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Planes in which every quadrangle lies
on a unique Baer subplane
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Abstract Desarguesian projective planes of square order are characterized by the property
that every quadrangle lies on a unique Baer subplane.
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1 Introduction

The study of projective planes in terms of their subplane structure goes back at least to work
of Ruth Moufang in 1931 (Dembowski, Finite geometries, 1997, 3.4.17), where the equiva-
lence of the little hexagonality condition with the property that every quadrangle generates a
Pappian prime subplane is established. Another notable highlight of this stream of thought is
Gleason’s 1956 theorem [3, 3.4.23] that a finite projective plane in which every quadrangle
lies on a Fano subplane is Desarguesian (of even order). More recently, Blokhuis and Sziklai
showed in 2000 that a projective plane of order the square of a prime in which every quadran-
gle lies on a unique Baer subplane is Desarguesian (Blokhuis and Sziklai, Geom. Dedicata,
79:341–347, 2000). (Blokhuis, personal communication October 25, 2010, confirms that the
word “unique” must be added to the statement of the theorem as published, in order for the
proof to be valid.) The purpose of this article is to reach the same conclusion as Blokhuis
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and Sziklai with a weaker hypothesis on the order of the plane. Like the Blokhuis–Sziklai
result, ours will be dependent upon the classification of finite simple groups. More detailed
historical background on work of this nature appears in [2, Sect. 2].

2 Background results

The first result we need is the uniqueness of the projective plane of order 4, established by
Veblen and Wedderburn in 1907 [8, pp. 387–388]. (N.B.–In [3, 3.2.15] this result is incor-
rectly attributed to Mac Innes [6], who states but does not prove the result, although he does
prove the uniqueness of the plane of order 5.)

Theorem 1 There is a unique projective plane of order 4, up to isomorphism.

Given two lines L , M of a projective plane π and a point x of π , incident with neither
L nor M , the perspectivity with centre x from L to M is defined as the map taking the point
y of L to the point xy ∩ M of M . A projectivity is any product of perspectivities.

A Baer subplane of a projective plane of order n2 is a subplane of order n. A Baer sub-
line is the intersection of a Baer subplane with a line meeting it in more than one point. A
quadrangle is a set of four points, no three collinear.

The second result we need is [2, Lemma 3.2], translated from an affine to a projective
setting. This is what they actually proved, although it is stated differently there. In particular,
the primality hypothesis on the order of the Baer subplane was in no way used. For clarity,
we provide a proof, which closely follows the trail they blazed.

Theorem 2 Let π be a finite projective plane with the property that every quadrangle lies
on a unique Baer subplane. Then the set of Baer sublines of π is closed under projectivities.

Proof We will initially work in an affine plane of order n2 in which every triangle a, b, c is in a
unique affine subplane A[a, b, c] of order n. Any c′ ∈ [a, b, c]\ab determines A[a, b, c′] =
A[a, b, c]. We will focus on the affine sublines of the form Br [u, v] := uv ∩ A[r, u, v].
Let L∞ be the line at infinity.

In our first three steps we will focus on a line M and points u /∈ M and r ∈ M . ��
Step 1. If v �= u and uv is parallel to M , then the pair u, v determines a partition
{M ∩ A[s, u, v] | s ∈ M} of M into n parts of size n2/n = n.

Proof Each A[s, u, v] has a line through s parallel to uv and hence meets M in a subline.
Any point of that subline determines the same subplane A[s, u, v] together with u, v and
hence determines the same subline, producing a partition. ��
Step 2. Consider u �= w ∈ Br [u, v], so that w ∈ uv. Then Br [u, v] = Br [u, w], and u, w

determine the partition {M ∩ A[s, u, w] | s ∈ M} of M . Since w ∈ Br [u, v], the u, v and
u, w partitions of M share the member (∗)M ∩ A[r, u, w] = M ∩ A[r, u, v].
We now come to the main use of the relationship between the orders of our plane and its
subplanes, using the pigeonhole principle.
Step 3. Br [u, v] = Br ′ [u, v] if r ′ ∈ M\A[u, v, r ].
Proof Let u �= w ∈ Br [u, v] and W ∈ {M ∩ A[s, u, w] | s ∈ M} with r /∈ W . Then
|W | = n and, by (∗), W is disjoint from M ∩ A[r, u, w] = M ∩ A[r, u, v]. Since there
are only n − 1 other n-point sublines M ∩ A[s, u, v] in the u, v-partition of M , one of
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these sublines, V say, is such that V ∩ W contains two points t �= t ′. Then A[u, v, t] =
A[u, t, t ′] = A[u, w, t], so that V = M ∩ A[u, v, t] = M ∩ A[u, w, t] = W . Thus, the
n − 1 members of the u, w partition not containing r belong to the u, v partition. Hence,
these two partitions coincide:

{M ∩ A[s, u, w] | s ∈ M} = {M ∩ A[s, u, v] | s ∈ M}.
In particular, M ∩ A[r ′, u, v] and M ∩ A[r ′, u, w] both contain r ′ and hence coincide.
Clearly M ∩ A[r ′, u, v] and u determine A[r ′, u, v], while M ∩ A[r ′, u, w] and u deter-
mine A[r ′, u, w], so that A[r ′, u, v] = A[r ′, u, w].
Thus, u �= w ∈ Br [u, v] ⇒ w ∈ uw ∩ A[r ′, u, w] = uv ∩ A[r ′, u, v] = Br ′ [u, v].
Consequently, Br [u, v] = Br ′ [u, v].
We now use projective subplanes containing L∞. We assume that L∞ and some of its
points are added (when needed) to affine subplanes or sublines being studied. ��
Step 4. Consider distinct points x, u, v and lines K , L∞, M with x, u, v ∈ K and x ∈
K , L∞, M . Then any two Baer subplanes containing all 6 of these objects intersects K in
the same set of n + 1 points. Dually, any two such subplanes contain the same set of n + 1
lines through x.

Proof Each of the Baer subplanes contains a point r �= x in M , say, and the desired
intersection is Br [u, v] using K = uv in Step 3. ��
Step 5. Given K , L∞, M, x, u, v as in Step 4 and x �= r ∈ M, if x �= z ∈ L∞ then there is
a Baer subplane containing r, Br [u, v] and z - namely, the projectivization of A[u, v, s]
with s = M ∩ uz, in view of Step 3.

Lemma 1 Let K , L∞, M be distinct lines on a point z, let k ⊂ K be a subline containing
z, and let z �= x ∈ L∞ Then the image of k under the perspectivity with centre x from K
into M is a subline of M.

Proof By Step 5 there is a Baer subplane B containing k, L∞, x . Let L∞, K ′, M ′ be distinct
lines of B through x . We will use the last part of Step 4 for x, K ′, M ′, L∞ and two different
further pairs of points: one pair in K ′ and one in M ′. (N.B.–The awkward problem addressed
by this lemma is that k = K ∩ B where B has nothing to do with M .)

Pick distinct u, v ∈ K ′ ∩ B.
Let a := M ∩ M ′ and B1 := A[u, v, a], which contains uv = K ′, x and hence ax = M ′.
Let a �= b ∈ M ′ ∩ B1.
Let w := K ′ ∩ M . Then B2 := A[w, a, b] contains wa = M , as well as ab = M ′, hence

x , hence also xw = K ′.
Apply Step 2 to the sextuple x, u, v, K ′, M ′, L∞ in both B and B1 to see that {lines of

B1 on x}= {lines of B on x}={xd | d ∈ k} since x ∈ B and k is a line of B.
Apply Step 2 to the sextuple x, a, b, K ′, M ′, L∞ in both B1 and B2 to see that {lines of

B2 on x}= {lines of B1 on x}, which we have just seen is {xd | d ∈ k} and where the lines
of B2 on x meet M in a subline M ∩ B2.

Thus, the lines of B2 on x meet K in k and meet M in a subline contained in B2, which
proves the lemma.

Lemma 1 establishes that, in a finite projective plane with every quadrangle on a unique
Baer subplane, when K , M are distinct lines meeting in a point z, x is a point not on K or
M , and k is a (projective) Baer subline of K containing z, then the image of k under the
perspectivity with centre x from K to M is a Baer subline of M . We now turn to the case
where the Baer subline does not contain the point of intersection of the lines K , M . ��
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Lemma 2 Let K , M be distinct lines, z ∈ K , M and x /∈ K , M. If k ⊂ K is a Baer subline
not on z, then the image m of k under the perspectivity with centre x from K to M is a subline
of M.

Proof Let a ∈ k, b ∈ m, such that x is not on the line N = ab. Then the perspectivity with
centre x from K to M is the product τσ of the perspectivity σ with centre x from K to N
and the perspectivity τ with centre x from N to M . Since k contains a = K ∩ N ,

sigma(k) is a Baer subline of N by Lemma 1 (using L∞ = ax). Also b ∈ σ(k) since
τ(b) = b ∈ m = τ(σ (k)). Now m = τ(σ (k)) is a Baer subline by Lemma 1 (this time using
L∞ = bx).

Combining Lemmas 1 and 2, we see that projectivities of our projective plane send Baer
sublines to Baer sublines, and we have established Theorem 2.

If L is a line of the projective plane π , then �L denotes the group of all projectivities
from L to itself. We need the main result of Grundhöfer [4] (see also [1, 2.2.4]), augmented
by [7] (which ruled out the possibility of the Mathieu group M24 of degree 24 occurring
for a projective plane of order 23). This result depends on the classification of finite simple
groups. ��
Theorem 3 Let L be any line of a finite non-Desarguesian projective plane. Then the group
�L of projectivities of L contains the alternating group on L.

Remark 1 If L is a line of PG(2, q), then �L is permutationally isomorphic to PGL(2, q)

acting naturally on PG(1, q) [1, 2.2.3]. Thus the converse of Theorem 3 holds for finite
projective planes of order greater than 4, as PGL(2, q) does not contain Alt(q +1) for q > 4.

3 The main result

Theorem 4 Let π be a finite projective plane of square order. Then π is Desarguesian if and
only if every quadrangle lies on a unique Baer subplane.

Proof Suppose π is non-Desarguesian of order n2, that L is a line of π , that x and y are
distinct points of L and that every quadrangle of π lies on a unique Baer subplane. Then by
Theorem 3, the group �L of projectivities of L contains the alternating group, and so every
subset of L of size n + 1 is a Baer subline, by Theorem 2. Thus the number of Baer sublines
of π in L and on x and y is the number C(n2 − 1, n − 1) of subsets of size n − 1 of a set of
size n2 − 1. But the number of Baer subplanes of π on x and y is

n4(n2 − 1)2/n2(n − 1)2 = n2(n + 1)2,

so the number of Baer sublines of π in L and on x and y is at most n2(n + 1)2 (taking into
account sublines lying in more than one Baer subplane). Thus C(n2 −1, n−1) ≤ n2(n+1)2,
which forces n to be at most 3.

In fact, for each choice of subline k containing u, v, and each x ∈ k\{u, v} along with
distinct lines uv, M, L∞ on x , by Step 3 in the preceding section k is in n projective sub-
planes B containing k, M, L∞. Pick one B and, for each point x ′ �= x of k, distinct lines
uv, M ′, L ′∞ of B on x ′. These also lie in n subplanes containing k, but B is the only one
containing M (i. e., containing u, v, M ∩ M ′, M ∩ L ′∞). Thus, we obtain n + 1 sets of n
subplanes containing k, any two sets having only B in common: each k is contained in at
least (n +1)n −1 subplanes. Now C(n2 −1, n −1) ≤ n2(n +1)2/[(n +1)n −1] implies that
n �= 3. If n = 2 then Theorem 1 produces a contradiction. The converse is straightforward.

��
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Remark 2 The argument about the number of subplanes on a subline should be compared
with [2, paragraph after Lemma 3.1]. That a plane of order 9 is Desarguesian if every quad-
rangle is in a proper subplane was already established by Killgrove [5] in 1964. The exception
in the proof for n = 2 is forced by the fact that PGL(2, 4) = Alt(5), and so related to the
failure of the converse of Theorem 3 for a plane of order 4.
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