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On the Lenz-Barlotti Classification of Projective Planes 

By 
Cm~ISTOPX H. HER~a and W ~ z ~  M. K-A~TOR *) 

The purpose of this note is to indicate a uniform proof for the following results. 

Theorem 1. Let ~ be a finite projective plane. Suppose that ?~ contains a line r and 
a point R ~ r such that ~ is (X, XR)-transit ive/or each point X on r. Then ?~ is des- 
arguesian. 

Theorem 2. Let ~ be a finite pro~ective plane. Suppose that, [or some line r and some 
point R e r, there exists a 1-- 1 map a o] the set o] points on r other than R onto the 
set o] lines through R other than r such that ~ is (X, Xa)-transitive whenever R ~: X ~ r. 
Then ~ is desarguesian. 

Theorem 1 implies that  there does not exist any finite projective plane of Lenz 
type III .  This completes results of Lff~V.BIYRG [11 and 12], C o F ~  [2], YAQUB [17], 
and HERr~G [6]. Theorem 2 implies that  there does not exist any finite projective 
plane of Lenz-Barlotti type 1.6 or II.3. This result is due to YAQU~ [15 and 16], 
J6~sso~ [9], Lt~WBV~O [10], and CoFM~ [3]. 

Both theorems will be proved by  means of some recent results on finite 2-transitive 
permutation groups due to S H ~ T  [14] and Hv.Rr~G, Ka~TO~ and SErrz [7]. W e  
remark that,  although induction was used in some of the above papers on planes of 
types I I I  and 1.6, there is greater freedom to employ induction in the proofs of the 
theorems on permutation groups than in the purely geometric situations. 

One way of obtaining Theorems 1 and 2 from [14] and [7] is to consider the in- 
volutions in the permutation group induced on r by the group G generated by all 
the (X, XR)-  or (X, Xa)-perspeetivities. This approach requires the investigation of 
various special situations, and even and odd order planes must be handled differently. 
We have chosen to use a different approach which provides a more uniform proof. 

P r o o f  o f  T h e o r e m  1. Let  G be the group of automorphisms generated by all 
elations of ~ whose centers lie on r and whose axes contain R. Furthermore, let 
Z = G(R, r). Then G leaves invariant R and r, and Z is the kernel of the represen- 
tation of a on the line r. Since G is 2-transitive on r, we have ]G[ ---- (n + 1)n h IZ], 
where n is the order of ~ and h is some integer. By Lt~EBIYRO [11, p. 441] 

(n +  )n(n - -  ' )  ] IGI �9 
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Hence  we have  
n - - 1  [. ,i 

(*) <;, 1 I z I J  (n - 1>. 

Le t  X be a point  on r, x an elation with center X and axis X2~, and  z ~ Z. Then  
the  c o m m u t a t o r  [x, z] ---- x - l z - l x z  leaves invar ian t  all points  on the  lines r and  X R ,  
so t h a t  [z, z] ----- 1 and  Z C ~G.  Let  p be a pr ime dividing IZ1 and  P a p-Sylow 
subgroup of Z. Assume t h a t  p r (n -k 1) nh. Then  P is a normal  Hal l  subgroup of  G, 
and  b y  the Sehur-Zassenhaus theorem,  there exists a complement  0 of  P in G. This  
complement  mus t  be normal  as Z C ~G. Hence,  0 contains the  groups G (X, X B )  with  
X ~ r, since these groups have  order n, which is p r ime to  I G : 01 . This implies t h a t  
0 ---- G, a contradiction.  Thus,  Pl ((n -~ 1) nh, n - -  1) ] 2h. Together  with (*) we obta in  

(**) 1I p is a prime and P in  -- 1, then p[2h. 

B y  [14] and  [7], we have  one of the  following possibilities for the  2- t ransi t ive group 
G/Z: (i) a sharply  2-transi t ive group;  (ii) PSL(2,  q); (iii) Sz(q); (iv) PSU(3,  q); or 
(v) a group of Ree  type.  Moreover,  in each ease G/Z acts  on r in its usual  2- transi t ive 
p e r m u t a t i o n  representat ion.  

I f  G/Z is sharply  2-transit ive,  then  h ~ 1 and  by  (**) n - -  1 is a power of  2. I f  
n > 2, then  n is odd and n q- 1 also mus t  be a power  of  2. This implies t h a t  n ~ 3, 
and  we have  case (ii). 

I n  the  un i t a ry  case n ~ q3 and  h[q2 - -  1. B y  (**) every  pr ime divisor of (n - -  1)/ 
(q - -  1) ---- q2 -k q -k 1 divides 2(q2 - -  1). As (q2 -k q ~- 1, 2(q 2 - -  1))[3 and  32~(q ~ -k 
q ~- 1, this is impossible. I n  the remaining cases n = qa, where a = 1, 2, or 3 and  
q is the  order of  the ground field (in case (v) the ground field is defined b y  means  of the  
centralizer of  an involution,  which is isomorphic to Z2 • P S L  (2, q) for some power  q 
of  3). Also, h l q - -  1 and ( ( n - -  1) / (q- -  1) ,2h)  = 1. B y  (**) this implies t h a t  we 
have  case (li). 

Now n = q and  h = (q - -  1)]4, where 4 = (2, q 1). Hence  d] ]Z]I  n - 1 b y  (*). 
I f  q ~ 3, i t  is easy to  check t h a t  G ~ SL(2,  q). Assume t h a t  q > 3. Then  G/Z is 
simple. Thus  G'Z = G and IG: G ' ] ] ] Z ] I n  - -  1. This  implies t h a t  G' contains the  
groups  G (X, X B )  with X e r and  hence t h a t  G' ---- G. Therefore,  G is a homomorph ic  
image  of the  covering group of G/Z. F r o m  results of  SCOUR [13] and  the  fact  t h a t  
( [Z ], q) = 1, i t  follows tha t  G ~ SL  (2, q). Now we can app ly  a theorem of L0~EBURr 
[11, Satz 2] in Order to prove  t h a t  ~ ~_ PG(2 ,  q). 

P r o o f  o f  T h e o r e m  2. Le t  G be the group genera ted b y  the given homolo~es  and  
let Z = G(R, r). As before, G leaves invar ian t  R and  r. Le t  g be an e lement  of  G 
Which fixes all points  on r. I f g  moves  some line through R, say X a, then  ~ is (X, X~g)- 
t rans i t ive  and,  therefore, desarguesian b y  a result  of  BARLOTTI [1]. We can thus  
assume t h a t  Z is the kernel  of the  representat ion of  G on r - -  {B).  I f  the order n 
of  ~ is a t  least  3, then  G is 2- t ransi t ive o n / ~  - -  {r), so t h a t  ]G[ = n(n -- 1) h]Z], 
where h is some integer. We m a y  assume t h a t  n ~ 5 (see [4, p. 144, Theorem 15]). 
Then  b y  L~3~.Bt~nG [10, Satz 2] G is t rans i t ive  on the  set of  points  which do not  
lie on r. Therefore,  n2]t G[ and  
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As in the p roof  of  Theorem 1, we see tha t  Z C ~G. Once again, [14] and [7] imply 
t h a t  the 2-transit ive group G/Z is of  one of  the types  (i)--(v) described on page 222. 

Assume tha t  G/Z is sharply 2-transitive on r - -  (R}. Then h = 1, so tha t  I Z[ = n. 
Fur thermore ,  G/Z contains an elementary abelian normal  p-subgroup P/Z which is 
sharply  transit ive on r - -  (R) .  I t  follows tha t  I P/Z[ ~- I ZI = n -- ps for some s. 
Since P' C ~ ( P) C Z C ~ P, w e h a v e  [a, b c] -~ [a, b ] [a, c] for all a, b, c e P. Hence 
[a, b]~ = [a, b~] = 1 for all a, b e P, and P '  is e lementary abelian. 

Let alZ . . . .  , as Z be a set of  generators of P/Z, and  let x, y e P - -  Z. Since G 
acts  transit ively on P/Z - -  (1}, there exists an element g e G such tha t  xgZ = alZ. 
Then [x, y] = [x, y]g = [xg, yg] ----- [al, yg]. However,  [al,  yg] e ([at, a~][ 1 ----- i --~ s ) ,  
so tha t  I P ' I  ~ p8-1. Thus, there exists a maximal  subgroup Q of  Z containing P ' .  
Since G acts transit ively on P/Z -- {1} and  centralizes Z, P/Q is not  cyclic. Therefore, 
-QI(P/Q) 2 Z/Q and  hence ~ I ( P / Q ) =  P/Q, i.e., P/Q is e lementary abelian. The 
representat ion of  G/P on P/Q is completely reducible. Hence G/Q splits over  Z/Q, 
and  G has a normal  subgroup 37 of  index p. As p 4 n - -  1, N must  contain the homo- 
logy groups G (X, X ~) with X e r - -  {R}. This  implies tha t  N = G, a contradiction. 

Le t  G/Z be of  t ype  (ii)--(v), but  G/Z ~ P F L ( 2 ,  8). Then G/Z is simple. This 
implies t ha t  G = G'Z and  [G:  G'[]IZ 1. Since ]G(X, X~)[ ---- n - -  1 for X e r - -  {R), 
we have G' = G. Hence Z is a homomorphic  image of  the Schur multiplier M of  G/Z, 
so t h a t  

(h:n'n) IMt  �9 

Let  q, a and  d be defined as in the proof  of  Theorem 1. Then in the un i ta ry  case, 
(h,n) l(q 2 - 1 , q 3 + l ) = q + l  and ( q 2 _ q + l ) ] l M ]  " I n  the remaining cases, 

I ' I (h,n) ( f l - - l ,  q a - t - 1 ) = ( q - - l , 2 ) = d  and  -)- (qa-t-1) ]M I. 

1 
I f  a = 1 then  G/Z__~ PSL(2 ,  q) and ~ (q -~ 1) g t by  ScHm~ [13], a contra- 

diction. Let  a > 1. A fur ther  result of  SCHUR [13] implies t ha t  [ M ] is not  divisible 
b y  primes p for which G/Z has cyclic p-Sylow subgroups. Therefore, G/Z is not  Sz(q), 
and  since q > 2 and  q2 _ q ~_ 1 ~ 0 (mod 9), it is also not  PSU(3, q). For  odd primes 
p dividing q -t- 1 a group of  Ree type  has cyclic p-Sylow subgroups. Since q -- 3 
(rood 8) this implies tha t  q = 3. 

Hence we can assume t h a t  G/Z _~ P/~L(2 ,  8). Le t  H be the  last te rm of  the 
commuta to r  series of  G. Then  H/H c~ Z _~ PSL(2 ,  8), and hence H ~--- PSL(2 ,  8) 
b y  SCHUR [13]. As H is transit ive on r -  (R) ,  we have H .  G(X, X~)---_ G for 
X e r --  (R) .  Bu t  the order of  H .  G(X, X ~) is no t  divisible by  n 2, a contradiction. 
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