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For Jacques Tits on his sixtieth birthday 

ABSTRACT. Two randomly chosen elements of a finite simple classical group G are shown to 
generate G with probability --* 1 as IGI ~ co. Extensions of this result are presented, along with 
applications to profinite groups. 

1. I N T R O D U C T I O N  

If two elements are chosen at random from a finite simple group G, will they 
probably generate G? Intuition strongly suggests that the answer is 'yes'. The 
purpose of this paper is to prove that intuition is correct, at least in the case of 
a classical group G. The case of alternating groups is a beautiful result due to 
Dixon [11], who also asked whether the corresponding result is true for all 
finite simple groups. However, whereas his theorem is proved using 

nineteenth-century results concerning permutation groups, the proof of our 
result unfortunately uses the classification of finite simple groups. 

We will prove the following: 

THEOREM.  Let G O denote a finite simple classical group, and let 

Go ~< G-%< Aut(G0). I f  P(G) is the probability that two randomly chosen 

elements of G do not generate a group containing Go, then P(G) ~ 0 as IGI -~ oo. 

The proof consists of one crude estimate for P(G) (see (*) in Section 2), 
followed by a fairly standard use of the results in [1] (similar to that in [21]). 
On the whole, the proof is less informative than the result itself. In Section 2 
we will consider the (marginally easier) case of PSL(V), and in Section 3 that 
of the remaining classical groups. In Section 4 we note that the theorem 

continues to hold for the groups 2B2(q), 2G2(q), GE(q), 304(q) and E6(q). Thus, 
only the groups 2F4(q)  , F4(q), 2E6(q),  Ev(q) and Es(q) remain to be considered. 

In Sections 5-7 we consider situations involving direct products of simple 
groups. First, in Section 5 we discuss the evaluation of P(G) for a finite group 

G that is a product of nonabelian finite simple groups. Methods similar to 
those in that section are then used in Section 6 in order to answer a question 
posed by Fried and Jarden [12] concerning the probability of generating free 
profinite groups. The Theorem is not used in Sections 5 or 6. Finally, Section 
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7 studies the probability of generating some special types of profinite groups 
by translating results about the rate of convergence of P(G) to 0 when 
IG[ --* ~ obtained in the course of the proof of the theorem. 

2. PROOF OF THEOREM: P S L ( V )  CASE 

The case of PSL(V) is slightly easier than that of the remaining classical 
groups, and will be presented first. Section 3 contains the modifications 
required for the remaining classical groups. 

Write Go = PSL(V) = PSL(n, q), and let Go ~< G ~< Aut(Go) = PFL(V)(z), 
where z is the inverse transpose map. 

Consider O, h ~ G. Clearly, (9, h) does not contain Go if and only if it is 
contained in a subgroup L of G maximal with respect to this property. Since 
Pr(o, h ~ L) = ([LI/IG[) 2, 

.< z __ z ,  ,-, (,) P(C) ~ E ~ \lCl/ \ILl ) It--I- 

where the last two sums are over representatives L of conjugaey classes of all 
the subgroups of G maximal with respect to not containing Go. 

By [1], each group L falls into one of the following classes of subgroups of 

G: 

C~: The stabilizer of a subspace of V, or (if G is not contained in PFL(V)) of 
a pair of subspaces V~, I/2 such that dim V~ + dim V 2 = n and either 

Vl ~_ V2 0r V =  V~ + V2 . 
C2: The stabilizer of a direct sum decomposition V = • V~ for V~ of the 

same dimension. 
C3: The stabilizer of a field extension of 0zq whose degree is a prime 

dividing n. 
C4: The stabilizer of a tensor product decomposition V = I/1 ® V2. 
C5: The centralizer of a field automorphism. 
C6: The normalizer of a symplectic-type r-group for a prime r # p (in an 

irreducible representation). 
C7: The stabilizer of a tensor product decomposition V = ® V~ for V~ of 

the same dimension. 
Ca: A classical subgroup embedded as usual. 
C9: L = No(S), where S is a nonabelian simple subgroup of PSL(V) such 

that S ~< L ~< Aut(S), and the universal cover S of S acts absolutely 
irreducibly on V in a representation defined over no proper subfield of 
0zq. (Here, g is the largest perfect group which, modulo its center, is 
isomorphic to S.) 
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By [21, Theorem - or, more precisely, (4. I)], (L( < k := q3" for L in C,. On 
the other hand, in [I, $11 there is a thorough discussion of the conjugacy 
classes of subgroups L of types C,-C,, from which it follows that the 
numbers of conjugacy classes are bounded above as follows: 

C,: 2n 
C,, C,, C,: n (an upper bound on the number of divisors of n) 
C,: log q (where, throughout this paper, logarithms are always to the base 

2) 
C,: 1 
C,: log n 
C,: 4. 

In each case, )G: LI 2 49"-'. Since IGI > +qn2-'In, (*) becomes (with Z' 
denoting the sum over Cl-C, and Z9 denoting the sum over C9) 

(5n + log q + 1 + log n + 4) 2n(& ILJ) 
d +q" - 1 + 

(In2-' . 

The first term is negligible, so consider the second one. Recall that )LJ Q k for 
L in C,. 

The number of possible simple groups S of a given order s d k is itself <2 
(by the classification of finite simple groups). Fix such a simple group S. The 
number of (equivalence classes of) absolutely irreducible projective represen- 
tations of S in characteristic p is at most 191, where d IS1 log IS!. For each 
such representation, maximality forces L to be the normalizer of (the image 
of) S; and L is isomorphic to a subgroup of Aut(S) containing S, so that 
ILI Q IS1 log ISI. (All of these estimates are very crude: slightly less crude ones 
are used in Lemmas 1 and 3 below.) Thus, 

9 sdk IS1 =s representations of S 

< k .  2.  k log k .  k log k d 2(q3n)3(log q3n)2, 

so that, if n 2 10, then 

2n(C9 (LO 4n. q9"(3n log q)2 36n3(log q)2 
d < +o  

qn2- qn2- qn-' 

as (GI -r oo. 
This proves the Theorem for n 2 10. The remaining cases can be handled 

by slightly sharpening some of the above estimates in order to handle 
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dimensions n I> 8, and then referring to existing lists of subgroups of SL(n, q) 
for n ~< 7. However, since a better approach will be needed for the remaining 
classical groups, we present it here in preparation for the next section. 

LEMMA 1. I f  n is restricted to be at most 9, then P(G) - ,  0 as IGI--' oo. 
Proof. The only cases needing comment are those in C9 (i.e., the terms in 

2;9 ILl/IGI), when L has a simple normal subgroup S such that V is an 
absolutely irreducible projective S-module. 

If S is an alternating group Am then 9/> n >i m - 2 [28], so that there are 
0(1) terms of this sort. Of course, there are O(1) terms with S sporadic. 

Thus, we may assume that S is a group of Lie type defined over 0:, for some 
prime power r. Let l=  l(S) denote the absolute rank of S and if(i.e., the rank of 

the corresponding algebraic groups over an algebraic closure of 0:,), unless S 
is 2BE(r), 2G2(r ) or  2F4(r), in which case let l(S) denote the relative rank of S 
(namely, 1, 1 or 2 respectively). Since n ~< 9 there are 0(1) terms in which 
(q, r ) =  1, by [20]. (Namely, that paper shows that, with O(1) exceptions, 
9 >~ n ~> ½r '/2. More precisely, there are fewer than 20 exceptional groups S, 

each contributing < 5- 10a/lGI to 5". ILI/IGI.) 
This leaves the case of terms ILI/IG] in which L has a simple normal 

subgroup S whose characteristic p is that of G. Write r = p~ and q = pb. Then 

n ~ m a/(a'b) 

by [21, (2.1)-(2.2)], where m = re(S) is defined to be the smallest degree of a 
faithful, irreducible, projective if-module over an algebraically closed field of 
characteristic p. As 9 t> n >/m, S is either a classical group o r  G2(q), 2G2(q), 
2B2(q) or 3D4(q) (since m >/25 for the groups F4(r), 2F4(r ), E6(r), 2E6(r), E7(r) 

and Es(r); cf. [21]). 
Since pa = r ~< ISI ~ q 3 , <  p27b, there are at most 27b possibilities for 

r = pa. Also, 9 ~> n ~> m >/l; while each choice of p° and l produces at most 

seven groups S up to isomorphism (there are at most seven groups of Lie type 
of a given rank over a given field), so there are O(b) possible groups S. Fix one 
of them. Table I gives values of m, l, 6 and M, where M = M(S) has been 
chosen so that IS[ ~< 2r M (required here) and rU/2m ~ ISI (required in Section 
3) hold (note that, in the table, M ~< m 2 -- 1 and l -N< m - 1 in every case), 
while ~ is such that there are exactly r a~ inequivalent absolutely irreducible i -  
modules in characteristic p [26]. In particular, there are at most r a' 
conjugacy classes of subgroups of G isomorphic to S. Fix one such subgroup 
and temporarily identify it with S. We have L = N~(S). Since S ~< L ~< Aut(S), 

ILl = O(a'lSI). 
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TABLE I 
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s t(s) re(s) MrS) 

PSL(m, r), m 1> 2 m - 1 m m 2 - 1 1 
PSp(2k, r), k > /2  k 2k ~ m  2 + m) 1 
Pfl(2k + 1, r), r odd, k I> 3 k 2k + 1 ~(m 2 + m) 1 
Pf~+(2k, r), k 1> 4 k 2k ~ m  2 - m) 1 
Pf l - (2k,  r), k >~ 4 k 2k 2~m 2 - m) 2 
P S U ( m , r ) , m / > 3  m -  1 m m 2 -  1 2 
2B2(r ) 1 4 5 1 
2G2(r ) 1 7 7 1 

G2(r ) 2 5 + (2, r - l) 14 l 
3D+(r) 4 8 28 3 

Verification of co lumn 4 of this table is an elementary exercise using the orders  of 
the various groups  [13, p. 491]. 

Thus ,  e ach  of  the  O(b) s imple  g r o u p s  S c o n t r i b u t e s  O(alSl" r~/lG[) to  the  

s u m  Z9 ILI/IG[. Here ,  

ISl" r ~t 2rMr +t 
]G~ <<" _ 4npa(M +,Sl)-b(n2- 1~ qn2 - 1/2 n 

F i r s t  a s s u m e  t h a t  S = 3D+(r). T h e n  ~ = 3, l = 4, 9 >1 n >~ m "/(a'b) = 8 a/(~'b~, 

a n d  hence  a / ( a , b ) =  1, so t ha t  alb .  C o n s e q u e n t l y ,  4np a(M+~t)-b(n2-1) 

~< 4np *°°-8°b  <~ 4nq -*°  for  this  p a r t i c u l a r  S. 

N o w  we m a y  a s s u m e  t h a t  3 <~ 2. 

We claim that ISl" r+t/IGI <<. 4np - ~ -  l)b = 4nq- ( , -1 ) .  In  fact,  we will  s h o w  

t h a t  4np~(M+~)-b(~-l)<~4np-("-l)b.  F o r ,  s ince l <~ m --  1 a n d  M ~< m 2 - 1, 

we have  

b m2a/(a'b) - -  ma/(a 'b)  (m 2 --  1 + 6(m 1)). b(/12 - -  1 - (n - 1)) - (M + 61) >~ - - 
a (a, b) (a, b)/a 

If  6 = 1 t hen  the  r igh t  s ide is >~(m 2 - -  m)  - -  ( m  2 - -  1 + 2(m - 1)) > 0. So 

a s s u m e  t h a t  c5 = 2 (so tha t ,  in p a r t i c u l a r ,  m / >  4). T h e n  the r igh t  s ide is t> 0 if 

a/(a, b) >t 2, or  if a = (a, b) b u t  b/(a, b) />  2. Th i s  leaves  us wi th  the  case  a = b, 

so t h a t  q = r. T h e n  

b(n2  - n) - ( M  + c5/) ~> (02 - n) - (m 2 - 1 + 2(m - 1)) 
a 

: n 2 - (m + 1) 2 + 3, 

a n d  this  is pos i t i ve  unless  n = m. F ina l ly ,  a s s u m e  tha t  q = r a n d  n = m. T h e n  
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S cannot be PSU(n, r) embedded in PFL(n, q), and hence M = 21{m 2 - m) and 
l = ½m by Table I (since 6 = 2). Now 

b (n 2 _ n) - ( M  + 6/)  = (m 2 - m) - (~(m 2 - m) + 2 (½m)) />  0. 
a 

This proves the claim. Since a = O(b) = O(log q), it follows that each of the 

O(b) = O(log q) groups S contributes O((log q)q-(n-1~) to E9 ILI/IGI, so that 

~'~9 ILI/IGI--, 0 as IGI--, ~ .  []  

REMARK. Combining the various inequalities used above produces the 
(crude!) estimate P(G) < 101°n3(log q)2/qn-t, which will be needed later (cf. 
Proposition 13). 

3. T H E  R E M A I N I N G  C L A S S I C A L  G R O U P S  

Now we consider all of the remaining classical groups. The argument is 
divided into two separate parts, according to whether the dimension n is large 
(at least 21) or small. These are handled in Lemmas 2 and 3, respectively. 

First we note the following simple 

REMARK. Let H <. GL(V), and assume that H is absolutely irreducible on 
the F,-space V. If H preserves a nonsingular alternating, symmetric or 
bermitian form on V, then that form is uniquely determined up to scalars. If V 
has characteristic 2 and H preserves a quadratic form on V, then that form is 
uniquely determined up to scalars. 

Proof The first assertion is standard. For  the second, assume that f and g 
are H-invariant quadratic forms on V having the same associated bilinear 
form. Then it is elementary to check that f - g is a semilinear map V ---, l:q 
relative to the squaring automorphism of l:q, and the kernel of this map is H- 
invariant. Thus, f - g = 0, so that f = g and f is unique up to scalars since 
the associated bilinear form is. [ ]  

Now let Go denote a finite simple symplectic, orthogonal or unitary group, 
defined on a vector space V of dimension n over l:q (or £q2 if Go is unitary), 
where we assume that Go is not isomorphic to any group of the form 
PSL(n', q'). If q is even, 2n > 4 and Go is Pli(2n + 1, q) we will view Go as 
the isomorphic group Sp(2n, q). In all other cases we may assume that Go is 
not isomorphic to a classical group of smaller dimension (thus, we are 
excluding Pf~(5, q), which is isomorphic to PSp(4, q), as well as the related 
cases Pf~+(6, q) ~ PSL(4, q) and Pf~-(6, q) ~ PSU(4, q); cf. [7]). In particular, 
if G is an orthogonal group then we will assume that n/> 7. 

Let G denote a group satisfying Go ~< G ~< Aut(Go). 



G E N E R A T I N G  A F I N I T E  C L A S S I C A L  G R O U P  73 

LEMMA 2. I f  n is restricted to be at least 21, then P(G) ~ 0 as IGI ~ oo. 

Proof. Inequality (,) still holds, and by [1] there are still classes CI-C9,  
but with further conditions on the various subspaces and subgroups involved. 
For example, subspaces are either totally singular or nonsingular, and many 
of the direct sum decompositions are orthogonal decompositions, all of 
which contribute additional cases. 

If L is in one of these new classes C t - C  8 then it is easy to check that 
IG:LI >i ½qt~6). In view of the description of the conjugacy classes in CI-C8 
found in [I, §1] the following analogue of (**) continues to hold: 

v iL[ = v, [L[ + ~- ]L[ 

(***) P(6) ~< ,. IGi "~ IGI ~ IGi 

~ < 3 { 5 n + l ° g q + l + l ° g n + 4 }  [L[ 
½q.O, + E I -T 

Note that E 9 ILI/IGI will involve a somewhat smaller denominator than in the 
previous section: we will use the estimate IGI/> qM(G°)/2n, where M(Go) is 

listed in Table I. 
By [21], it is still true that ILl ~< (q2)3n in the unitary case, but the inequality 

ILl ~< q3n is no longer true for the remaining classical groups G, because there 
is a further type of subgroup that must be considered: 

E:Sk<PO+-(n,p)  for p ~ 2  and either n = k + l = l  (modp) or 
n = k + 2 - 2 (mod p); $4k+2 < PO(4k + 1,2), $8k+1 < PO+(8k, q), 
S8k < PO+(8k + 2,2), $8k+4 < PO-(8k + 2,2), and Ssk+s < 
PO-(8k + 4, q). 

In each case there is a unique class of subgroups of the indicated type. Of 
course, there are additional cases produced by the listed ones, namely 
embeddings of alternating groups obtained by intersecting each of the above 
embeddings with the appropriate simple group Pf~(V). 

For each of the cases in E it is straightforward to check that ILl/IGI <~ q-~(G). 
Thus, E contributes at most q-"O) to (***). 

Write C9, = C9 - E, and let •9' denote the sum over representatives of 
conjugacy classes of the groups in C9,. If G is not unitary then, once again, 
ILl ~< q3. for L in C9,; write k = q3. in this case, and k = q6, in the unitary 
case. Now we can proceed exactly as before in order to obtain that 
Eg" ILI/IG[ <~ k '2 .k logk .k logk/]G[.  If G is not unitary then the right side is 
<~2(q3")3(logq3")2/(q("2-")/2/2n) (cf. Table I); while if G is unitary then the 
right side is <~2(q6")3(logq6")2/(q"2-1/2n). In any case, if n~>21 then 

F.9, ILI/IGI = O(n3(logq)2q -'+ l), so that ~"~9" ILI/IGI ~ 0 as IGI ~ oo. [] 
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LEMMA 3. l f  n is res tr ic ted to be at most  20, then P(G) ~ 0 as IG[ ~ oo. 

Proof.  We will assume until near the end of the proof that G ~ PFL(V) 
(which will be the case except, perhaps, if Go is PSp(4, 2 b) or Pfl+(8, q)). 
Proceeding as in Lemma 1, we find that the only cases needing comment are 
those in C9,, when L has a simple normal subgroup S whose universal cover g 
acts absolutely irreducibly on V. 

If S is alternating, sporadic, or of Lie type in characteristic different from p, 

then (as in Lemma l) there are only O(1) groups S and L to consider, and 
hence O(1) absolutely irreducible S-representations. Each such representation 
leaves invariant at most one nonsingular alternating, quadratic or hermitian 
form, up to scalar multiplication (by the Remark). Hence, these groups S 

contribute O(1) terms to ~"~9' ILI/IGI, and hence contribute O(1/IGI) to P(G). 

This leaves the case of terms [L[/[G[ in which L has a simple normal 

subgroup S of Lie type defined over F r for some power r of p. If m = re(S), 
l = l(S), a and b are as before, then 20 >~ n >~ m a/t"'b) >~ m by [21, (2. I)-(2.2)]. 
Moreover, if S is not classical then it is 2B2(r), 2G2(r), G2(r ) or 3D4(r ) (since 

m/> 25 for the groups F4(r), 2F4(r), E6(r), 2E6(r), ET(r) and Es(r); cf. [21]). 
As in Lemma 1 we have r ~< IS[ ~< k 3" ~< qa.6n << q36O,  SO that there are at 

most 360b possibilities for r, and hence there are O(b) possible groups S. Fix S. 
Let 6 be as before, so that there a r e  r ot absolutely irreducible S-modules V to 

consider [26]. Each of them admits at most one S-invariant nonsingular 
alternating, quadratic or hermitian form, up to scalar multiplication (by the 
Remark). 

Let M, m, l and 6 be as in Table I, and let M(Go)  and l(Go) be the 

corresponding quantities for Go. Note that the table shows that 

M(Go)  --  l(Go) >1 (½n z - ½n) - ½n = ½n 2 - n. 

We will show that each o f  the O(b) groups S contr ibutes  O(n(Iog q)2 q-t(t;o)) to 

the sum Zg, [LI/IG[. 

Exactly as in Lemma 1, if S = 3D4(r ) then 20 >~ n >>. m alto'b) = 8 ~/(~'bJ implies 

that alb. Moreover, a ~< ½b: if a = b then we would have n >/24 [21, (2.2)]. 
Now 

40a -- (M(Go) --  l(Go))b <~ 40a - -  (½n 2 - -  n)b <~ 20b - 24b < O, 

so that 

ISl" r ol 2 rM r ~ l 
[G~ <~ (qMtG°)/2n) <~ 4np4Oa-bl(G°)b < 4nq-t(G°)" 

From now on we may assume that 6 ~< 2. 
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If  n = m then (cf. [21]) S lies in C5 (centralizing a field au tomorph i sm)  or 

C s (a classical group). We are assuming that  this is not  the case. 
Thus,  n > m. 

There  is one addi t ional  case we must  single out: S --- Pf~(7, q), lying in 

Go = PD+(8, q) but  act ing irreducibly on the s tandard  module.  There is just 
one conjugacy class of  such subgroups  of Go (e.g., by [21] again). By 

considering Aut (S ) /S  as usual, we see that  this g roup  S contr ibutes  

O(24(logq)lSI/IGI) = O((log q)q-4)  to the sum E 9, ILI/IGI. 

N o w  we will proceed as in L e m m a  1. Each of the O(b) groups S contr ibutes  

O(alSl '?t / IGI)  to the s u m  Z9'ILI/IGI.  Here  ISl'ral/IGI <<, 2rMr~l/IGl 
<<. 4nrn+at/q n~6°), and we will show that  the right side is <<4nq -"G°~. That  is, 
we will show that  

A : =  __b (M(Go) - l(Go)) - (M + ~I) > 0 
¢/ 

where we are assuming that  n > m. 

First suppose that  S = PSL(m, r) or  PSU(m, r). Then 

A ~ > b ( ½ n 2 - n ) - ( m  2 -  1 + 2 ( m -  1)) 
a 

b m 2a/(a'b) - -  2 m  a/(a'b) 
1 - (m 2 + 2 m -  3). 

>~ 2 (a, b) (a, b)/a 

If a/(a, b) >/2  then the right side is positive. Thus,  we may  assume that  a lb. 

By [21, (1.1)], n >1 ½m(m - 1). If m ~> 5 then n >~ ½m(m - 1) >~ 2m, so that  

A >/b  ( 1 n 2  n )  - -  ( m  2 + 2m 3) >~ 0. 
a 2 - -  

It remains  to consider the cases in which m ~< 4. 

Let m = 4, so that  n >~ 6. Then A >i 2 ( ½ n  2 - -  n )  - -  ( m  E + 2m - 3)/> 0 if 

b/a >~ 2, so assume that  b = a. Similarly, we m a y  assume that  n ~< 7. If n = 7 
then, by the table, M(Go) - l(Go) = 7 2 - 7 o r  ½(7 2 - -  7) ,  and hence A >/0  

again. Let  n = 6. Then Go is not  o r thogona l  (see the remarks  preceding 

L e m m a  2), so that  Go is uni tary  or symplectic. In the uni tary case 

M(Go) - l(Go) = 6 2 - 6 > m E + 2m - 3. So suppose that  Go = PSp(6, q) 

> S = PSL(4, q) or PSU(4, q). All irreducible subgroups  of PSL(V) i somor-  
phic to S are conjugate,  and lie in an o r thogona l  g roup  (cf. [21]). N o w  the 
Remark  at the start  of  this section produces  a contradict ion.  

If m = 3 then A >~ (b/aX½n 2 - n) - 12, so that  we may  assume that  n ~< 6. 
Then once again G O is not  or thogonal ,  so that  A >~ (b/a)~(n 2 - n) - 12. If now 
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n = 6 then A i> 0, so assume that  n ~< 5. If n = 5 then G O must  be unitary,  in 
which ease A t> (n 2 - n) - 12 > 0. I f n  = 4 then, for the same reason, we may  

assume that  Go is not  unitary,  so that  Go = PSp(4, q). However ,  this g roup  
contains  neither PSL(3, q) nor  PSU(3, q). Since n > m, this completes  the 

discussion of the case S = PSL(m, r) or  PSU(m, r). 
Next  suppose  that  S = PSp(m, r), or  S = Ptl(m, r) with m >i 7. Then 6 = 1 

and 

A > / b  (½n2 _ . )  _ (½m2 -I- ½m + ½m)/>  ½ - -  
d 

b m 2a/(a'b) - 2 m  a/(a'b) 
--  (½m 2 + m). 

(a, b) (a, b)/a 

The right side is positive unless (a, b)/a = 1 and (a, b)/b = 1. So assume that  
q = r .  If  m = 4  and n > / 6  then A/>(½n 2 - n ) - ( ½ m  2 + m ) > / 0 ;  while if 

m = 4  and n = 5 ,  then G o must  be unitary,  and we have 
A = ( n  2 - n) - (½m 2 + m) >i 0. N o w  assume that  m i> 5. If  also n i> 2m - 2 
then A i> (½n 2 - n) - (½m 2 + m) >/0. 

By ['21, (1.1)], since n > m either n >I ½m(m - 1) - 2 or  one of the following 
occurs: S = PSp(6, q), n = 14; or  S = PSp(21, q) with q even or Pfl(21 + 1, q) 
with q odd, where 2 ~< l ~< 6, and n = 2 t. Since we m a y  assume that  m I> 5 and 

n < 2 m -  2, this leaves only the last of  these cases. But then 
A/>(½n 2 - n ) - ( ½ m  2 + m )  I>0 if I > 3 ,  so assume that  1 = 3 ;  and 

A = (n 2 - n) - (½m 2 + m) i> 0 if G o is unitary.  N o w  we m a y  assume that  

S -  Pfl(7, q) lies in Go = PD±(8,q)  or  PSp(8,q). However ,  all irreducible 

subgroups  of PSL(8,q) i somorphic  to S are conjugate,  and  lie in an 

o r thogona l  g roup  Pf~+(8, q) (again using [21]), in which case Go = Pf~+(8, q) 
(by the Remark);  but  this is a possibili ty tha t  was discussed earlier. 

Finally, assume that  S is Pf~±(m,r)  with m even and m/>  6, or that  
S is exceptional  (i.e., 2B2(r), 2G2(r) or  G2(r)). Then,  by  the Table,  

M + ~l ~< ½m 2 + ½m, so that  

A I> b (½n2 _ n) - (½m 2 + ½m). 
a 

As before, this is ~>0 if (a, b)/a >I 2, so assume that  (a, b)/a = 1. Then 
A1>(½n 2 - n ) - ( ½ m  2 + ½ m )  1 > 0 s i n c e n t > m + l .  

This proves  our  claim that  [SI.r6Z/IG [ <<. 16np -~'-1)~. As in L e m m a  1 we 
find that  each of the O(b) groups  S contr ibutes  O(ap -~'- 1~) = O(bp- t , -  1~) to 

Y9" ILI/IGI, so that  Y9" ILI/IGI --, 0 as IGI - '  oo. 
I t  remains  to consider  the cases in which G does not  lie in PFL(V).  Then G o 

is PSp(4, 2 b) or Pf~+(8, q)). 
I f  Go = PSp(4, 2 b) but  G is not  inside PFSp(4,  2b), then [1, §14] provides a 
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slight variation on the list Ct-C9,  and the above argument goes through 

without any difficulty. 
Finally, we are left with the case Go = Pf~+(8, q) but with G is not inside 

PFO÷(8, q). Here, the results of [1] do not provide a list of the sort we have 
used above, but [181 does contain such a list, and the theorem follows as 

before. [] 

This completes the proof of the theorem. 

REMARK. A check of the proof shows that P(G) = O(n3(logq)2q-"O°)). 

4. SOME E X C E P T I O N A L  G R O U P S  

In this section we wish to note the following (essentially known) fact: 

PROPOSITION 4. Let G O denote one of the groups 2B2(q), 2G2(q), G2(q), 
3D4(q) or E6(q), and let Go <. G <. Aut(Go). I f  P(G) is the probability that two 
randomly chosen elements of G do not generate a group containing Go, then 
P(G) --* 0 as IGI ---, ~ .  

Proof. The conjugacy classes of maximal subgroups of G are completely 
known in the cases 2B2(q), 2G2(q), G2(q), 3D4(q) ([21 [91, [16]-[181, [27]). It is 
straightforward to use these lists precisely as before. 

Assume that Go = E6(q). In [3], [4], [19] the possible maximal subgroups 
L of G are divided into two classes, A and B, say, with the following 
properties: A contains subgroups known to occur as maximal subgroups of G 
for suitable q, and all the conjugacy classes of subgroups in A are determined; 
while B consists of a short list of 0(1) groups whose occurrence or conjugacy 
classes have yet to be determined. For L in A, it is easy to check that 
ILI/IGI <~ q-16. Using (*) together with the conjugacy classes provided in [3], 
[41, [191, it is not difficult to check that A contributes O((log q)q-lS) to (*). 

This leaves us with the groups L in B. Here, L = No(S) and L ~< Aut(S) for 
a nonabelian simple group S, namely, S -~ A 6, A 7, A a, PSL(2, 7), PSL(2, 11), 
PSL(2, 13), PSL(2, 19), PSL(3,3), PSU(3,3), MI~, M12, J~ or HJ. It must be 
emphasized that even the existence of some of these as subgroups of G is left 
open in [31, [41, and is not relevant to our discussion. In each case, ISllb, 
where b := 2733527 • 11.13- 19. In each case it is not difficult to check that S is 
generated by two semisimple elements x, y (i.e., p'-elements), no matter what p 
happens to be. 

Each semisimple element x e Go of order dividing b lies in a maximal torus 
T. There are exactly 25 conjugacy classes of maximal tori of Go, and each has 
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order >~(q - 1)6/3 (cf. [8], [25, (2. liv, 2.4iii)]). Moreover, each maximal torus 
contains 0(1) elements of order dividing b. Since we may assume that q >/5, it 
follows that Ix~°l ~< IGol/ITI < 121Gol/q 6, and hence that the number of 
semisimple elements of Go of order dividing b is O(IGol/qr). In particular, the 
number of subgroups of G O generated by two semisimple elements of order 
dividing b is O(IGol2/ql2). 

Thus, the number of subgroups S is O(]GolE/q12). In particular, since 
ILl--IN~(S)I--0(1) we see that the number of pairs of elements of G 
lying in some such subgroup L is also O(IGo12/q12). Consequently, 
Pr(g, h eL) = 0(1/q12), as required. (An alternative approach to the last part 
of this proof can be based on the observation that {g e Gig ~ = 1} defines a 
subvariety of G, in which case the main result of [23] can be applied.) [] 

Note that there are exactly q36 unipotent elements of Go = E6(q), so that 
the probability is q36/lGol = O(IGol/q 6) that an element is unipotent. It follows 
that the considerations above could have used a pair of elements each of 
which is semisimple or unipotent. 

It would, of course, be desirable to avoid the aforementioned lists, since 
that would (presumably) produce a proof in the cases of the remaining simple 
groups. On the other hand, it is quite clear what kinds of lists are required for 
the cases of the remaining groups: 2F4(q), F4(q), 2E6(q), ET(q), Es(q). While it 
seems likely that all maximal subgroups of the latter groups will be known in 
the near future, we expect that a list (as in [3]) suitable for the purposes of our 
results will exist fairly soon. A very recent result [22] seems to provide such a 
list in case the characteristic is not too small. 

It is not difficult to devise or conjecture variations on the theorem. We 
content ourselves with two of the latter: 

CONJECTURE 1. I f  G is a finite simple (classical) group, and two elements 
are randomly chosen from G one of which is an involution, then they generate G 
with probability - ,1 as IGI--' oo. 

CONJECTURE 2. Let G be a finite simple (classical) group, and f ix  g ~ G, 
g ~ 1. I f  an element h is randomly chosen from G, then (g, h ) =  G with 
probability ~ 1 as IG]--, ~ .  

5. D I R E C T  P R O D U C T S  OF SIMPLE G R O U P S  

In this section we will discuss the generation of direct products of finite simple 
groups. For any group H and any integer k >/2 let Q(H, k) denote the 
probability that k elements generate H; thus, Q(H, 2) = 1 - P(H) in our 
previous notation. 
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First we observe that, for our purposes, it suffices to consider the direct 

product G m of m copies of a group G: 

L E M M A  5. Let  G1 . . . . .  Gt be pairwise nonisomorphic simple groups, let 

ml . . . . .  m t be positive integers, and let G = G•' x ... x GT 1. Then 

(a) A subset o f  G generates G if  and only if  its projection into G.~' generates 

G.~' for  each i; and 

(b) Q(G, k) = 1-I~=, Q(G?', k). 

Proof  Part  (a) is straightforward, and (b) is then an immediate 

consequence. []  

Consequently, we will consider a power G m of a simple group G. Let Dk(G) 

denote the set of ordered k-tuples generating G. 

P R O P O S I T I O N  6. Consider a k x m "matrix' (xi~) o f  km elements of  a 

nonabelian simple group G, with 'rows' r i = ( x i j ) E G  m and 'columns' 

cj = (xij) e G k. Then the r i generate G '~ if  and only if  the cj lie in different Aut(G)- 

orbits o f  Ok(G) - where the action o f  Aut(G) is the diagonal one. (Each such 
orbit has length IAut(G)l.) 

Proof  Write G '~= G~ x - . - x  G m with each G j ~ - G .  Clearly H : =  

( r  1 . . . . .  rk~ cannot be all of G m except, perhaps, if the projections of the r i into 

each factor Gj generate G j, that is, if all the cj lie in Dk(G ). Assume that this is 

the case. Since H projects onto Gin, H c~ Gm<~ G m (as all the required 
conjugations are induced by elements of H). By simplicity, H n Gm = G m  or 1. 

Assume that the cj are in different Aut(G)-orbits. By induction, the 

projection of H into G1 x ... x Gin_ 1 is onto. If H c~ Gm =Gm then H = Gm. 

Similarly, we may assume that H c~ Gj = 1 for each j. Using the above 

projection we see that Hc~(G l x ... x Gm l)<~G1 x ... x Gm-1 (once 

again all the required conjugations are induced by elements of H). Since G is 

nonabelian and simple, while H n  Gj = 1 for each j, it follows that 

H c~ (G~ x .-- x G~,_ 1) = 1. Hence the projection H --. Gm is an isomorphism, 

and similarly so is each projection H ~ G~. In particular, we obtain an 

isomorphism G 1 ~ H ~ Gm sending Xl~ ~ r i = (x~j,. . . ,  xm~) ~ xm~. But then 
c~ and Cm are in the same Aut(G)-orbit, which is not the case. 

Conversely, assume without loss of generality that ~0(Cl)= c2 for some 

tp e Aut(G). Then the projection of H into G 1 x G 2 consists of the elements of 
the form (g, ~;0(g)), g ~ G, and hence H cannot be Gm. 

Finally, the last statement of the lemma is obvious. []  

The converse part of the proposition can be found in [24]. 

C O R O L L A R Y  7 [14]. I f  G is a nonabelian f inite simple group and if  dk(G) 
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denotes the largest integer m such that G m has k generators, then dk(G)= 
ID~( G)l/IA ut( G)l. 

The corollary is immediate in view of the previous proposition; Hall's proof 
[14] is different from ours, but is just as simple. 

COROLLARY 8. I f  n >t 5, and if m >1 ncn for some constant c, then A~ is 
generated by O[logm/(nlogn)] elements. In particular, for fixed n, A~ is 
generated by O(log m) elements. 

Proof By Corollary 7, A~ is generated by k elements if m ~< 
]Dk(A.)I/IAut(A.)[. For all sufficiently large n, IDk(A.)I >~llA.[ k by [11]. 
Consequently, there is a constant 6 > 0 such that IDk(A.)I >t 61A,[ k for all 
n t> 5. Then IDk(A.)l/IAut(A.)l >>- 6(½n!)k/2n[ since Aut(A.) = S. for n # 6; if 

n = 6 then [Aut(A.)l = 21s.I. 
Thus, if m <<, 6(½n[)k/2n[ then A." is generated by k elements. Taking 

logarithms shows that k = O[log m/(n log n)] elements suffice to generate A~. 
[] 

The second part of the corollary is a special case of the fact that 
G" is generated by O(log m) elements for every nonabelian finite simple group 
G [29]. 

Let c(fl, m) denote the probability that distinct balls are obtained when m 
balls are chosen (with repetition) from among fl balls. Then 

c ( f l 'm '=m( - i l (1 - f l )  " , = 1 \  

We will need the following rough estimate for c(fl, m) pointed out to us by 

Persi Diaconis: if m = O(x/~) then 

1 1 (1 

i. 1, {m2 = e x p  - + 0  m - ~ -  ~ -  t i = l f l  = e x p  - + O  . 

PROPOSITION 9. I f  G is a nonabelian finite simple group, then 

m - - I  

k . . . . . . . .  Q(G, k) .~=~ (Q(G,k)IG[ k - i[Aut(G)[). Q(Gm, k) = Q(G, ) c[ak[o),m) = jG--~-i) 

Proof The first equality is immediate in view of Proposition 6 and 
Corollary 7. For the second, note that if we write 

[D~(G)I Q(G, k)[G[ ~ /~ = d k ( G )  - - -  = 

IAut(G)l IAut(G)[ 
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then 

Q(G% k) = Q(G, k)mc(fl, m) = Q(G, k) m 1-I 1 - 
i=1 

. - 1 (  IAut(G)l "~ 
= Q(G,k)m ,=in 1 - i Q ~ [ k - ]  

Q(G, k) m - -  
= Q(G,k)'-llG[ k( '- l)  i=ll-I (Q(G, k)lGI k - ilAut(G)l). []  

Consequently, Q(G',k) can be estimated in terms of IGI and Q(G, k). 
According to the theorem, Q(G, 2) - and hence also Q(G, k) - is near 1 for large 
G, provided that G is a simple alternating or classical group (and probably for 
all finite simple groups). In other words, [Dk(G) [ is near IGI k for large G of that 
sort. We will now present some applications of the preceding results. 

P R O P O S I T I O N  10. Let ~,. denote the set of finite groups that are direct 
products of m >>, 2 nonabelian finite simple classical (or alternating) groups. 
Then the probability that two elements of H ~ ~r~ generate H approaches 1 as 
the orders of all of the factors of H approach ~ .  (In particular, for a fixed m all 
but finitely many groups in [~. are generated by two elements.) 

Proof. Lemma 6 allows us to reduce to the case H = G m. For each G we 
have [Aut(G)l < IGI log IGI. Thus, if G is large then so is ID.(G)l/IAut(G)l, and 
hence C(dk(G), m) is near 1 (as m is fixed). Since Q(G, 2) ~ 1, Proposition 9 
implies the result. []  

We give two examples of the uses of Proposition 9 which will be needed in 
Section 6. 

EXAMPLE 1. (i) For each prime p >>. 5, PSL(2, p)P is generated by two 
elements. 

(ii) The probability that two elements generate PSL(2, p)P approaches e- l as 
the prime p ~ oo. 

(iii) The probability that three elements generates PSL(2, p)P approaches l as 
the prime p ~ oo. 

Proof The subgroup structure of PSL(2, p) has been known for over a 
century (cf. [10]). Using it, together with the elementary observation (.) in 
Section 2, it is straightforward to check that P(PSL(2 ,p) )~<p- l+  
10p -2 ~< 6p -1 for all p (compare (**) in Section 2). On the other hand, by 
considering the probability that two elements of PSL(2, p) fix the same point 
of the projective line it is easy to check that P(PSL(2, p)) >~ p-  1 _ 2 p -  2 

In particular, for each e > 0  we see that l - ( 1  +e)p-~ < 
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Q(PSL(2, p),2) < 1 + (1 + e)p -1 for all sufficiently large p. Consequently,  
Q(PSL(2, p), 2) 9 ~ e -  1 as p ~ ~ .  

By Corol lary  7, 

ID2(PSL(2, P))I 
f l :=  d2(PSL(2, p)) = 

IAut(aSL(2, P))I 

which proves (i). Moreover ,  fl > p3/8 for all sufficiently large p, so that 

i c(fl, p) = exp - ~-fl + 0 --. 1 as p ~ oo, 

and hence Proposi t ion 9 implies (ii). 
Next,  note  that  there is an obvious variat ion of(*) for three generators (or, 

for that  matter,  any number  of generators). As above, for each e > 0 this 
produces the estimate 

1 - ( 1  + / ; )p -2  < Q(PSL(2, p), 3 ) <  1 + (1 +/3)p -2 

for all sufficiently large p. Consequently,  this time, 

Q(PSL(2, p), 3) 9 ~ 1 as p ~ ~ .  

Since c(da(PSL(2, p), p) -* 1 as before, this implies (iii). [ ]  

E X A M P L E  2. (i) A~ !/8 is generated by two elements for all sufficiently large n. 

(ii) The probability that [x//-n] elements generate A~, !/8 approaches 0 as 
n ~ ~ .  (In particular, for anyfixed k, the probability that k elements generate 
A~ !/8 approaches 0 as n ~ oo. 

Proof. By [11] and Corol lary  7, for all large n we have 

d2(a,) - ID2(A")I I IA"I2 nil8, 
IAut(A,)--------~ ~> ~ [-~-,I = 

so that  (i) holds. 

Let  k = [x//-n]. Since A,_ 1 is a subgroup o fA, ,  Q(A,,k) <~ 1 - (1/n) k. Then 
Q(A,, k) "!/8 ~ 0 as n ~ 0, and hence Q(A n!/8, k) ~ 0 by Proposi t ion 9. [ ]  

REMARKS.  Many  more  examples of the above types can be readily 
obtained. The following ones are left to the reader. 

(i) The probabil i ty that n elements generate A~ !/8 approaches 1 as n ~ ~ .  
(ii) The probabil i ty that two elements generate A~ approaches e-~ as 

n ~ oo; while the probabil i ty that  three elements generate A~ approaches  1 as 
n--.  oo. Here, a better bound  is needed for P(A,), whose proof  uses the 
classification of finite simple groups ([5-1; cf. Proposi t ion 13(i) below). 

6 -1" IPSL(2,P)I 2 
> i ( 1 -  p ) ~ ~  >p,  
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6. G E N E R A T I O N  OF P R O F I N I T E  G R O U P S  

If F is a profinite group, one can ask for the probability that a k-tuple of 
elements of F 'generates' F. Here, probability is in terms of the normalized 
Haar measure on F k, and 'generates' refers to generating a dense subgroup. 
The following result answers a question posed in [12, Problem 16.16(2)]. 

Let Ft denote the free profinite group on 1 generators. 

P R O P O S I T I O N  11. (i) For any l >~ 2 and k, the probability that k elements 

generate ff l is O. 
(ii) More generally, the probability that k elements generate an open 

subgroup (i.e., a closed subgroup of finite index) of Fi is also O. 
Proof. Since b~2 is a homomorphic image of Fl it suffices to consider the 

case l = 2. 
(i) By Example 2 in Section 5, A~ ~/8 is a quotient of F2 while the probability 

of k elements generating A~ !/8 approaches 0 as n ~ oo. Thus, (i) holds. 

(ii) If H is an open subgroup of Fz then H = F m  with m =  1 +  
[ff~:H[(l- 1) [12, 15.27]. We are only interested in the case in which H is 
generated by k elements, so that 1 + I f f t :H[( l -  1)~< k. There are only 
finitely many open subgroups H 1 , . . . , H  ~ whose index in Ft is at most 
(k - 1) / ( l -  1) [12, 15.1]. Consequently, 

Pr(k elements generate a subgroup of finite index in/~,) 

~< ~ Pr(k elements generate Hi)= ~ 0 = 0 
i=1 i=1 

since part (i) can be applied to each of the free profinite groups Hi. []  

Note that the preceding proof did not use the classification of finite simple 
groups: the proof of (i) used only elementary properties of A,. 

The preceding result should be compared to the situation in the abelian 
case (see [12, 16.15] for the case 1 = 1): 

P R O P O S I T I O N  12. Let A t ~-~t be the free profinite abelian group on l 
generators. Then, for k >1 l, 

0 /fk = l 
(i) Pr(k elements generate/it) = Flk=k_l+ l ((0_ 1 > 0 /fk > l 

where ~ is the usual zeta function; and 

(ii) Pr(k elements generate a subgroup of finite index in 4,) = 

i f k > l .  
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Proof. For each prime p let En be the set of k-tuples in /i~ whose 
projections to Z~ generate Z~, (or equivalently, whose projections to ~:~, 
generate F~). Then {Ep I P prime} consists of independent sets, and/~(Ep) is the 
probability that k vectors in H:~ span that space. The latter probability is the 
same as the probability that I vectors in U:~ are linearly independent (using the 
equality of row and column rank), and hence 

pk __ 1 pk _ p ptt _ p l - 1  
~Ep) = p~ p~ p~ 

= (1 - p-kXl - p-{k-1})... (1 - p-{k-I+ l}). 

By independence, ~ Ep) = Hz/z(Ep), which = H~=k_t+ 1 ((i) -~ if k > l and 
= 0 if k = I. This proves (i). Moreover, this shows that, if/~p denotes the 
complement of Ep, then E #(/~p) converges if k > I and is ~ if k = I. By the 
Borel-Cantelli lemma 1-12, 16.7], it follows that Pr(x E/i~ is in Ep for almost 
all p) is 1 if k > I and is 0 if k = i. This completes the case k = ! since x can 
generate a subgroup of finite index in ,'it only if x is in Ep for almost all p. 

Now let k > I. We first claim that almost every k-tuple of elements of Z~, 
generates a subgroup of finite index. Indeed, for every subgroup H of index p~ 
in Ztn consider H k <~ (~_~)k. Then Ig(H k) = l / p  nk while the number c(p ~) of such 
subgroups H grows polynomially, in fact c(p ~) <~ M(p~) ~ for some constant M 
1-15]. Hence, letting H range over all subgroups H of finite index in Z~ we 
have 

c ~ )  M(pn) ~ 
# ( H ) = n ~ l  pnk ~<,=l ~ P~- < ~ s i n c e k > l .  

Again using the Borel-Cantelli lemma we deduce that #{k-tuples of elements 
of Z~, lying in infinitely many subgroups H of finite index in Z~} = 0. This 
implies the claim since every closed subgroup of infinite index in a profinite 
group is contained in infinitely many subgroups of finite index [12, p. 3]. 

Let Bp be the set of k-tuples in/i~ = 2 lk whose projections to 7/~, generate a 
subgroup of finite index in Z~. By the previous paragraph,/z(Bp) = 1, and 
h e n c e / 2 ( N p B p )  = 1 as well. 

At this point we know that almost every k-tuple x of elements of/i t  has the 
properties that (i) for almost every prime p, the projection of x into 7/~, 
generates Z~ and (ii) for every prime p, this projection of x generates a 
subgroup of finite index in Z~. These two properties are equivalent to saying 
that x generates a subgroup of finite index in At. []  
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7. MORE PROFINITE GROUPS 

Finally, we turn to an entirely different type of question concerning the 
probability of generating suitable profinite groups. Whereas the last two 
sections were independent of the theorem - and hence of the classification of 
finite simple groups - we will now once again use that theorem. As in Section 
5, we will use information concerning the rate of convergence of P(G) to 0. 

Let ~-A consist of a representative of each isomorphism class of nonabelian 
finite simple groups; and let ~-c consist of a representative of each isomorph- 
ism class of finite simple alternating or classical groups. We will need the 
following quantitative version of the theorem and the theorem in [11]: 

PROPOSITION 13. I f  GE~c ,  then P(G) behaves as follows: 

(i) P(An) = n - l  + O(n-2); and 

(ii) I f  G is a classical group over ~:q in dimension n, then P(G)= 
O(nS(log q)2q-ttt;)), while P(PSL(2, q)) >/q-1 _ 2q-2. 

Proof. (i) This is due to Babai [5], using the classification of finite simple 
groups. ( N B - T h e  following weaker version of this, obtained in [6] using 
nineteenth-century group theory together with number-theoretic estimates, 
suffices below: for each e > 0, P(An) < n- l +~ for all sufficiently large n.) 

(ii) The first part follows from an examination of the estimates occurring in 
the proof of the theorem (see the remarks at the end of Sections 2 and 3). For 
the second part proceed as in Section 5, Example 1. [] 

We will consider (unrestricted) products P = I-I6~ . G of subsets ad of , ~ .  
Each such product P is a compact group, with Haar measure # satisfying 
#((So)a) = [Ic~oalSol/lGI whenever the subsets So ~-G satisfy So = G for 
almost all G ~ q/. 

Throughout the remainder of this section, when we consider the case 
q / =  ~-a we will always assume: 

($) For every finite simple group G of Lie type defined over ~:q, 
P( G) = O(l( G)a(log q)2 q -tto~). 

By Proposition 13, ($) is already known to be true in the case of classical 
groups; and in fact it is also known for all the cases discussed in Section 4. 

We will consider the probability of generating a dense subgroup of P using 
two or three elements of G. 

PROPOSITION 14. Let P be the product of all the members of ~ c, or of ,~a 
assuming ($). Then 

(i) Pr(g, h ~ P generate a dense subgroup of P) = 0; and 
(ii) Pr(g, h, k ~ P generate a dense subgroup of P) ~ O, 1. 
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PROPOSITION 15. Let P be the product of all the members of ~ c, or of ~a 
assumino ($), but excludin9 the alternating groups and those of the form 
PSL(2, p) with p prime. Then Pr(9, h • P 9enerate a dense subgroup of P) ~ O, 1. 

Proof of Propositions 14 and 15. Consider 9, h • P. It is easy to check that 
(g, h> is dense if and only if 9 and h project onto a pair of generators of each 
factor in the definition of P. Thus, if Te -~ P x P is the set of all such pairs 
(g,h), then T e = H a T G where T~ is defined similarly for G • ~  A. Then 
#(Te) = l-I~ (1 - P(G)), and so #(Te) = 0 if and only if E G P(G) diverges. 

Now Proposition 13 shows that, in Proposition 14(i), E~ P(G) has a sub- 
sum ~> En-1  and hence diverges; whereas in Proposition 15, E6P(G)con- 
verges (by Proposition 13, since we are avoiding part (i) there, while 
EG n3(log q)2q-,6~ converges provided that G is restricted so that q is not a 
prime when n = 2/(G) = 2). The proof of Proposition 14(ii) is similar: it is only 
necessary to check that 

Pr(g, h, k • PSL(2, q) do not generate PSL(2, q)) = O(q- 2) 

and 

Pr(g, h, k • A, do not generate An) = O(n-3/2). 

In fact, since Pr(g, h, k • G  do not generate G)~< P(G) 2, Proposition 13(ii) 
implies the first of these inequalities; while the second follows either from 
Proposition 13(i), or from the less difficult result from [6-1 mentioned in the 
proof of Proposition 13(i) (namely, use e = ¼). [] 
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