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Abstract 

There have hccn a nmnhcr of striking new fesults concerning translation planes of 
characteristic 2, ohtained using orthogonal and sYlnplcctic spreads. The iInpdus for this 
caIne frOln coding theory. This paper surveys the gCOlndric advances, while providing a 
hint of their coding theoretic connections. 

1. Introduction 

Spreads are familiar in finite geometry since they produce translation planes (d. Section a.1 
below). Orthogonal and symplectic spreads are less familiar. They have an underlying addi­
tional structure, produced by a quadratic form or an alternating bilinear form on the vector 
space. When the field is they also produce Kerdock codes over and This note sum­
marizes results that are more than 10 years old, while setting the stage for a discussion of new 
advances. 

2. Orthogonal spreads 

Let V = GF(q)2n = X Y for subspaces X and Y both of which are identified with GF(q)n. 
J·;quip V with the quadratic form Q defined by Q(oT, y) = oT' y (using the usual dot product on 
GF(q)n); this form is nonsingular, with isometry group O+(2m, 'I) and associated symmetric 
bilinear form ( , ). Then V has ('In - I)( qn-l + I) nonzero singular vectors and each totally 
singular n-space (such as X and Y) contains 'In - I nonzero singular vectors. This suggests 
that there might be families of qn-l + I totally singular n-spaces that partition the set of all 
nonzero singular vectors; SUdl a family is called an orthogonal 8prEad. WE ",ill a88!1mE that 'I 
i8 EVEn and see that such a family cannot exist unless n is even, in which case there is always 
at least one orthogonal spread. 

2.1. Matrices 

Fix a basis oT" ... , oTn of X and let Yl,' .. , Yn be the dual basis of Y; (oTi' Yj) = . Write 
matrices with respect to the basis oT" .. . , oT n , Yl,' .. , Yn' It is easy to check that the group 
O+(2n, q)(Y) of isometries of V that fix every vector of Y consists of those linear transfor-
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(in characteristic 2, "skew-symmetric" means "symmetric with 0 diagonal"); 0+ (2n, q)(Y) is 
isomorphic to the vector space of all skew-symmetric n X n matrices over GF( q), and is regular 
on the set of totally singular n-spaces Z such that Y n Z = O. 

Note that dim X (b r.;) n X (b 7) = n - rank(.I\I - N). In particular, if two such totally 

singular n-spaces meet only at 0, then n must be even (since 111 - N is skew-symmetric). There 
is another view of this parity remark; the totally singular n-spaces fall into two families such 
that two such subspaces are in the same family if and only if the dimension of their intersection 
has the same parity as n, so that there can be three such subspaces pairwise having only 0 in 
C01111110n only if n is even. 

It is now straightforward to prove 

Proposition 2.1. (i) If E is an orthogonal spread of V that contains both X and Y, then 

for a set I( of n X n skew-symmetric matrices, containing 0, and such that the difference 
of any two is nonsingular (a Kerdock set of matrices). 

(ii) Conversely, if I( is a Kerdock set of n X n skew-symmetric matrices, then the set E 
defined in (i) is an orthogonal spread of V that contains both X and Y. 

Of course, since 0+ (2n, q) is transitive on the ordered pairs of totally singular n-spaces 
having intersection 0, the restriction in (i) is insignificant. 

Definition 2.2. Kerdock sets 1(, and 1(2 are equivalent if ;\tI(T;\ + ]11 = 1(2 for some ;\ E 
GL(n,q), some skew-symmetric matrix lvI, and some field automorphism T. Orthogonal 
spreads E, and E2 are equivalent if there is an element of rO( V) sending E, to E2. (Here, 
rOW) is the set of semilinear maps g on V that preserve Q projectively; Q(cg) = aQ(vr for 
some a E K', some T E AutK and all v E V.) 

l';vidently, in Proposition 2.1(ii), E depends on 1(. It turns out that it is straightforward 
to determine more about the interdependence of E and 1(; 

Proposition 2.3. Let 1(, and 1(2 be Kerdock sets of n X n matrices over GF(q). Then the 
following are equivalent: 

(i) 1(, and 1(2 are equivalent; 

(ii) The orthogonal spreads E, and E2 of V, determined by 1(, and 1(2 via Proposition 2.1, 
are equivalent by an element of ro( V) sending Y to itself. 

It is easy to deduce that there are many choices of inequivalent Kerdock sets that produce 
equivalent orthogonal spreads. 

2.2. To symplectic spreads 

Let z denote any nonsingular point (I-space) of V; Q(z) fc O. If E is any orthogonal spread of 
V, then n is even and 

{ Z n z.L I Z E E } 
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is a family of totally singular n - I-spaces of zl. that partitions the set of nonzero singular 
vectors. 

Since the characteristic is 2, z is contained in the hyperplane zl.. The 2n - 2-space zl. / z is 
turned into a symplectic space using the inherited alternating bilinear form (n+z, v+z); = (n, v) 
(for U,v E zl.). Then 

E,; = {(Z n zl.,z}/z 1 Z E E} 

is a family of 1 EI = qn-l + I totally isotropic n - I-spaces of zl. / z that partitions the set of 
nonzero singular vectors. Such a family is called a symplectic spread of the symplectic space 
zl./z. (N.B.-There is no quadratic form inherited by zl./z.) 

2.3. From symplectic spreads 

The preceding construction can be reversed, proceeding from symplectic spreads to orthogonal 
ones. 

Namely, let m be odd, and start with a symplectic space V' of dimension 2m over GF(q) 
together with a symplectic spread E' in it. If m = n - I then we can identify V' with the 
symplectic space zl. / z arising, as ahove, from the orthogonal space V and one of its nonsingular 
points z. IDach totally isotropic subspace of Vi is the projection, mod z, of a unique totally 
singular subspace of zl. / z. In particular, E' arises from a family 

E'f; = {U 1 (U,z}/ z EE'} 

of totally singular n - I-spaces of zl. such that each nonzero vector of zl. / z lies in just one of 
its lllcnlbers. 

Finally, each totally singular n - I-space of zl. lies in exactly two totally singular n-spaces 
of V, one from each family. Pick a family M of such n-spaces, and let 

E; = {Z 1 Z E M and Z contains a member of E'f}. 

Then E is an orthogonal spread of V, and E, = E'. Note that this passage from symplectic 
to orthogonal spreads is essentially unique; it only depends on the choice of the family M. 
CMoreover, the nontrivial orthogonal transvection with center z interchanges M with the other 
family while leaving E' unchanged.) 

2.4. Back and forth 

Starting with a symplectic spread E' in a 2m-dimensional symplectic space over GF(q) with m 
odd, Section 2.:3 produces an orthogonal spread in a 2m + 2-dimensional orthogonal space, in 
such a way that there is a nonsingular point z for which E, is E'. Once we have E, Section 2.2 
can be used to form a different symplectic spread E,. using a different nonsingular point z'. 

2.5. Changing fields: up and down 

Iterating the procedure in Section 2.4 never produces a "new" orthogonal spread. There is 
a simple way to modify that procedure in order to get large numbers of new orthogonal and 
symplectic spreads. 

Start with a symplectic spread E' in a 2m-dimensional vector space Vi over J( = GF( q). 
Let L be any proper subfield of J( over which J( has odd degree, and let To J( -+ L be the 



trace map. Then T(n, v) defines a nonsingular alternating L-bilinear from on the L-space V'. 
We can view 2.;' as a family of subspaces of this L-space. It is still a spread, and each of its 
members is still totally isotropic with respect to the new form. Thus, 2.;' is a symplectic spread 
of the L-space V'. Here, dinlL V' = m[K; L]. 

Now Section 2.:3 can be applied, producing an orthogonal spread of a (2m[K ; L] + 2)­
dimensional orthogonal L-space. In fact, Section 2.4 now gives us "new" symplectic spreads. It 
is a difficult problem to decide, in general, whether these spreads are actually new; conceivably 
some are equivalent to ones already obtained. 

Up and down process. This process of repeatedly going from a symplectic spread over some 
field, changing fields, going up to an orthogonal spread and then back down to a symplectic 
spread, is called the !lp and down proce8S. It is difficult to keep control over properties of these 
spreads. However, in important special cases control can be maintained, a surprising discovery 
of Williams [Wi] that will be discussed shortly (Sections :3.:'h3.9). 

3. Projective planes 

An entirely different type of geometric view of symplectic spreads is provided by projective 
planes, and provides one of the principal motivations for their study. For this purpose we begin 
by ignoring the symplectic structure. 

3.1. From spreads to projective planes 

Let V' be a 2m-dimensional vector space over GF( q) (no restriction is placed even on the 
parity of q and m). 

Spreads A spread of Viis a family 2.;' of qm + I subspaces of dimension m whose union is all 
of V'. This means that every nonzero vector is in a unique member of 2.;'. Any family of qm + I 
m-spaces in a 2m-space, any two of which have only 0 in common, is a spread. (N.B.-An 
orthogonal spread is not a spread in this sense, but a symplectic spread is.) 

Example 3.1. If Viis a 2-dimensional vector space over a finite field E, its set 2.;' of I-spaces 
is a de8argue8ian (or "regular") spread. Note that this spread is symplectic with respect to 
any alternating bilinear form on V'. It is also symplectic when Viis viewed as a vector space 
over any subfield of E (cf. Section 2.;3). 

Translation planes Any spread of V' determines a translation plane A(2.;I), an affine plane 
of order qm whose points are vectors and whose lines are the cosets W + v with W E 2.;', v E V'. 
The plane A(2.;I) corresponding to a desarguesian spread 2.;' is a desarguesian plane. 

Any isomorphism between two translation planes is induced by a semilinear transformation 
of the underlying vector spaces. See [De] for more background concerning translation planes. 
The transition to projective planes is standard; introduce a line at infinity whose points are all 
parallel classes of lines, in order to obtain a projective plane of order qm. 

3.2. Symplectic translation planes 

Example 3.2. (I·;xample a.1 continued.) Starting with a desarguesian spread 2.;' in GF(q)"m, 
where m is odd, by Section 2.:3 we obtain an orthogonal spread 2.; in GF( q)"m+2, and hence a 



Kerdock set. This latter Kerdock set is the one first discovered by Kerdock [Ke] when q = 2 
(cf. [Di] and [11S, Ch. Hi §i')], aJllong many other references). 

";ach orthogonal spread appears to produce large numbers of symplectic spreads E,. This 
leads us to the isomorphism question: when are two planes A(E,) obtained in this manner 
isomorphic? If there is a symplectic transformation sending one spread to the other, the planes 
are certainly isomorphic. It seems surprising that the converse is (essentially) true: 

Theorem 3.3. For'; = 1,2, let be a symplectic spread in a 2m-dimensional symplectic 
space vi over GF(q). Let g: A(E, l -+ A(E2 ) be an iBOmorphism that sends the point 0 to 
the point O. Then there is an invertible semilinear transformation h: v; -+ V2 such that the 
following hold: 

(i) (E , )h = E2 , 

(ii) There is a field automorphism T, and a nonzero scalar a, such that (uh, vh) = a(u, vr 
\/u, v E v;, and 

(iii) g-' h fia:es every member of E2 • 

The elementa.ry proof is in [Ka.l, I (a.i'»)]. The set of all nonsingular linear transformations 
fixing every member of E2 (as in (iii)), together with 0, is a field, the kernel of the translation 
plane. It is the largest field over which the spread consists of subspaces. 

The preceding theorem implies that isomorphic planes can only arise from equivalent or­
thogonaI spreads (Definition 2.2). Moreover: 

Corollary 3.4. Two translation planes A(E,ll and A(E,21 arising from the same orthogonal 
spread E are isomorphic if and only if z, and Z2 are in the same orbit of the group O(E) of all 
elements of rOW) that preserve E. 

Theorem a.a also permits the determination of the full automorphism groups of many 
of these planes. The construction techniques for planes, using Kerdock sets and orthogonal 
and symplectic spreads, are very flexible. They have produced planes with relatively large 
collineation groups (Sections a.5-a.Tj as well as planes with unexpectedly small collineation 
groups (Section a.8). 

3.3. Prequasifields 

A translation plane is usually coordinatized by an algebraic system called a quasifield [De]. 
Here it will be convenient to consider a weaker, but geometrically equivalent system, called a 
prequasifield. 

Definition 3.5. Consider a bina.ry operation. on r 
the following conditions (for all or,Y,z E Fl: 

• (or + y) • z = x • z + y • z, and 

• or. y = or • z ==? or = 0 or y = z . 

• or. y = 0 = or = 0 or y = O. 

,,) 

GF(qffi) related to field addition by 



Then (F, +,.) will be called a preq!la8ifield. It is a q!la8ifield if it has an identity element; 
for use with (:3.6), it is preferable to delete this condition even though an identity element is 
readily introduced. (F, +,.) is a pre8emifield if both distributive laws hold, and a 8emifield if, 
in addition, there is an identity element. 

A translation plane is obtained by using F F as point-set and letting the lines have the 
familiar appearance 

"x = c " and "y = x • 8 + b " Vb,c,s E F. 

If we view F and F F as vector spaces over K = GF( q), then the spread E(.) of F EB F 
associated with (F, +,.) consists of the lines "y = or • s" through O. We will assume that our 
quasifield associates with K in the following manner: 

so that x f-+ X. 8 is a K-Iinear map for each y E F. Thus, K is contained in the kernel of the 
plane, since (or,y) f-+ (kx,ky) fixes each member "y = or. 8" of E(.) whenever k E K'. 

In order to consider symplectic translation planes, we use a substitute for the dot product. 
The trace map To F -> K determines an inner product T(ory) on F having an orthonormal 
basis that lets us identify F, equipped with this inner product, and Km, equipped with its 
usual dot product. 

Finally, we assume in addition that m. is odd and that. satisfies the following condition: 

(:3.6) 

One example of such a binary operation is x. y = ory2; the corresponding plane is desarguesian. 
Soon we will present many more exam pies. Note that, if we had required that our prequasifield 
have an identity element, then we would have had to use a more complicated version of the 
inner product. Thus, for example, it is more convenient in the present context to use the 
preceding inconvenient-looking modification ory2 of ordinary multiplication in F. 

Replacing x in turn by or, z , x + z in (:3.6) and subtracting, we find that 

(:3.7) 

Bya simple calculation: 

Proposition 3.B. FJq!lip F F with the alternating bilinear form 

(:3.9) 

Then the 8pread E(.) of F EB F a880ciated with a preq!la8ifield (F, +,.) i8 8ymplectic if and 
only if (F, +,.) 8ati8fie8 (:3.T). 

In view of this result, it may seem as if condition (:3.6) is unnecessa.rily restrictive. When 
searching for examples, this may be so, but in fact it is no serious restriction at all: 

Proposition 3.10. If (F, +,.) i8 a 8ymplectic preq!la8ifield, then there i8 a perm!ltation I' of 
F 8!1ch that or 0 y: = or. yl' define8 a preq!la8ifield (F, +, 0) that i8 8ymplectic with respect to the 
8ame form (:3.9), define8 the 8ame plane, and behave8 a8 in (:3.6). 
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Namely, by (:3.7) for each y E F the map or e-+ T(x(or * y))1/2 is X-linear, so T(or(or * y)) = 
'1'( 11')2' l ' l' . I 011' 0 If 'b" . I d .. d ;Ty'. lor SOlllC 11lap 11":.: ----- .: WIt 1 ' = . . 11" IS IJCctlVC, ct 11 emote Its Inverse an 
note that T(x(or * yl')) = T(ory)2 for all x, y, in which case or 0 y; = or * yl' behaves as required. 

Suppose that". is not bijective, and let y, z E F, y i' z , with y11' = z11'. If 9 denotes the 
X-linear map x e-+ or*y-or* z , then 'l'(ou") = T(or(or*y))-T(or(or* z )) = 0110T E F. Then the 
X · bilinear map (u, II); = T(ulI") on F satisfies (u,u) = 0 lin E F, and hence is an alternating 
bilinear form. It is nonsingular since 9 is (Le., T(Fy") = 0 =* y" = 0 =* y = 0). Since 
[F ; X] = Tn is odd, this is impossible. 

3.4. Up to Kerdock sets and orthogonal spreads, and down again 

Now equip F X with the inner product 

((or, a), (y, b)); = T( xy) + abo 

Proposition 3.11. The linear maps 

form a Kerdock set of (Tn + 1) X (Tn + 1) skew-symmetric matrices over X. If the above inner 
product iF;; '118ed, then every }(erdock 8et if:; equivalent to one ari8ing in thi8 manner. 

The proof is straightforward. Corresponding to this Kerdock set is the orthogonal spread 
E[ *] in F EB X EB F X consisting of 0 0 EB F X together with the subspaces 

{(x,k,oU 8 + T(X8)8 + k8,T(or8) I or E F, k E X} for 8 E F; (:J.12) 

here, the quadratic form is Q(or,a,y,b) = T(xy) + abo 
For some choices of a nonsingular point z it is easy to write down the symplectic spread 

E[*],. Namely, if z = ((0, a, (, I)} with a E X" ( E F, then a straightforward caIculation shows 
that the following symplectic prequasifield multiplication 0 gives rise to an equivalent copy of 
E[*], lying inside FEB F, where the alternating form is (:J.9); 

or 08 = [or *.$ + (1 + a)T(or8)8 + T(or8)( + T(or()8]/a. (:J.LT) 

(Division by a in (:J.LT) is only included so that (:3.6) will hold for O. Namely, T(or [or * 8 + (1 + 
a)T(or8)8 + T(or8)( + T(or()8]) = T(or8)2 + (1 + a)T(or8)T(or8) + T(or 8)T(or() + T(x()T(or8) = 

aT(or8j2 .) 

3.5. Semifield planes 

Let F and X be as before, with X ::> OF(2), and let T denote the trace map F -> X. The 
presemifield 

or * y; = ory2 + J; (or)y + T, (ory) 

was introduced and studied in [Ka,l, II]. The corresponding spread arises by starting with the 
desarguesian spread, going up and down once (cf. Section 2.5) while preserving the group of 
IFI elations with axis 0 F. This produces a nondesarguesian semifield plane. 

This approach was greatly generalized in [Wi]. The presemifields studied there arise by the 
up and down process (Section :J.4), carefully retaining elations having a finite axis. In fact, 
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by iterating (:3.L3) but always using a = 1, these presemifields can be described explicitly as 
follows. Let F = Fo ::> J, ::> ... ::> Fn = K be a sequence of fields with n 2: a, let 'ri : F -> 

be the trace map, and choose (i E for each ,i 2: 1. Then 

n 

X * Y = ory2 + I: ('Ii ( (ior)y + (/li(ory)) (a.14) 
1 

defines a 2-sided distributive binary operation on F that produces a symplectic semifield plane. 

Theorem 3.15. [Wi] Assume that a sequence F = Fo ::> [:, ::> ... ::> Fn = K is given as 
above with [Jb : J,] 2: 7 and [F:K] odd. If ((i) and (CD are sequences as above, then they 
define isomorphic planes if and only if (; = aCT for some a E F', some TEA utF, and all ,i. 

When all (i are 0, the plane is desa.rguesian. The theorem implies, for example, that 
there are at least IFln-2/(iFI - 1) log2 IFI pairwise noniwmorphic symplectic semifield planes 
defined by (a.14)-provided that Tn = [F : K] has at least n 2: a (not necessarily distinct) 
prime factors, at least one of which is 2: 7. Stronger versions of this result appear in [Wi]. 

3.6. Nearly flag-transitive planes 

If F and K are as before, and if a E K - GF(2), then the prequa,sifield 

2 '1"( ) or*y:= xy +a, oryy 

was introduced and studied in [Ka.l, II]. As in Section a.5, this spread (and those in Section a.7 
below) a.rises by starting with the desa.rguesia,n spread, going up to the orthogonal spread in 
j·;xample a.2, and then coming down in a, different manner (cf. Section 2.2). This time the 
group preserved is isomorphic to F': it has the form (or,y) e-+ (ul,y/a) with a E F" fixes 
two members of the symplectic spread, and cyclically permutes the remaining ones. 

This approach was again generalized in [Wi] by iterating (a.L3) but this time always using 
( = O. Let F = Jb ::> J, ::> ... ::> J'n, = K ::> GF(2) be a, sequence of fields, where [F : K] is 
odd. For each ,i, let 'ri : F -> be the trace map, where 1".", = T in our earlier notation; and 
choose C,i E such that Co = 1 and cd C';_l E for each ,i. Then 

n 

or * y: = ovy2 + I: (Ci_1Y'ri(ci_1ory) + ciy1i(Ciory)) 
1 

defines a prequasifield, the corresponding plane is nondesarguesian, and the maps (x, y) f-+ 

(ora, y/a), where a E , form a cyclic collineation group of order IF! - 1. Isomorphisms 
among these planes are determined in [Wi]. 

This construction suggests the following general approach, for any characteristic and unre­
la,ted to symplectic spreads. Suppose that F is a, finite field and g: F -> F is an additive map 
such that or e-+ org(or) is bijective. Then (F, +, *) is a prequasified, where 

or * y: = g(ory)y. 

(Namely, left distributivity is clear, and x * y = or * z =;. xg(ory)y = org(orz)z =;. ory = orz, as 
required.) Once again the maps (or, y) e-+ (aor, y / a) with a E form a cyclic collineation 
group fiJ:ing the or- and y-aJ:es and transitively permuting the remaining lines through the 
orzgm. (Namely, (or, or * 8) is sent to (ax,g(aors/a)8/a) = (ax, (aor) * (s/a)).) 
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Soon after I mentioned to Y. Hiramine this condition on a map g, he produced the following 
example; if", E GF(26 ) and ",6 = ",+1, let g(or) = or + "'or4 + ",47or '6. However, the proof that 
this satisfies the required condition, and hence produces a plane of order M, involves a long 
and ingenious case a,rgulllcnt. 

In the examples given earlier, g(or) = or + L~ (Ci-l 'Ii(Ci_l or) + c/li(cior)) (or, somewhat 

more precisely, g(or!cn ) is the preceding right hand side in order to make (a.6) hold). That the 
resulting spread is symplectic comes from fact that 9 has following additional property; 

T(org(z)) = T(zg(or)) Ih,z E F 

(d. (:3.7)). 

3.7. Flag-transitive planes 

There is one further way to obtain planes from a desarguesian spread, while retaining a large 
collineation group [KW]. In the previous sections we preserved a group of order In or In - 1, 
this time the group will have order In + 1. Once again, the planes arc obtained by starting 
with the desarguesian spread and using the up and down process (Section aA). This time, in 
order to describe these planes we need to usc the field E = GF(q2m) (where Tn is odd), and 
its multiplicative subgroup of order qm + 1. 

Let E = Eo ::> ... ::> En be a sequence of fields, where [E ; En] is odd and IE I is a square; 
let "over bar" denote the involutory field automorphism of E. For each ,; let be the subfield 
of over which has degree 2, let 'Ii; Fo ~ be the trace map, and write Wi ;= ker'Ii+l 

Pick any (i E where (i(i = 1 and (0 = 1, and write Ii ;= Jlh(l. Then 

n-l 

{O( I: Wm + Fnln ) 100 = 1} 
o 

(a.16) 

is a, symplectic spread in E, and {z ~ Oz + w 10, W E F, 00 = 1} iB II Bhllrply fillg-tmnBitivE 
collinElltion group. 

This produces exponential numbers of flag-transitive affine planes of order qm. In [KW] 
there is a, complete determination of when two of them arc isomorphic, as well as a, discussion 
of the iteration involved in the construction. Once again, the simplest of these planes were 
first studied in [Ka.l, II]. 

3.8. Orthogonal spreads and boring planes 

The group O(E) has been determined for various orthogonal spreads E [Ka.l; Ka,2; KaA; KW; 
Wi]. For many of the ones in Sections a .. )-a.7, O(E) is generated by the group preserved in 
the specific section (of order In or In ± 1) together with scalar transformations and some 
elements of AutF. It is then possible to find nonsingular points z such that O(E), consists only 
of scalars. In view of Theorem a.a, this means that the collineation group of A(E,) consists 
entirely of perspectivities. Showing that the stabilizer of 0 is (isomorphic to) 1(' can be messy 
(as in [KaA]) or partly pleasant (as in [Wi]), depending on the specific circumstances. 

The most interesting case is that arising in Section a .. ). There, the orthogonal spread 
E occurs at the el":.,d of an iterative process. The last step of the iteration starts with an 
orthogonal spread E in a smaller-dimensional space over a field properly between F and 1(, 

forms a symplectic semifield spread E;, and identifies this with a symplectic semifield spread E, 
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arising from our orthogonal spread 2.: over the smaller field 1( (so E;; = 2.:,. In [Wi], Williams 
proceeds as follows: he identifies all of the nonsingular points Zl such that 2.:" is a semifield 
spread, and then shows that z is the only such Zl for which the kernel of A(2.:,,) is larger than 
1(. It follows that 0(2.:) must fix z, and hence is determined by AutA(2.:,) = AutA(E;;). Then 

0(2.:) is determined by O(E) (cf. Theorem a.:l), and induction can be used. This outline is 
the pleasant part of the argument. The difficult part is in the implementation: calculating the 
kernels of planes defined using the formula (a.14). 

Boring planes. A boring plane is a translation plane A of order qffi with kernel GF( q) such 
that IA utAI = q2ffi( q -1) is as small as possible. The reason for this name "boring" is that such 
planes are contrary to those usually studied in finite geometry, in which collineation groups are 
assumed to be in some sense "big". The only examples known in odd characteristic are two 
planes of order 172 [Ch]. By contrast, there are too many boring planes when the characteristic 
is 2 [Ka4; Wi]. These planes arise as follows: as already indicated, 0(2.:) is known for many 
orthogonal spreads 2.:. For most of these there are nonsingular points z such that 0(2.:), = 1. 
In view of Theorem a.a, this means that AutA(2.:,) consists of perspectivities. All that then 
remains is to show that the kernel of this plane is just 1(. This step involves calculations that 
are very different in the proofs for q = 2 [Ka4] or q > 2 [Wi]. (Neither proof extends to the 
situation in the other part of the theorem.) Clearly this theorem still leaves open the case of 
other values of Tn., as well as the entirely different case in which Tn. is even-and of course, the 
case q odd also needs to be investigated. It is very likely that there large numbers of boring 
planes in all of these cases as well. 

Similarly, a boring 8emifield plane is a semifield plane of order qffi with kernel GF( q) such 
that IAutAI = q:lffi(q - 1), which again is as small as possible. Once again large numbers of 
these are obtained in [Wi] using (a.14) and 0(2.:) for the corresponding orthogonal spread 2.:. 

3.9. The number of Kerdock sets and orthogonal spreads 

In view of Proposition 2.a and Theorem a.a, the planes we have been discussing produce 
exponential numbers of inequivalent Kerdock sets and orthogonal spreads. We refer to [Wi] 
for estimates of the numbers of these, which significantly improve previous estimates in [Ka,l; 
Ka2]. 

4. Additional uses of Kerdock sets 

Symplectic and orthogonal spreads are also important for reasons quite djfferent than the 
construction of planes. The basic constructions of the objects discussed presently depend on 
planes, which are involved in all present descriptions with the exception of the original 
approach used in the construction of Kerdock codes [Ke] (and we have seen that this can be 
viewed as dealing with desarguesian spreads, albeit in a somewhat indirect manner). 

The recent resurgence of interest in Kerdock codes (and hence of orthogonal spreads) stems 
from their versions over (Section 4.2) [CCKS; Wi]. 

4.1. Kerdock codes 

A88ume that the underlying field i8 Fix an ordering of the vectors in , where n is even. 
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I';ach Kerdock set /( determines a Kerdock code 

C(/(): = {( Q B(V) + 8'" + E BE/(,sE ,E E } . (4.1) 

where Q B denotes any quadratic form whose associated bilinear form is aBc'. The code C(/() 
has length 2", consists of 2,,-12"2 = 22" codewords (i.e., vectors), and has minimum distance 
2,,-1 _ 2(,,-2)/2. 

The resulting codes have interesting combinatorial properties, and were investigated start­
ing in [Ke] and continuing in [Di; KaJ; Ka2; Wi]. See [11S, Ch. Hi §:3; Li; GL] for further 
background concerning these codes. 

Quasi-equivalence of codes Two binary codes of the same length will be called quasi­
equivalent if there is an isometry of the underlying Hamming space sending one to the other. 
This means: permute the coordinates of the first code and then add a constant vector to all 
codewords in order to get the second code. The codes are called equivalent if only a permutation 
of coordinates is used. The latter is the more standard notion. However, we need the broader 
notion of quasi-equivalence in view of the following elementary fact: Two Kerdock codes are 
quasi-equivalent if and only if they arise from equivalent Kerdock sets. 

Since we already know that there are large numbers of inequivalent Kerdock sets, it follows 
that the same is true for Kerdock codes. 

4.2. Z4-codes 

I';ach code C(/() is nonlinear. In [CHKSS], unexpected relationships were discovered between 
codes over and binary codes, allowing the original Kerdock codes [Ke] to be viewed as 
codes over that are &4-linear. This was generalized in [CCKS]: with each (binary) Kerdock 
code C(/() of length 2m +1 is associated a &4-code C4(1C) of length 2m that is isometric to 
C(/(), where a suitable natural metric is used on : the Lee metric dL. (This is defined by 
dL((a.;), (b.;)) = I:lai-bil, where la.;-b;l is reduced mod 4 so as to be in {0,1,2} and the sum 
is taken in &.) 

We will define C4(/() using a bina,ry operation as in Sections :L3-:3.4. By (:3.7), for each 
." E F the map PI': or f-> or"" is self-adjoint with respect to the inner product T(xy) on F. We 
fix an orthonormal basis for F, and view PI' as a. matrix PI' with entries ° and 1 in rather 
than Similarly, we view each or E F as a. row vector ti with entries 0,1 E If /( denotes 
the Kerdock set given in Proposition :3.H, then 

is a. -Kerdock code. The similarity of this definition to (4.1) is evident. 
Moreover, C4(/() is &4-linear if and only if. is 2-sided distriimtive. Part of this is easy to 
. I' 2 'd d di 'b' '{'I' . I T,,3 ,3,3, . sec. suppose t lat *' IS ~Sl C stn utlVC. " len, lor any 8,;5 E.:," .<>+.<>1 - " s -" Sl IS tWIce a-

symmetric matrix, and hence or f-> i[P,+", -]3, -P,I ]i' is additive from F to 2&4: it looks like 
or f-> 2?· 015 for some.,. E F. Thus, semifields enter coding theory. These results, and a. thorough 
discussion of equivalences among these &4-codes, can be found in [CCKS; Wi]. 

If P is a. symmetric binary Tn. X Tn. matrix then the map x f-> tiPri' is called a. &4 -valued 
quadratic form. [Br]. In view of the above connection, it appears that the &4-module of all of 
these needs to be investigated from a. combinatorial point of view (cf. [Wo]). 

H 



4.3. Further topics 

[CCKS] and [Wi] discuss relationships between Kerdock sets. extraspecial 2"roups. and ex­
tremalline-sets in real and complex vector spaces. 

Symplectic and orthogonal spreads produce other types of combinatorial objects: partial 
geometries [DDT] or strongly regular graphs [Ka;}]. 

Relationships of symplectic and orthogonal spreads with Lie algebras are surveyed in [Ka;3]. 
Finally. Kerdod, codes over and have suggested natural variations: codes over the 

quaternion group of order 8 [Ka6]. 
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