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On the Lenz-Barlotti Classification of Projective Planes

By

Caristord H. HEriNg and Wiriam M. KanTor *)

The purpose of this note is to indicate a uniform proof for the following results.

Theorem 1. Let P be a finite projective plane. Suppose that P contains a line r and
a point R ¢ r such that B is (X, X R)-transitive for each point X on r. Then B is des-
argquesian.

Theorem 2. Let B be a finite projective plane. Suppose that, for some line r and some
point Rer, there exists a 1—1 map o of the set of points on r other than R onto the
set of lines through R other than r such that B is (X, X0)-transitive whenever R + X €.
Then P is desarguesian.

Theorem 1 implies that there does not exist any finite projective plane of Lenz
type IIL. This completes results of LNEBURG [11 and 12], Cormax [2], YaqQuUs [17],
and HEeriNG [6]. Theorem 2 implies that there does not exist any finite projective
plane of Lenz-Barlotti type 1.6 or II.3. This result is due to YaQus [15 and 16],
Jonssox [9], LoneBURG [10], and Cormaw [3].

~ Both theorems will be proved by means of some recent results on finite 2-transitive
permutation groups due to SEuLT [14] and HEriNG, KaxTOoR and SErrz [7]. We
remark that, although induction was used in some of the above papers on planes of
types IIT and 1.6, there is greater freedom to employ induction in the proofs of the
theorems on permutation groups than in the purely geometric situations.

One way of obtaining Theorems 1 and 2 from [14] and [7] is to consider the in-
volutions in the permutation group induced on r by the group G' generated by all
the (X, X R)- or (X, X¢)-perspectivities. This approach requires the investigation of
various special situations, and even and odd order planes must be handled differently.
We have chosen to use a different approach which provides a more uniform proof.

Proof of Theorem 1. Let G be the group of automorphisms generated by all
elations of §f whose centers lie on r and whose axes contain E. Furthermore, let
Z = G(R, r). Then G leaves invariant R and r, and Z is the kernel of the represen-
tation of @ on the line r. Since G is 2-transitive on r, we have |G| = (n 4 1) nh|Z],
where % is the order of J and % is some integer. By LONEBURG [11, p. 441]

(n+)nn—1)][6].
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Hence we have
n—1

Let X be a point on 7, x an elation with center X and axis X R, and z € Z. Then
the commutator [z, 2] = x~1z-1xz leaves invariant all points on the lines r and X R,
so that [z,z] =1 and ZC BG. Let p be a prime dividing |Z| and P a p-Sylow
subgroup of Z. Assume that p + (n + 1) nk. Then P is a normal Hall subgroup of G,
and by the Schur-Zassenhaus theorem, there exists a complement G of P in G. This
complement must be normal as Z C 3G. Hence, @ contains the groups G(X, X R) with
X e, since these groups have order n, which is prime to |G : @|. This implies that
G = G, a contradiction. Thus, p|((n + 1) nk, n — 1)| 2k. Together with (*) we obtain

(**) If pis a prime and p|n — 1, then p|2h.

By [14] and [7], we have one of the following possibilities for the 2-transitive group
GJZ: (i) a sharply 2-transitive group; (ii) PSL(2, q); (iii) Sz(q); (iv) PSU (8, q); or
(v) a group of Ree type. Moreover, in each case G/Z acts on r in its usual 2-transitive
permutation representation.

If G(Z is sharply 2-transitive, then = 1 and by (**) » — 1 is a power of 2. If
n > 2, then = is odd and » 4 1 also must be a power of 2. This implies that n < 3,
and we have case (ii).

In the unitary case n = ¢3 and 2|¢% — 1. By (**) every prime divisor of (n — 1)/
(@ — 1) =¢%+ g + 1 divides 2(¢2 — 1). As (¢ + ¢ + 1, 2(¢2 — 1))|3 and 32442 +
g + 1, this is impossible. In the remaining cases » == ¢%, where @ == 1, 2, or 3 and
g is the order of the ground field (in case (v) the ground field is defined by means of the
centralizer of an involution, which is isomorphic to Zy x PSL(2, g) for some power ¢
of 8). Also, k|g—1 and ((n— 1)/(g— 1),2k) = 1. By (**) this implies that we
have case (ii).

Now n = g and b = (¢ — 1)/d, where d = (2, ¢ — 1). Hence d||Z|| » — 1 by (¥).
If ¢ < 3, it is easy to check that G =~ SL(2, ¢). Assume that ¢ > 3. Then G/Z is
simple. Thus ¢'Z = G and |G: @'| ||Z|| n — 1. This implies that G’ contains the
groups G (X, XR) with X e r and hence that G’ = G. Therefore, ¢ is a homomorphic
image of the covering group of G/Z. From results of ScHUR [13] and the fact that
(|Z], q) = 1, it follows that G = SL(2, q). Now we can apply a theorem of LiNEBURG
[11, Satz 2] in order to prove that f ~ PG (2, ¢q).

Proof of Theorem 2. Let G be the group generated by the given homologies and
let Z = G(R, r). As before, G leaves invariant B and r. Let g be an element of @
which fixes all points on . If g moves some line through R, say X¢, then P is (X, X09)-
transitive and, therefore, desarguesian by a result of Barrorr: [1]. We can thus
assume that Z is the kernel of the representation of G on r — {R}. If the order n
of P is at least 3, then G is 2-transitive on R — {r}, so that |G| = n(n — 1) k| Z]|,
where  is some integer. We may assume that n = 5 (see [4, p. 144, Theorem 15]).
Then by Li~NeBURG [10, Satz 2] G is transitive on the set of points which do not
lie on r. Therefore, n2||G| and

12|

n
(B, m)
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As in the proof of Theorem 1, we see that Z C 3G. Once again, [14] and [7] imply
that the 2-transitive group G/Z is of one of the types (i)—(v) described on page 222.

Assume that G/Z is sharply 2-transitive on r — {R}. Then b = 1, so that | Z| = n.
Furthermore, G/Z contains an elementary abelian normal p-subgroup P/Z which is
sharply transitive on r — {R}. It follows that | P/Z| = |Z| = n = p* for some s.
Since P'CP(P)CZL 3P, we have [a,bc] = [a,b][a,c] for all a,b,cc P. Hence
[a, b]? = [a, b?] = 1 for all @, b P, and P’ is elementary abelian.

Let a1Z,...,asZ be a set of generators of P/Z, and let z, y € P — Z. Since G
acts transitively on P/Z — {1}, there exists an element g € G such that 297 = a,Z.
Then [, y] = [#,y]¢ = [29, y9] = [a1, 9] . However, [a1,y9] e{[a1,a]|l £ i< 8D,
so that | P'| < ps-1. Thus, there exists a maximal subgroup @ of Z containing P’.
Since G acts transitively on P/Z — {1} and centralizes Z, P|@ is not cyeclic. Therefore,
02,(P[Q)2Z|Q and hence 2,(P/Q) = P[Q, i.e., P/Q is elementary abelian. The
representation of G/P on P/Q is completely reducible. Hence G/@Q splits over Z/Q,
and G has a normal subgroup N of index p. As p 4+ n — 1, N must contain the homo-
logy groups G(X, X¢) with X € r — {R}. This implies that N = G, a contradiction.

Let G/Z be of type (ii)—(v), but G/Z &2 PI'L(2,8). Then G/Z is simple. This
implies that ¢ = G'Z and |G: G'|||Z]. Since |G(X, X6)| =n — 1 for X er — {R},
we have &' = G. Hence Z is a homomorphic image of the Schur multiplier M of G/Z,
so that

n
wom | 1
Let ¢, @ and d be defined as in the proéf of Theorem 1. Then in the unitary case,
(h,n)[(¢®—1,¢*+1)=¢-+1 and (¢2—q+1)||M|. In the remaining cases,

hm|g—t e+ 1) =(@—LD=d and 3@+

If a = 1 then G2 = PSL(2, q) and 5 (¢ + 1) ¥ | M| by ScHUR [13], a contra-

diction. Let @ > 1. A further result of ScHUR [13] implies that | M| is not divisible
by primes p for which G/Z has cyeclic p-Sylow subgroups. Therefore, G/Z is not Sz(g),
and since ¢ > 2 and ¢ — ¢ + 150 (mod 9), it is also not PSU (8, g). For odd primes
p dividing g 4 1 a group of Ree type has cyclic p-Sylow subgroups. Since ¢ = 3
(mod 8) this implies that ¢ = 3.

Hence we can assume that G/Z ~ PI'L(2,8). Let H be the last term of the
commutator series of G. Then H/H NZ =~ PSL(2, 8), and hence H ~ PSL(2, 8)
by Scmur [13]. As H is transitive on r — {R}, we have H-G(X, X¢) =G for
X er — {R}. But the order of H - G(X, X°) is not divisible by %2, a contradiction.
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