. Let q1, . . . ,qσ(m) be the distinct prime divisors of m, in increasing order. Clearly, qi � pi for
all i.

First, we consider the case σ(m) � k(n). In this case, the Euler-function is

ϕ(m) = m
σ (m)∏
i=1

(
1 − 1

qi

)
� m

σ (m)∏
i=1

(
1 − 1

pi

)
� m

k(n)∏
i=1

(
1 − 1

pi

)
= mα(n). (6.1)

(a) If m < n then, by the definition of k(n),
∏k(n)

i=1 pi � n > m �
∏σ(m)

i=1 qi �
∏σ(m)

i=1 pi , so k(n) > σ(m).
Hence, by (6.1), ϕ(m) � mα(n). Since there are ϕ(m) elements in Zm of order m, our claim follows.

(b) As in part (a), if σ(m) � k(n) then there are ϕ(m) � mα(n) elements in Zm of order m. Each of
these elements has order at least n and divisible by p, so our claim is proven.

The only remaining case is that m � n and σ(m) > k(n). In this case, let Q be any set of k(n)

different prime divisors of m, including p, and let r = ∏
q∈Q q. Note that r �

∏k(n)
i=1 pi � n. Now there

are

m
∏
q∈Q

(
1 − 1

q

)
� m

k(n)∏
i=1

(
1 − 1

pi

)
= mα(n)

elements of Zm of order divisible by r, finishing the proof of the lemma. �
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Proposition 6.3. Let N be a positive integer and suppose that the set P (N) of primes less than N is known.
Then there is a Las Vegas algorithm that, given any g ∈ GL(d,q), determines whether the order |g| of g and the
projective order ‖g‖ of g are less than N. Moreover, if |g| < N or ‖g‖ < N then the algorithm computes |g|
and ‖g‖, respectively.

The running time of the algorithm is O (μ[d3(log d + log N + log q) + (N2 + N log q)d log d log log d]),
where μ is the cost of a field operation in GF(q).

Proof. We use ideas from [LGO, Section 10]. We compute the Frobenius normal form and the min-
imal polynomial h(x) of g by the Las Vegas algorithm of [Gi], in O (μd3 log d) time. The rest of the
procedure is deterministic.

First consider the computation of |g|. For primes p ∈ P (N), let p(p) denote the largest power of
p that is less than N , and let P := ∏

p∈P (N) p(p). We compute the remainder r(x) of the polynomial

division of xP by h(x). By the definition of the minimal polynomial, gP = 1 if and only if r(x) = 1.
If r(x) 
= 1 then we conclude that |g| � N , because |g| either has a prime divisor not less than N ,

or |g| is divisible by a power p f of some prime p < N satisfying p f � N . If r(x) = 1 then, for all
primes p ∈ P (N), we compute the remainder rp(x) of the division xP/p(p) by h(x). For any prime
p ∈ P (N), p divides |g| if and only if rp(x) 
= 1.

If rp(x) 
= 1 for at least log N primes p then |g| � N . Otherwise, for each prime p with rp(x) 
= 1,

we compute the p-part of |g| by recursively computing the remainders of (rp(x))p , (rp(x))p2
, . . . mod

h(x), until we reach an exponent p f such that (rp(x))p f = 1 modulo h(x).
Next, we indicate the modifications necessary to compute ‖g‖. The projective order of g divides P

if and only if r(g), the evaluation of r(x) at g , is a scalar matrix. Hence we compute r(g), and if it is
not a scalar matrix then ‖g‖ � N .

Similarly, we could follow the steps of the algorithm for |g| and substitute the checks of whether
rp(x)pi = 1 for some i � 0 by checking whether rp(g)pi

is a scalar matrix. Instead, we speed up the
algorithm as follows.

If r(g) is a scalar matrix then we write q − 1 in the form q − 1 = q1q2, where all prime divisors
of q1 are less than N and all prime divisors of q2 are at least N . (This decomposition of q − 1 can
be computed by dividing q − 1 by primes p ∈ P (N) as long as possible.) Then, for p ∈ P (N), we
define q(p) as the product of p(p) and the p-part of q1, and define Q := ∏

p∈P (N) q(p). Note that
q(p) 
= p(p) can occur for at most log q primes.

For p ∈ P (N), we compute the remainder sp(x) of the division xQ/q(p) by h(x). If there are at
least log N + log q primes p with sp(x) 
= 1, then ‖g‖ � N , since at least log N of these primes must
divide ‖g‖. If there are fewer than log N + log q primes p with sp(x) 
= 1, then for these primes we

recursively compute the remainders of (sp(x))p , (sp(x))p2
, . . . mod h(x), until we reach an exponent

p f such that (sp(x))p f
, evaluated at g , is a scalar matrix. This power p f is the p-part of ‖g‖.

Finally, we estimate the time requirement of the algorithm. The polynomial h(x) is of degree at
most d. Hence, for any n, the remainder of the division of xn by h(x) can be computed by O (log n)

multiplications and divisions of polynomials of degree less than 2d, by repeated squaring and com-
puting the remainder of x2i

for i � �log n�. The cost of division and multiplication of polynomials of
degree at most 2d is O (μd log d log log d) [vzG, Sections 8.3, 9.1]. Thus, since P < N N and Q < N Nq,
the polynomials r(x), rp(x), sp(x) can be computed at a cost of O (μ(N log N + log q)d log d log log d)

each. Also, since |P (N)| = O (N/ log N), the total cost of the computation of r(x), rp(x), sp(x) is
O (μ(N2 + N log q)d log d log log d).

The computations of (rp(x))pi
and (sp(x))pi

are performed for a total of at most log N + log q values
of the pair (p, i), because every time such a computation is performed, we add a factor p either to
‖g‖ or to the part of |g| occurring in q1. As soon as the product of primes included in ‖g‖ reaches N ,
we can stop the computation. Similarly, the evaluations (rp(g))pi

and (sp(g))pi
are performed for at

most log N + log q pairs (p, i). Each evaluation requires O (d) matrix multiplications but, performing
the multiplications with the sparse matrix Frobenius form of g , the cost of each multiplication is only
O (μd2). Hence the total cost of the evaluations of (rp(g))pi

and (sp(g))pi
is O (μ(log N + log q)d3). �
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Remark 6.4. An algorithm for computing the order and projective order of a matrix is described in
[CLG]. The claimed running time is similar to the timing of Proposition 6.3; however, the timing
analysis of the “Bounded order algorithm” on page 55 of [CLG] should involve an extra factor d.
Hence, using [CLG] would increase the timing of Proposition 6.3 by a factor N and hence the timing
of Theorem 1.5 by a factor d, increases that we prefer to avoid. Therefore, it seems that the more
delicate procedure and analysis of Proposition 6.3 are necessary for our results.

Let L denote the set of formulae for possible triples (H,m∗
1(H),m∗

2(H)) for the following groups H :
all special linear, unitary, and exceptional groups; all symplectic and orthogonal groups in odd char-
acteristic; and all symplectic and orthogonal groups of characteristic 2 and rank at most 18 (see
Definition 5.7 and the two paragraphs following that definition). Recall that ‖g‖ denotes the projec-
tive order of a matrix g , and that K is an absolutely irreducible matrix group such that K modulo
scalars is isomorphic to a simple group G of Lie type.

Algorithm FIND_CHAR.
Input: K � GL(d, pe), L as above and an error bound ε > 0.
Output: A list of possibilities for ch(G).

(1) L := ∅, output := ∅
/* in L we collect random element orders and in output we collect possibilities for ch(G) or for
the pair (ch(G), G) */

(2) repeat up to �32 log2(3d) log(2/ε)/α(3d)� times
g := (pseudo)random element of K
if ‖g‖ � 3d then return output := {p}
else place ‖g‖ in L

(3) m∗
1,m∗

2,m∗
3 := three largest elements in L

(4) use L to determine all H with m∗
1 = m∗

1(H), m∗
2 = m∗

2(H) and place the pair (ch(H), H) in output
(5) if d � 324 485 then place the number 2 in output
(6) /* handle ambiguous cases */

(6a) if output contains (q,PSL(2,q)) and (p, G2(p)) with q = 2p2 + 2p + 1 then m∗
3 := third largest

element of L
if m∗

3 � p2 − 1 then delete (q,PSL(2,q)) from output
else delete (p, G2(p)) from output

(6b) if (m∗
1,m∗

2) ∈ {(5,3), (5,4), (7,4), (15,13), (30,20), (30,24), (63,60), (91,85)} then choose the
unique group G from Table 3 with m∗

1 = m1(G) and m∗
2 = m2(G)

(6c) if (m∗
1,m∗

2) ∈ {(12,9), (13,7), (13,12)} then use m∗
3 to choose one of the groups described in

Fact 1.1
(7) return the numbers for ch(G) collected in output

Theorem 6.5. With probability at least 1 − ε, the output of Find_Char contains ch(G). If d < 324 485 then
ch(G) is the only number in the output.

Proof. First we prove that, if the algorithm terminates in Step (2), then the output is correct. Esti-
mates for the minimal dimension δ(G) of cross-characteristic representations were given in [LS] and [SZ];
we use the tables from [Ti], which also record later improvements to the Landazuri–Seitz–Zalesskii
bounds. Comparing the values m1(G) from Appendix A with δ(G) from [Ti], we see that all Lie-type
simple groups satisfy m1(G) < 3δ(G). Therefore, if we encounter some g ∈ K with |g| � 3d, then
indeed ch(G) = p.

Claim. If G is not orthogonal or symplectic of characteristic 2 and rank greater than 18 then, with probability at
least 1−ε, the following holds. If m′

1(G) � 3d, then L contains a projective order at least 3d and if m′
1(G) < 3d

then L contains m′
1(G) and m′

2(G) (see Theorem 1.4 for the definition of m′
1 and m′

2).
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Proof of claim.

Classical groups. First, consider G = X(d,q), where X denotes any of the classical types PSL, PSp,
PSU, P�ε and d, q denote the (unknown) dimension and field size for G . We distinguish three cases.

Case 1. d � 7 and qd � 81d4 . Let d/2 < e � d − 2 and moreover let e be even in the symplectic and
orthogonal cases, and let e be odd in the unitary case. We shall estimate the proportion of elements
of G of order at least 3d and acting irreducibly on an e-dimensional nondegenerate subspace in the
natural representation of G .

Standard arguments (see, e.g., [NiP, Section 5]) show that G contains at least |G|/(2e c) cyclic
subgroups Zc , where c = qe − 1 if G is special linear, c = qe + 1 if G is unitary, and c = qe/2 + 1 if G
is orthogonal or symplectic. Note that c � qe/2 � qd/4 � 3d in all types of groups and for all e under
consideration. By Lemma 6.2(b), each of these subgroups contains at least cα(3d) elements of order
at least 3d. Moreover, if we choose the prime p in Lemma 6.2(b) to be a ppd#(q; e)-number in the
nonunitary cases and a ppd#(q;2e)-number in the unitary case then the sets of elements considered
in different subgroups Zc are pairwise disjoint.

Define f (d) = ∑
e(1/(2e)), where the summation runs over odd e satisfying d/2 < e � d − 2. For

even d define g(d) = ∑
e(1/(2e)) where the summation runs over even e satisfying d/2 < e � d − 2.

By the estimates in the previous paragraph, G contains at least |G|α(3d) f (d) elements of order at
least 3d in the unitary case and at least |G|α(3d)g(d) elements of order at least 3d in the other cases.

We claim that f (d), g(d) � 1/12 for all d � 7. Indeed, it is clear that

lim
d→∞

f (d) = lim
d→∞

g(d) = 1

4
lim

d→∞

d∑
k=�d/2�

1

k
= ln 2

4
> 1/12.

Moreover, if we restrict the values of d to any of the four residue classes modulo 4 then, using the
definitions of the functions, it is easy to see that the restrictions of f (d) and g(d) are monotone.
Hence, it is enough to perform the easy check that f (d), g(d) � 1/12 for the four smallest possible
values of d � 7. We showed that the probability that a random element of G has order at least 3d is
at least α(3d)/12, implying that the probability that the sample L does not contain such a large order
is at most

(
1 − α(3d)

12

)|L|
�

(
1 − α(3d)

12

) 32 log2(3d) log(2/ε)
α(3d)

< ε/2.

Case 2. d � 7 and qd < 81d4 . In this case, we claim that G contains at least |G|/(2m′
i d2) cyclic

subgroups of order m′
i , for i = 1,2. If the elements of order m′

i come from tori that are direct prod-
ucts of at most two cyclic groups of order q j ± 1 for some j, say for j1, j2 with j1 + j2 = d or
j1 + j2 = �d/2
 (depending on the type of G; cf. Section 2), then the number of tori is at least
|G|/(m′

i · 2 j1 · 2 j2) � |G|/(m′
i d2). If the elements of order m′

i come from tori that are direct prod-
ucts of three cyclic groups and one of those is of order q + 1 then the number of tori is at least
|G|/(2m′

i d2). These two subcases cover all instances when ch(G) is odd, or ch(G) = 2 and G is spe-
cial linear or unitary. Finally, if ch(G) = 2 and G is symplectic or orthogonal of rank at most 18 then
there are a few instances where the m′

i come from tori that are the products of four cyclic groups of
order q j ± 1 but the estimate |G|/(2m′

i d2) is valid for these groups as well. Note that in Case 2 we

have 2d2 < 32 log2(3d).
By Lemma 6.2(b), if m′

1(G) � 3d then G contains at least |G|α(3d)/(2d2) elements of projective
order at least 3d and so, with probability at least 1 − ε/2, L contains a projective element order of at
least 3d. On the other hand, if m′

1(G) < 3d then, by Lemma 6.2(a), L contains m′
i with probability at

least 1 − ε/2 for i = 1,2, so L contains both m′
1 and m′

2 with probability at least 1 − ε.
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Case 3. d � 6. In this case, 2d2 � 72 < 32 log2(3d) and, as in Case 2, either L contains an element of
order at least 3d or L contains both m′

1 and m′
2 with high probability.

Exceptional groups. Next, consider the case of exceptional groups G . In this case, as above, there are
at least |G|/(64m′

i) cyclic subgroups of order m′
i = m′

i(G) for i = 1,2 and, as in Cases 2 and 3 above,
with probability at least 1 − ε, either the list L contains an element of order at least 3d or L contains
both m′

1 and m′
2. That finishes the proof of the claim. �

To finish the proof of the theorem, we have to show that if L contains both m′
1(G) and m′

2(G),
and if m′

1(G) < 3d, then the output of the algorithm is correct with high probability. In this case, the
values m∗

1,m∗
2 defined in Step (3) are one of the possible pairs m∗

1(G) and m∗
2(G) (cf. Definition 5.7),

so they occur in the formulae in L unless G is orthogonal or symplectic of characteristic 2 and rank
greater than 18. In the latter groups, m′

1(G) � 973 455 so, since m′
1(G) < 3d, they can occur only if

d � 973 455/3 = 324 485, and then Step (5) adds the number 2 as possible characteristic to the output
list. For all other G , Step (4) adds ch(G) to the output list so, in any case, the output contains ch(G).

Our last task is to prove that if d � 324 485 then the output contains only one number. We claim that
the family F ∗ defined in Fact 5.8 contains all groups G with m′

1(G) < 973 455. Indeed, suppose that
G = X(d,q) /∈ F ∗ . The number 973 455 was chosen so that if q is even then m′

1(G) > 973 455. If q is
odd and G has Lie-rank at least 2, or G = PSU(3,q) then q > 105 and Tables A.1–A.7 give m′

1(G) >

973 455. Finally, if q is odd and G is rank 1 different from PSU(3,q) then q > 1010 and again m′
1(G) >

973 455. Thus, if Step (4) created an output list containing more than one pair (ch(G), G), then these
pairs occur either in Table 3 or they are of the form (q,PSL(2,q)) and (p, G2(p)). The groups G
occurring in Table 3 are so small that, with probability at least 1 − ε, the element orders m1(G) and
m2(G) occur in our sample L. This means that a pair (m∗

1,m∗
2) from Table 3 can occur only if m∗

1 =
m1(G) and m∗

2 = m2(G) for some group, and all of these possibilities are listed in Steps (6b) and (6c).
For the pairs listed in Step (6b), there is a unique group with m∗

1 = m1(G) and m∗
2 = m2(G). Step (6c)

handles the three pairs (m∗
1,m∗

2) for which there are two groups H, G of different characteristic with
m∗

1 = m1(G) = m1(H) and m∗
2 = m2(G) = m2(H). Finally, if the input group modulo scalars is G =

G2(p) then m′
2(G) = p2 − 1 occurs in L, so that Step (6a) eliminates this type of ambiguity. �

Completion of the proof of Theorem 1.5. Since n/ϕ(n) = O (log log n) for all n (see [MSC, §II.8]) and
1/α(3d) = n/ϕ(n) for n = ∏k(3d)

i=1 pi , we have 1/α(3d) = O (log log d). Hence the number of random

element selections is O (log2 d log log d), as claimed in Theorem 1.5.
Applying Proposition 6.3 with N = 3d, we obtain that the computation of each projective order

can be performed in O (μd3(log d log log d + log q)) time.
The time requirement of Step (4) is negligible, because in the formulae in L the element orders

grow exponentially with the rank of the groups. Hence, in the pairs in L to be compared to (m∗
1,m∗

2),
the rank is bounded by log d and the number of pairs is a nearly linear, O (d logc d), function of d.

Finally, we prove that the output contains fewer than 6d numbers. For every pair (m∗
1(G),m∗

2(G))

in L we have m∗
1(G) � m′

1(G) � (q + 1)/2 (recall that q is the size of the field of definition of G).
Hence, if the algorithm encounters no projective order greater than 3d then, with high probability,
3d � m∗

1 = m∗
1(G) � (q + 1)/2 and ch(G) � q < 6d. Therefore, the output is either {p} (if no projective

order greater than 3d is encountered) or a subset of the primes less than 6d (and hence has length
quite a bit less than 6d), as required in Theorem 1.5. �
Remark 6.6. We claim that, in fact, it is possible to modify our Algorithm Find_Char so that the output
length is at most two for any d. We have already noted that, if Algorithm Find_Char encounters
an element of projective order at least 3d, then ch(G) = p; and if all elements of the sample have
projective order less than 3d then, with high probability, the size q of the field of the definition of G
satisfies q < 6d.

If m is the Lie-rank of G , then m � d. Examining the values mi(G), i = 1,2,3, in Tables A.1–A.7
and Table 1 if ch(G) is odd, and using the same probability estimates as in the proof of Theorem 6.5,
we find: mi(G) is attained among the element orders of G with frequency at least �(1/m2) if mi(G)



828 W.M. Kantor, Á. Seress / Journal of Algebra 322 (2009) 802–832
Table 4
Sample running times.

K d pe Output Time

SL(15,28) 15 28 2 < 0.01
SL(2,29) 14 22 PSL(2,29) 0.1
SL(2,29) 29 29 PSL(2,29) 0.2
SL(3,11) 132 2 PSL(3,11), G2(11) 1.5
SL(6,2) 61 3 PSL(6,2) 0.5
G2(5) 124 2 G2(5) 0.9
P�−(8,2) 51 5 F4(2),P�−(8,2),PSp(8,2) 0.4
P�+(18,114) 18 114 11 < 0.01
Sz(8) 14 72 Sz(8) 0.1
Sz(8) 195 5 Sz(8) 1.9
E6(3) 27 3 3 < 0.01
E6(57) 27 57 5 0.7
SU(25,56) 25 56 5 0.8
Sp(4,7) 175 2 PSp(4,7) 2.0
SL(30,32) 900 32 3 0.1

occurs for semisimple elements, and at least �(1/(qm)) if mi(G) occurs for nonsemisimple elements.
(Recall that for functions a(n),b(n), we say that a(n) is �(b(n)) if for large enough n, a(n) > c b(n)

for some positive constant c.) If Algorithm Find_Char finds only projective orders less than 3d then
both of these lower bounds are �(1/d2) and, with the selection of an additional �(d2 log(1/ε)) random
group elements in Step (2), L will contain m1(G),m2(G) (and m3(G) if m1(G) = m1(H),m2(G) = m2(H)

for some group H occurring in Table 1). Hence, by Theorem 1.2, the triple (m∗
1,m∗

2,m∗
3) computed

in Step (3) uniquely determines ch(G) if ch(G) is odd. However, since we cannot exclude the case
ch(G) = 2, we also return the number 2, increasing the output length to two. If no group H in
Tables A.1–A.7 satisfies m∗

1 = m1(H) and m∗
2 = m2(H), then the only number in the output is 2. This

proves our claim.
This modified algorithm runs in O (ξd2 +μd5(log d log log d+ log pe)) time, hence still in polynomial

time.

Implementation. The algorithm has been implemented in GAP, and since 2006 has been part of the
package recog [NS]. The implemented version works for input dimensions up to 5000.

Standard GAP functions are used for random element generation and order computation, based
on [CLMNO,CLG]. Since we overestimated the number of random element selections with the bound
�32 log2(3d) log(2/ε)/α(3d)�, in the implementation we use the following stopping criterion. If the
value of (m∗

1,m∗
2,m∗

3) last changed at the computation of the order of the mth random group element
then we stop after the generation of 2m + 50 random elements.

Another useful heuristic is to start by computing the orbit of a random vector under the product
of the given generators. This step seems to recognize groups with ch(G) = p, and for these groups
we can even avoid the initialization of the pseudorandom element generator and any potentionally
expensive projective order computations.

As a speedup of Step (4), we pre-computed and stored all of the triples (m∗
1(H),m∗

2(H), H) with
m∗

1(H) � 15 000.
The computations reported in Table 4 were carried out using GAP Version 4.4.12 on an Intel

Dual-Core 3.0 GHz processor. The input is a quasisimple group K � GL(d, pe). The output is either
ch(K/Z(K )), or a list of candidate groups for K/Z(K ) all of the same characteristic. The reported
running times are in seconds. The sample of groups includes all of the examples considered in [LO].
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Appendix A

In Table A.2 for unitary groups, a(n) denotes the smallest odd integer a � 3 satisfying (a,n−a) = 1.
Note that we use a(n) only for values of n for which a(n) < n/2.

Table A.1
PSL(d,q).

G Restrictions m1 m2

PSL(2,q) q > 3 prime q q+1
2

PSL(2,q) q composite q+1
2

q−1
2

PSL(2k + 1,q) k � 1 q2k+1−1
(q−1)(q−1,2k+1)

(qk+1−1)(qk−1)
(q−1)(q−1,2k+1)

PSL(4k + 2,q) k � 1 q4k+2−1
(q−1)(q−1,4k+2)

(q2k+3−1)(q2k−1−1)
(q−1)(q−1,4k+2)

PSL(4k,q) k � 1 q4k−1
(q−1)(q−1,4k)

(q2k+1−1)(q2k−1−1)
(q−1)(q−1,4k)

Table A.2
PSU(d,q).

G Restrictions m1 m2

PSU(2k + 1,q) k � 1, q prime q2k+q
(q+1,2k+1)

q2k−1
(q+1,2k+1)

PSU(2k + 1,q) k ∈ {1,2,4},q composite q2k−1
(q+1,2k+1)

q2k+1+1
(q+1)(q+1,2k+1)

PSU(2k + 1,q) k /∈ {1,2,4},q composite q2k−1
(q+1,2k+1)

(qa′ +1)(q2k+1−a′ −1)
(q+1)(q+1,2k+1)

a′ := a(2k + 1)

PSU(4,3) 12 9
PSU(2k,q) k > 2, q prime q2k−2 + q q2k−2 − 1

q + 1 | 2k

PSU(2k,q) k � 2, q prime q2k−1+1
(q+1,2k)

q2k−1−q
(q+1,2k)

q + 1 � 2k

PSU(2k,q) k ∈ {2,3}, q composite q2k−1+1
(q+1,2k)

q2k−1
(q+1)(q+1,2k)

PSU(10,9) 43 046 720 38 742 049

PSU(2k,q) k � 6, q composite q2k−2 − 1 (qa′ +1)(q2k−1−a′ −1)
q+1

q + 1 | 2k a′ := a(2k − 1)

PSU(2k,q) k � 4, q composite q2k−1+1
(q+1,2k)

(qa(2k)+1)(q2k−a(2k)+1)
(q+1)(q+1,2k)

q + 1 � 2k

Table A.3
PSp(d,q).

G Restrictions m1 m2

PSp(4,3) 12 9
PSp(2k,3) k � 3 3k + 9 3k + 3
PSp(2k,q) k � 2, q > 3 prime qk + q qk − q

PSp(4,q) q composite q2+1
2

q2−1
2

PSp(6,q) q composite (q2+1)(q+1)
2

q3+1
2

PSp(8,q) q composite (q3−1)(q+1)
2

q4+1
2

PSp(4k + 2,q) k � 2, q composite (q2k+1)(q+1)
2

(q2k−1+1)(q2+1)
2

(continued on next page)
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Table A.3 (continued)

G Restrictions m1 m2

PSp(8k + 4,q) k � 1, q composite (q4k+1−1)(q+1)
2

(q4k+1)(q2+1)
2

PSp(8k,q) k � 2, q composite (q4k−1−1)(q+1)
2

(q4k−2−1)(q2+1)
2

Table A.4
�(2m + 1,q).

G Restrictions m1 m2

�(7,3) 20 18
�(2k + 1,3) k � 4 2(3k−1 + 9) 2(3k−1 + 1)

�(7,q) q > 3 prime (q2+1)(q+1)
2

q(q2+1)
2

�(4k + 3,q) k � 2, q > 3 prime (q2k+1)(q+1)
2

q(q+1)(q2k−1−1)
2

�(4k + 1,q) k � 2, q > 3 prime q(q+1)(q2k−2+1)
2

(q2k−1−1)(q+1)
2

�(2k + 1,q) k � 3, q composite m1(PSp(2k,q)) m2(PSp(2k,q))

Table A.5
P�+(2m,q).

G Restrictions m1 m2

P�+(8,3) 20 18

P�+(8,q) q � 5 q4−1
4

q4−1
8

P�+(2k,q) k ∈ {5,7,9} (qk−1+1)(q+1)
(q−1,4)

q(q+1)(qk−2−1)
(q−1,4)

q prime

P�+(2k,q) k ∈ {5,7,9} (qk−1+1)(q+1)
(q−1,4)

(q2+1)(qk−2+1)
(q−1,4)

q composite

P�+(12,q)
(q+1)(q2+1)(q3−1)

4
(q4+1)(q2+1)

4

P�+(4k + 2,q) k � 5, q prime (q2k+1)(q+1)
(q−1,4)

q(q+1)(q2k−1−1)
(q−1,4)

P�+(4k + 2,q) k � 5 (q2k+1)(q+1)
4

(q2+1)(q4+1)(q2k−5−1)
4

q ≡ 1 (4) composite

P�+(4k + 2,q) k � 5 (q2k+1)(q+1)
2

(q2+1)(q2k−1+1)
2

q ≡ 3 (4) composite

P�+(16k + 4,q) k � 1 (q+1)(q2+1)(q8k−1−1)
4

(q+1)(q4+1)(q8k−3−1)
4

P�+(16k + 12,q) k � 1, q prime (q+1)(q2+1)(q8k+3−1)
4

q(q+1)(q4+1)(q8k+1)
4

P�+(16k + 12,q) k � 1, q composite (q+1)(q2+1)(q8k+3−1)
4

(q+1)(q4+1)(q8k+1−1)
4

P�+(8k,q) k � 2, q prime q(q+1)(q2+1)(q4k−4+1)
4

(q+1)(q2+1)(q4k−3−1)
4

P�+(8k,q) k � 2, q composite (q+1)(q2+1)(q4k−3−1)
4

(q+1)(q4+1)(q4k−5−1)
4

Table A.6
P�−(2m,q).G Restrictions m1 m2

P�−(10,3)
3(3+1)(33+1)

4
(34−1)(3+1)

4

P�−(10,q) q > 3 (q2+1)(q3−1)
(q+1,4)

q5+1
(q+1,4)

P�−(14,q) q ≡ 1 (4)
(q2+1)(q5−1)

2
q7+1

2

P�−(14,q) q ≡ 3 (4) prime (q+1)(q2+1)(q4+1)
4

q(q+1)(q2+1)(q3−1)
4

P�−(14,q) q ≡ 3 (4) composite (q+1)(q2+1)(q4+1)
4

(q2+1)(q5−1)
4

P�−(4k + 2,q) k � 4, q ≡ 1 (4)
(q2+1)(q2k−1−1)

2
(q4+1)(q2k−3−1)

2

P�−(8k + 6,q) k � 2, q ≡ 3 (4) prime (q+1)(q2+1)(q4k+1)
4

q(q+1)(q2+1)(q4k−1−1)
4
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Table A.6 (continued)

G Restrictions m1 m2

P�−(8k + 6,q) k � 2, q ≡ 3 (4) composite (q+1)(q2+1)(q4k+1)
4

(q+1)(q4+1)(q4k−2+1)
4

P�−(16k + 10,q) k � 1, q ≡ 3 (4) prime q(q+1)(q2+1)(q8k+1−1)
4

(q+1)(q4+1)(q8k+1)
4

P�−(16k + 10,q) k � 2, q ≡ 3 (4) composite (q+1)(q4+1)(q8k+1)
4

(q+1)(q8+1)(q8k−4+1)
4

P�−(18,3)
3(3+1)(32+1)(35−1)

4
3(3+1)(37+1)

4

P�−(16k + 2,q) 
= P�−(18,3) k � 1, q ≡ 3 (4) prime q(q+1)(q2+1)(q8k−3−1)
4

q(q+1)(q4+1)(q8k−5−1)
4

P�−(18,q) q ≡ 3 (4) composite (q2+1)(q3+1)(q4+1)
4

(q2+1)(q7−1)
4

P�−(2e + 2,q) e � 5, q ≡ 3 (4) composite (q2+1)(q3+1)(q2e−1−4+1)
4

(q2+1)(q4+1)(q2e−1−5+1)
4

P�−(2e3 + 2,q) e � 3, q ≡ 3 (4) composite (q+1)(q2e−1 +1)(q2e +1)
4

(q2+1)(q3+1)(q3·2e−1−4+1)
4

P�−(2ea + 2,q) e � 3, a � 5 odd (q+1)(q2e−1 +1)(qa′ +1)
4

(q+1)(q2e +1)(qa′′ +1)
4

q ≡ 3 (4) composite a′ := 2e−1(a − 1) a′′ := 2e−1(a − 2)

P�−(4k,q) k � 2, q prime q(q+1)(q2k−2+1)
2

(q+1)(q2k−1−1)
2

P�−(4k,q) k ∈ {2,3}, q composite (q+1)(q2k−1−1)
2

q2k+1
2

P�−(8k,q) k � 2, q composite (q+1)(q4k−1−1)
2

(q2+1)(q4k−2−1)
2

P�−(8k + 4,q) k � 2, q composite (q+1)(q4k+1−1)
2

(q3+1)(q4k−1−1)
2

Table A.7
Exceptional groups.

G Restrictions m1 m2

2G2(3)′ 9 7
2G2(3k) k = 2e + 1, e � 1 32e+1 + 3e+1 + 1 32e+1 − 1
G2(q) q prime q2 + q + 1 q2 + q
G2(q) q composite q2 + q + 1 q2 − 1
3 D4(q) q prime (q3 − 1)(q + 1) q(q3 + 1)
3 D4(q) q composite (q3 − 1)(q + 1) q4 − q2 + 1
F4(q) q prime q(q + 1)(q2 + 1) (q3 − 1)(q + 1)

F4(q) q composite (q3 − 1)(q + 1) q4 + 1

E6(q) q prime q(q6−1)
(q−1)(3,q−1)

(q+1)(q5−1)
(3,q−1)

E6(q) q composite (q+1)(q5−1)
(3,q−1)

(q2+q+1)(q4−q2+1)
(3,q−1)

2 E6(q) q prime (q+1)(q2+1)(q3−1)
(3,q+1)

q(q5+1)
(3,q+1)

2 E6(q) q composite (q+1)(q2+1)(q3−1)
(3,q+1)

q6−1
(3,q+1)

E7(q) q ≡ 1 (mod 4) prime (q2+q+1)(q5−1)
2

q(q+1)(q2+1)(q3−1)
2

E7(q) q ≡ 1 (mod 4) composite (q2+q+1)(q5−1)
2

(q+1)(q6−q3+1)
2

E7(q) q ≡ 3 (mod 4)
(q+1)(q2+1)(q4+1)

2
(q2+q+1)(q5−1)

2

E8(q) q ≡ 7 (mod 12) prime (q + 1)(q2 + q + 1)(q5 − 1) q(q + 1)(q2 + 1)(q4 + 1)

E8(q) q ≡ 7 (mod 12) composite (q + 1)(q2 + q + 1)(q5 − 1) (q + 1)(q2 + 1)(q5 − 1)

q ≡ 1 (mod 12)

E8(q) q ≡ 0,2 (mod 3) (q + 1)(q2 + q + 1)(q5 − 1) (q2 + q + 1)(q6 + q3 + 1)
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