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SOME HIGHLY GEOME TRIC LATTICES 

RIASSUNTO. - Vengono esaminati parecchi argomenti riguardanti reticoli geometrici 
finiti che soddisfano condizioni geometriche addizionali. Si esaminano spazi localmente 
proietti vi e variazioni al teorema di Dembowski-Wagner. 

Vengono descritti nei particolari teoremi riguardanti Ie tecniche di immersione, e 
poi applicati a certi sistemi di Steiner. Infine, viene presentato un fatto di teoria dei gruppi 
relativo a reticoli geometrici altamente simmetrici. 

I. INTRODUCTION 

This paper is dedicated to the memory of Peter Dembowski. 
In I960, Dembowski and Wagner [7] proved their well-known 

characterization of finite projective spaces in terms of designs. In 1967, a 
generalization of their theorem was proved, simultaneously characterizing 
finite projective and affine spaces [13]. Last year, I learned that these theorems 
could be regarded as results concerning finite geometric lattices. This then 
led to a search for more general results. Theorems ha ve been obtained concern­
ing the embedding of some very geometric types of geometric lattices into 
projecti ve spaces; these will be described here. Finite geometric lattices having 
highly transitive automorphism groups will also be discussed. 

2. EMBEDDING THEOREMS 

Throughout our discussion, lattices will always be finite, although most 
of the results of this section have infinite analogues. 

Let G be a geometric lattice. Each element X E G has a dimension dim X, 
with dim 0 = - I and dim I = dim G the dimension of G. (This is the 
concept of dimension used in projective geometry.) Each X EGis a join of 
points (i.e., atoms). If X, Y E G, dim X + dim Y > dim X V Y + dim 
X 1\ Y. Thus, if P is a point and X E G, then dim (X V p) - dim X = 0 

or I. 

If WE G, [W, r] denotes the interval {X E G I X > W}, which is a 
geometric lattice of dimension dim G - dim W - I. 

If G and H are geometric lattices, an z"sometry from G to H is an order­
preserving injective mapping e : G ~ H such that 10 = I, dim XO = dim X 
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if X =F I or dim X < I, and (X V y)a = Xa V ya whenever X, Y E G 
satisfy X V Y =F I. For example, the inclusion mapping is an isometry from 
the lattice consisting of 0 , I, and the points, lines, and planes of AG (d, q), 
into PG (d ,q). 

In [13], the following situation was, in effect, studied. Let G be a geo­
metric lattice of dimension n > 3. Assume that each hyperplane (element 
of dimension n - I) has k points, and any intersection of two different hyper­
planes has [l. or 0 points, where k and [l. are constants satisfying k > [l. > o. 
A non-degeneracy condition was also assumed. It was then proved that G 
is PG (n, q) or AG (n, q) for some q, provided n > 4. This is false for n = 3; 
however, any of a variety of natural additional conditions sufficed to charac­
terize PG (3 ,q) and AG (3 ,q). In particular, if any two different hyperplanes 
have exactly [l. common points, G is PG (n, q); this is precisely the dual of 
the Dembowski-Wagner Theorem. 

When n = 3, the lines and planes through a point form a projective plane 
of order q, where q does not depend on the point. If G is neither PG (3, q) 
nor AG (3, q), further numerical information was also obtained in [13]. Using 
the same information, Doyen and Hubaut [8] were able to obtain the following 
two possibilities for [l., q ,k, and the number v of points: 

(I) 

and 

(II) 

The only case known to occur is the lattice W 22 associated with the Mathieu 
groupM22' which corresponds to case (I) with [l. = 2, q = 4, k =:6, and 
v = 22. 

The question now arises: how crucial were the numerical assumptions 
made in [7] and [I3]? Thus, suppose G is an n-dimensional geometric lattice 
such that dim X 1\ Y = n - 2 or - I for any two different hyperplanes 
X and Y. If n > 4, it seems likely that there is an isometry from G into an 
n-dimensional modular geometric lattice. If n > 3, we conjecture that the 
same is true if dim X 1\ Y = n - 2 for any two different hyperplanes X 
and Y. (This is, however, definitely not true for infinite geometric lattices of 
any dimension n > 3.) So far, the following is the closest we have come to 
such a result. 

THEOREM I. Let G be an n-dz·mensz"onal geometrz"c lattice. Suppose 
I < e < I < n - I , e =F n - I, and e + I > n. Then there are E, F E G 
wz"th dz"m . E = e, dim F = I, E V F = I, and dim E 1\ F = e + 1- n - I, 

unless the lollowing hold. 

(SE) There is an isometry e: G -+ M, with M an n-dimensional modular 
geometric lattice, satisfying the following conditions for all WE G. 
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(i) If dim W < n - 4, each element of [We, IM ] of dimension 
< dim W + 2 is the intersection (in M) of those members of Ge containing 

it; and 
(ii) If dim W = n - 3, [W , IG]e is either [We, IM ] or is obtained from 

[We, IM ] by removing a line and all its points. 

In general, a geometric lattice G of dimension n:> 3 will be said to be 
strongly embedded in the modular geometric lattice M if dim M = nand 
there is an isometry e: G -+ M satisfying (SE). Note that condition (ii) permits 
[W , I]e to be a (possibly degenerate) projective plane or an affine plane. 

I t is straightforward to show that E and F exist in Theorem I unless 
[W , I] is modular for each W E G of dimension n - 4. Therefore, 
Theorem I is a special case of the next result (see [I8]): 

THEOREM 2. Let G be a geometric latHce of dimension n :> 4. Suppose 
that, for each W E G of dimension n - 4, [W, I] can be strongly embedded in 
a modular geometric latHce. Then G can be strongly embedded in a modular 
geometric latHce. 

Thus, if each such [W , I] is a large chunk of a 3-dimensional modular 
geometric lattice, the same is true of G. The example G = W22 shows that 
the analogues of Theorems I and 2 are false when dim G = 3. 

Before describing applications in § 3, we turn to what is almost, but not 
quite, a more general result. Note that the modular geometric lattices consi­
dered thus far need not be projective spaces. If we specialize them to projec­
tive spaces, Theorem 2 is contained in Theorem 3. 

Some more definitions are required. Fix a finite field K. Projective 
K-spaces will be assumed to be finite-dimensional. 

A K-envelope of a geometric lattice G is a pair (M, e) consisting of a 
projective K-space M and an isometry e: G -+ M, such that, whenever 
ex.: G -+ N is art isometry from G into a projective K-space N such that 
V (G" - {IN }) = IN' there is a unique isometry ~ : M -+ N making the following 
a commutati ve diagram. 

If M is a projective K-space, and if G is a geometric lattice strongly 
embedded in M via the isometry e: G -+ M, then (M, 6) is usually a K-enve­
lope of G. However, even in this situation it is essential that the field be speci­
fied if one wants a universal mapping property; for example, there is an 
isometry e: AG (2 ,3) -+ PG (2,4) such that (PG (2 ,4) ,6) is a GF (4)­
envelope of AG (2 , 3). 
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Note that, if (M, e) is a K-envelope of G, dim M and dim G may be 
different. For example, this is the case when G consists of 0, I, and the points, 
lines, and planes of a projective K-space M, where e is the inclusion map. 

One last definition: a geometric lattice G is K-rigid if, for each isometry 
cp: G -+ N with N a projective K-space and V (G'" - {IN}) = IN' the identity 
is the only collineation of N inducing the identity on G"'. For example, 
if G is I-dimensional and has I K I + I or I K I points, it is trivially K-rigid; 
however, if I K I> 4, G has no K-envelope. 

On the other hand, G is K-rigid if it has a K-envelope. To see this, let 
(M, e) be a K-envelope of G, cp: G -+ N an isometry from G into a projective 
K-space N such that V (G'" - { I}) = I, and a a collineation of N inducing 
the identity on G"'. There is a unique isometry ~: M -+ N such that e~ = cpo 
Then V (Mrl - {I}) = I (since Mrl - {I} d G6rl - {I} = Grl- {I }). Hence, 
Mrl = N. By hypothesis, cpa = cpo Consequently, ([) = cpa = e (~a), where 
~a : M -+ N. The uniqueness of ~ yields ~ = ~a, so a is the identity on 
Mrl = N, as required. 

The following result is proved in [19]. 

THEOREM 3. Let K be a finite /ield, j a posi#ve integer, and G a geometn·c 
lattice of dimension > j + 3. Suppose that, for at! WE G , [W, I] has a 
K-envelope whenever dim [W , I] = j + I or j + 2, while [W, I] is K-rigz"d 
whenever dim [W , I] = j. Then G has a K-enve!ope. 

Once again, this states in effect that, if enough intervals [W , I] are large 
chunks of projective K-spaces, the same will be true for G. The proofs of 
Theorems 2 and 3 are similar. The idea in either case is as follows. By induc­
tion, for each point p we may assume that [P, I] satisfies the conclusions 
of the theorem. Glue the corresponding modular lattice onto p, making sure 
that this is done in a coherent manner. The result is a poset H containing G 
such that each [P, IH ] is a modular geometric lattice. In [IS] it was proved 
that such a poset H has a canonical embedding into a modular geometric 
lattice. 

3. ApPLICATIONS 

Theorem 3 implies Tutte's well-known characterization of binary geome­
tric lattices (see [2]). The proof merely involves a straightforward check in 
the cases of dimension < 3, after which Theorem 3 applies with K = GF (2) 
and j = I. However, Theorem 3 has limited applicability to such problems 
over other fields. This is due to the strength of the uniqueness part of the 
definition of K-envelopes. For example, if I K I> 2 a triangle does not have 
a K-envelope (in fact, it is not even K-rigid). 

In § 2 we discussed some geometric lattices G in which [p, I] is a pro­
jective plane for each point p. Suppose G is a geometric lattice of dimension 
n > 4 in which [P, I] is a projective space for each point p. By Theorem 2 
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or 3, G can be regarded as a sublattice of a projective space M = PG (n, q) 
such that the inclusion map G -+ M is an isometry. It is easy to see that each 
such G can be obtained from M by the following natural generalization of the 
construction of AG (n ,q) from PG (n ,q). Take any family of hyperplanes 
ofM, and delete them and all their subspaces. The result is a lattice G, which 
will have the desired properties if and only if each of its elements is a join 
of points of G. 

Similarly, Theorems 2 and 3 apply to geometric lattices G of dimension 
> 4 such that each [P, I] is an affine space. However, this time it seems 
much harder to specify in terms of projective spaces exactly what lattices 
occur. In view of the interest in t-designs, it is natural to consider the 
following similar situation. 

THEOREM 4. Let D be a t-design with t > 3. Assume that, for each set 
W of t - 2 poz'nts, the points not in Wand the blocks containing W form the 
design of points and hyperplanes of a finite affine space. Then one of the follo-
wing holds. ~ 

(i) t = k = v - 2, so D is degenerate. 
(ii) t = 3 and D is an inversive plane. 

(iii) t = 4 and D is the 4 - (I I , 5 , I) design associated with the M atMeu 
group Mn. 

(iv) t = 5 andD is the 5 - (12,6, I) design associated with the Mathieu 
group M12• 

(v) t = 4, D is a 4 - (171 , 15 , I) design, and there is a poz'nt p such 
that Dp is a non-miquelz"an inversive plane of order I3. (No such inversive 
plane is known.) 

Proof (see [18], § 5). Let G be the geometric lattice consisting of 
the sets of points having < t - I elements, the blocks of D, and I. Then 
I WI = t- 2 means dim W = t - 3. By Dembowski [5], [W, I] is an affine 
plane of order q, say, where q does not depend on W. Hence, (iir holds if 
t = 3. 

Suppose t = 4. An easy count shows that there are 

(q2 + 2) (q2 + I) q2(q2 - I)/(q + 2) (q + I) q(q - I) 

3-spaces. If P is a point, [P, I] is an in versi ve plane of order q. Thus, 
if q is even then q is power of 2 by the fundamental result of Dembowski [4]. 
It follows that q = 2 , 3 ,4, 8 or 13. Here, q = 2 and 3 correspond to (i) 
and (iv) (see [24] and [25]). 

Suppose q = 4,8 or 13. If q = 4 or 8, each [P, I] is egglike (by 
Dembowski's result [4]); when q = 13, assume the same is true, so (v) does 
not hold by a result of Barlotti and Panella ([6], p. 49). Then [p, I] has a 
GF (q)-envelope. By Theorem 2, or Theorem 3 withj = I, G has a GF (q)­
envelope (M, e), where, M = PG (4, q). We may thus assume that GeM 
and e is the inclusion map. 
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Since planes of G have just 3 points, skew lines of G are skew in M. 
Thus, the total number of points of M on all lines of G is (q2 + 2) + 
(q2t 2) (q _ r) > (q5 - r)/(q - I), which is ridiculous. 

Thus, t = 4 implies that (iii) or (v) holds. Finally, if t > 5, (iv) follows 
from [25] and another count. 

The main part of the above proof consisted of the classification of 
t - (q2 + t - 2 , q + t - 2 , I ) designs with t > 4, except for the possibi­
lity (v). (The case t = q = 4 is due to Witt [25].) The structure of our proof 
is, perhaps, interesting. First, Dembowski's theorem is applied. Then, instead 
of counting as is usual with designs, or using properties of egglike in versi ve 
planes or desarguesian affine planes, we invoked a general lattice-theoretic 
result. Only now is an easy counting argument used to obtain the desired 
contradiction. 

Consider the cases (iii) and (iv) again. By Theorem 2 or 3, G has a GF(3)­
envelope (M , 8), where M = PG (t, 3). The definition of K-envelopes implies 
that every automorphism of G ex1ends to a unique collineation of M. This 
provides a non-computational proof of the existence of the well-known 
6-dimensional projective G F (3)-representation of M12 (compare [I D. 

4. THE DEMBOWSKI-WAGNER THEOREM 

Using geometric lattices, the Dembowski-Wagner Theorem can be gene­
ralized as follows. 

THEOREM 5. A finite incz'dence structure D oj points and blocks is isomor­
phz"c to the design oj points and hyperplanes oj a finite projective space if and 
only if the jollowing conditz'ons hold. 

(i) Each pair oj points is on the same number A oj blocks. 

(ii) Each block is on at least 3 points; there is at least one block. 

(iii) Each point is on at least A + I blocks, and some point is on at 
least A + 2 blocks. 

(iv) For distinct points x and y, define the line joining them by 
xy = n {B I B is a block on x, y}. Then each line meets each block. 

Proof. Necessity is clear. Assume (i)-(iv). A standard incidence matrix 
argument (see [6], p. 20) shows that, by (i) and (iii), D has at least as many 
blocks as points. Now pass to the dual D of D. Then, if Band C are different 
blocks and x It B n C, there is a unique block containing B n C and x: existence 
is (iv), while uniqueness follows from (i). The set of intersections of blocks 
thus forms a geometric lattice G (see [2D. By [9], D has at least as iuany 
blocks as points, with equality if and only if G is modular. By (i) and (iii), 
G must be a projective space. 

We have not been able to generalize the main result of [13] in a 
manner, although such a generalization very likely exists. 
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5. THE DEFICIENCY OF A GEOMETRIC LATTICE 

In [3], Dembowski proved what amounts to the following result. Let G 
be a 2-dimensional geometric lattice, and suppose each line has k or k + I 
points. Then G is either a projective plane of order k - I, or can be extended 
to a projective plane of order k. More general results due to Dembowski are 
presented in [6], § 7.4. This result can be generalized in a different direction, 
as follows. 

Let G be a geometric lattice of dimension n > 2. Let m 1 (G) be the maxi­
mal number of hyperplanes per element of dimension n - 2, and mo (G) 
the minimal number of points per line. Then m 1 (G) - mo (G) is a non­
negative integer, the deficiency of G. If the deficiency is 0, G is a Boolean 
algebra or a projective space. 

THEOREM 6. Let G be a geometric lattice of dimension n > 2 and deji­
dency I. Then there is an isometry from G into an n-dimensional projective 
space having ml (G) points per Nne. 

Although this contains Tutte's characterization of binary geometric 
lattices (when ml (G) = 3), the proof we have for the case m 1 (G) :> 4 does 
not work if m1 (G) = 3. When n = 2, Theorem 6 is just Dembowski's result. 
For n > 3, the unpublished proof requires Dembowski's result together with 
classical geometric arguments. 

6. AUTOMORPHISM GROUPS 

In 1871, Jordan [12] initiated the study of permutation groups r satis­
fying the following conditions. r is 2-transitive on a finite set S, but not 
k-transitive on S, where 2 < k < IS 1- I; and there is a set B if k points 
such that the pointwise stabilizer r (B) = {y E r 1 xY = x 1 "Ix E B} of B 
is transitive on S - B. During the next half century, Jordan and others pro­
ved results concerning such groups r of a group theoretic or combinatorial 

There has recently been a resurgence of interest in this situation 
([10], [II], [13], [14], [15], [16], [17], [21], [22]). 

In [14], the following facts were proved about r. Let G consist of all 
the subsets of S which are intersections of subsets of {BY lyE r} (where 
By = {xY 1 x E B }). Then G is a geometric lattice (this is the content of [14], 
(3. 10), although geometric lattices were not explicitly mentioned there). 

. hyperplane has more than n = dim G points. If X E G, then r (X) 
transitive on S - x. r is transitive on {X E G 1 dim X = z'} whenever 

::;;; i < n. From this it follows easily that lSI :> 2 k, a result due to 
[20]. 

The only known possibilities for G are (up to isomorphism) 

I and the set of all subspaces of dimension < n - I of a finite 
. ve or affine space of dimension :;::: n, and 
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(ii) one of the lattices W22 ' W23 and W 24 associated with the Mathieu 
groups M 22 , M23 and M24 (compare [24], [25], and [14]). 

According to [14], if I S I < 6 k then G must be one of these types of 
lattices. 

The following is another (but unpublished) result of the same type. 

THEOREM 6. Let G be a geometric lattice of dimension n :> 2, in which 
each hyperplane has more than 1'J points. Let r be an automorphism group 
of G 2-transitive on the set S of points and transitive on the set of hyperplanes 
of G. Assume further that the pointwise stabilz"zer of a hyperplane B is transitive 
on the set S - B of points not in B. If IS - B I is a prime power, then G is 
isomorphic to a projective space, an affine space overGF (2) , W 22, W 23, or W24. 

Alternatively, the same 
group transitive on S - B. 
[15], [16], [21] and [22]. 

conclusion holds if r (B) has an abelian sub­
Special cases of Theorem 6 are found in [14], 

A result of a somewhat different type concerning automorphism groups 
of geometric lattices is proved in [18]. All of these results indicate that geo­
metric lattices having sufficiently highly transitive automorphism groups 
are of known type. 
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