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HMO-planes
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Abstract. Hiramine, Matsumoto and Oyama [9] made the remarkable discovery that every trans-
lation plane of order q2 that is 2-dimensional over its kernel produces translation planes of order q4.
This construction is studied, with emphasis on isomorphisms among the resulting planes.
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1 Introduction

How many projective planes are there of a given order n? Of course, this is a somewhat
dubious question in view of the fundamental open question of whether every plane has
prime power order; and moreover, since only one plane is known of any given prime
order. Nevertheless, the question is meaningful if we only consider suitable sequences of
orders. Thus, for example, there are more than 2q−1/q16e planes of order q2 whenever
q = pe with p prime (using Bruck’s subregular planes [4]; see [1, 2] for more recent
similar constructions). Moreover, analogous questions arise concerning the number of
planes of special sorts, such as planes over semifields (division algebras) or planes of
Lenz–Barlotti Type II.1 [6, §5.4].

By far the most thoroughly studied finite projective planes arise from 4-dimensional
vector spaces in the following manner. Let K = GF(q), W = K2 and V = W 2, where
we also view V as K4. Let g, h : W → K with g(0, 0) = h(0, 0) = 0. The translates of
the subspaces

0×W, and
{(

w,w

(
x y

g(x, y) h(x, y)

)) ∣∣∣ w ∈W} for each x, y ∈ K (1.1)

of V are the lines of an affine plane πg,h of order q2 if, and only if, the following condition
holds:

(x1 − x2)(h(x1, y1)− h(x2, y2)) 6= (y1 − y2)(g(x1, y1)− g(x2, y2))
whenever (x1, x2) 6= (y1, y2)

(1.2)
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(cf. [6, p. 220]). These planes have K in their kernels. In this note we will discuss the
number of planes of this sort.

We will restrict to a “small” class of such planes, first studied in [9]. Let q be a square,
and consider the possibility that g(x, y) = f(y) depends only on y, while h(x, y) = x̄ =
x
√
q; in that case we will abbreviate πg,h to πf , and call πf an HMO-plane. Here the

condition (1.2) states that

whenever x, y ∈ K are distinct, (f(x)− f(y))(x− y) /∈ GF(
√
q). (1.3)

Let HMO(q) denote the set of functions f : GF(q) → GF(q) such that f(0) = 0 and
(1.3) holds. If f ∈ HMO(q) then πf is a semifield plane if and only f is additive.

Hiramine, Matsumoto and Oyama [9] made the remarkable discovery that, for K, g
and h as above, if L = GF(q2) and r ∈ L − K with r2 + r ∈ K, then the function
f : L→ L, defined by

f(x+ yr) = h(x, y)− g(x, y) + h(x, y)r for all x, y ∈ K, (1.4)

is in HMO(q2). This recursive construction of planes πf from planes πg,h is the focus of
this note. The only other known recursive construction of finite projective planes seems
to be in [12, 19, 16, 17], but that is much more unwieldy than the one in [9] and does not
apply to odd order planes.

Let NHMO(q4), NHMO.SEMI(q4) and NII.1(q4) denote, respectively, the numbers of
isomorphism classes of the following types of planes of order q4: HMO-planes, HMO-
planes that are semifield planes, and planes of Lenz–Barlotti Type II.1 [6, §5.4].

Theorem 1.5. If q = pe with p prime, then
(a) NHMO.SEMI(q4) > q2/4pe2,
(b) NHMO(q4) > 2q−1/4q21e2, and
(c) NII.1(q4) > 2q−1/4q21e2.

There does not appear to be any published construction of semifield planes of order
q4 containing anywhere near the admittedly anemic number of planes in (a). The proof of
the preceding theorem uses the HMO-construction, and is rather elementary: only a little
group theory (circa 1900) is used – involving the subgroup structure of PSL(2, q) – and
possibly even this is avoidable.

In the past, semifield planes have rarely been constructed in large numbers for a given
order; the only exceptions appear to be [17, 13] for even order. While the above theo-
rem produces a number of such planes, it has limitations that somewhat conflict with the
impression that the HMO-construction produces “a vast number of new planes” [10]. If
N2SEMI(q2) denotes the number of isomorphism classes of semifield planes (1.1) of or-
der q2 with kernel of order at least q, then the following is an elementary bound for the
number of semifield planes arising as in (1.1) by repeated use of this construction:

Theorem 1.6. Starting with semifield planes (1.1) of order q2, repeated use of the HMO-
construction k times produces at most (q2k−1

)7 N2SEMI(q2) isomorphism classes of semi-
field planes of order q2k

.
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In particular, semifield planes (1.1) of order q2 can produce asymptotically more than
a polynomial number of semifield planes of order q2k

only if there are asymptotically
more than a polynomial number of semifield planes (1.1) of order q2.

Note that there is an equally elementary result for non-semifield planes.
After some discussion of HMO-planes in Sections 2 and 3, in Section 4 we prove

the above theorems. Finally, in Sections 5 and 6 we discuss a recent different type of
construction in [3].

Much of this note was written more than 15 years ago, after Yutaka Hiramine showed
me the construction in [9]. I am very grateful to him for instruction in this construc-
tion. At the time these results were first obtained I had not understood how few semifield
planes were known. Other recent work [17, 13, 14, 15] has now made it clear that a lot
more semifield planes of odd order need to be constructed; and Theorems 1.5 and 1.6 are
intended to emphasize this point. The fact that there are so many more planes of type
II.1 known than semifield planes (including ones of even order) is elementary but a bit
disconcerting.

2 Isomorphisms among the planes πf

Let K = GF(q) and f ∈ HMO(q), where q is a square. In order to study isomor-
phisms among the planes πf we will need some elementary information concerning their
collineation groups.

Let G(πf ) be the group of linear transformations of V = K4 inducing collineations
of πf . The treatment in [9] singles out two important subgroups of G(πf ). The group

P =

{ I
(
z 0
0 z̄

)
O I

 ∣∣∣∣∣ z ∈ K
}

(2.1)

consists of q elations with axis 0⊕W . All elations (other than the translations) have this
axis, so that G(πf ) fixes this line [9, Lemma 2.2]. Also, the cyclic group

Z =

{
1 0 0 0
0 z 0 0
0 0 z 0
0 0 0 1


∣∣∣∣∣ z ∈ K, zz̄ = 1

}
(2.2)

of order
√
q + 1 fixes the Baer subplane K ⊕ 0 ⊕ 0 ⊕ K pointwise. In order to take

advantage of Z we will need the following ancient fact:

Lemma 2.3. Let R be the subgroup
{(

1 0
0 z

) ∣∣ z ∈ K, zz̄ = 1
}

of GL(2, q). Assume that
S is a subgroup of GL(2, q) conjugate to R. Then there is an element h ∈ 〈R,S〉 such
that Sh = R or

{(
z 0
0 1

) ∣∣ z ∈ K, zz̄ = 1
}

.
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Proof. Project 〈R,S〉 into PGL(2, q), obtaining a subgroup H which is, in fact, a sub-
group of PSL(2, q) since every z ∈ K such that zz̄ = 1 is a square in K. The subgroups
H of PSL(2, q) generated by two different cyclic groups of order

√
q + 1 are all known

[7, Ch. XII]:
(i) PSL(2, q),

(ii) PGL(2,
√
q), and

(iii) a group of order q(
√
q + 1) having a normal subgroup of order q.

In each case, any two cyclic subgroups ofH of order
√
q+1 are conjugate. Consequently,

there is an element h ∈ 〈R,S〉 such that Sh and R coincide modulo scalars. Then Sh and
R commute, so that Sh consists of diagonal matrices. By hypothesis, Sh fixes a vector.
Hence, Sh must be as asserted. 2

Remarks. The above argument resembles ones in [9, §5] used to study the groupG(πf ),
but it is simpler than what was needed in [9].

The enumeration of subgroups of PSL(2, q) used above is often attributed to Dickson.
However, Dickson [7, p. 260] cites papers by Moore [8] and Wiman [20] for this theorem.

Straightforward calculations produce the following consequence:

Proposition 2.4. Let K = GF(q) and f, f ′ ∈ HMO(q).

(i) If πf ∼= πf ′ then there are u, v ∈ K∗, k ∈ K, τ ∈ AutK such that one of the
following holds:

[f ′(zτ
−1

)]τ = uf(vz + k)− uf(k) for all z ∈ K, or

[f ′(zτ
−1

)]τ = uf−1(vz + k)− uf−1(k) for all z ∈ K.
(2.5)

(ii) If f(x)/x̄ is not constant in (i), then v/u ∈ GF(
√
q).

(iii) If τ, u, v and k are as in (2.5) with v/u ∈ GF(
√
q), then πf ∼= πf ′ .

Proof. Let τ be any field automorphism of K. Then{(
w,w

(
x y

f(y) x̄

)) ∣∣∣ w ∈W}τ =
{(
w,w

(
x y

f(yτ
−1

)τ x̄

)) ∣∣∣ w ∈W},
so that τ induces an isomorphism πf ∼= πτfτ−1 .

If πf ∼= πf ′ then there is a semilinear transformation T : V → V mapping the sub-
spaces defining πf to those for πf ′ . In view of the preceding paragraph, we can compose
T with a suitable field automorphism in order to obtain a linear transformation inducing
an isomorphism from πf to another HMO-plane. Consequently, we might as well assume
that our original T is linear. We will identify T with its matrix with respect to the standard
basis of V .

By a remark following (2.1), T must send the line 0×W of πf to the line 0×W of πf ′ .
Moreover, Z ≤ G(πf ), Z ≤ G(πf ′) and T−1ZT ≤ G(πf ′). Consider the restrictions of
Z and T−1ZT to the 2-space 0 ×W . By Lemma 2.3, there is an element U of G(πf ′)
such that Z and (TU)−1Z(TU) have the same eigenspaces on 0 ×W . Now replace T
by TU , so that Z and T−1ZT have the same eigenspaces on 0 × W . In particular, T
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sends the pair 0× 0× 0×K, 0× 0×K × 0 of eigenspaces of Z on 0×W to the pair
0× 0× 0×K, 0× 0×K × 0 of eigenspaces of T−1ZT .

It follows that T has the form T =
(
A B
O D

)
with A =

(
a b
c d

)
, D =

( α β
γ δ

)
, B =

(
i j
k `

)
,

and either β = γ = 0 or α = δ = 0. By multiplying T by a suitable scalar matrix, we
may assume that δ = 1 or γ = 1, respectively.

Now consider the condition that T is an isomorphism: for any s, t ∈ K there must be
x, y ∈ K such that{(

wA,wB + w

(
s t
f(t) s̄

)
D
) ∣∣∣ w ∈W} =

{(
w,w

(
x y

f ′(y) x̄

)) ∣∣∣ w ∈W},
so that B +

(
s t
f(t) s̄

)
D = A

( x y
f ′(y) x̄

)
. Consequently,

i+ sα+ tγ = ax+ bf ′(y)
j + sβ + tδ = ay + bx̄

k + f(t)α+ s̄γ = cx+ df ′(y)
`+ f(t)β + s̄δ = cy + dx̄.

(2.6)

Case 1. β = γ = 0, δ = 1. For all x, y ∈ K we have αf(ay+bx̄−j) = cx+df ′(y)−k,
so that αf(ay − j) = df ′(y)− k and αf(bx̄− j) = cx− k.

If d 6= 0 then f ′(y) = (α/d)f(ay−j)+(k/d); and k/d = −(α/d)f(−j). Thus, (2.5)
holds in this case. Moreover, f ′(y) = (α/d)f(ay− j) + (k/d), while α(cy + dx̄− `) =
ax + bf ′(y) − i. Then f(−j) + k/α = 0, αd̄ = a and a/(α/d) = dd̄ ∈ GF(

√
q), as

required in (ii).
Now assume that d = 0. Since αf(ay − j) = −k for all y we must have a = 0, so

that b 6= 0 (as A is invertible) and αf(bx̄ − j) = cx − k. Then f(z) = uz̄ + u0 for all
z ∈ K and some u, u0; and it follows that f(z) = uz̄. On the other hand, (2.6) yields
that s̄ = cy − ` and hence α(cy − `) = bf ′(y) − i for all y. As above, this implies that
f ′(z) = vz̄ for all z and some v ∈ L. Consequently, f ′(z) = (v/u)f(z), and (2.5) holds
once again.

Case 2. α = δ = 0, γ = 1. This time, for all x, y ∈ L we have βf(ax+ bf ′(y)− i) =
cy + dx̄− `, so that βf(bf ′(y)− i) = cy − ` and βf(ax− i) = dx̄− `.

If b 6= 0 then f ′(y) = (i/b) + f−1([c/β]y − [`/β])/b; and i/b = −f−1(−[`/β])/b.
Once again, (2.5) holds. Moreover, f ′(y) = (i/b) + f−1([c/β]y − [`/β])/b, while
β(cx+ df ′(y)− k) = ay + bx̄ − j. Then βc̄ = b and [c/β]b = 1/cc̄ ∈ GF(

√
q), as

required in (ii).
Now suppose that b = 0. Then a 6= 0, t = ax− i and hence βf(ax− i) = cy+dx̄−`

for all x, y. As before, this implies that c = 0 and f(z) = uz̄ for some u. Then also
s̄ = df ′(y) − k and βs = ay − j. Once again we find that f ′(z)/f(z) is independent of
z ∈ L, as required.

Finally, in Cases 1 and 2 it is straightforward to reverse the preceding calculations in
order to obtain (iii). 2
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Remark. If f(x)/x̄ is not constant, then b = c = 0 in Case 1 and a = d = 0 in Case 2.

Corollary 2.7. Given f ∈ HMO(q), where q = pe with p a prime and f(x)/x̄ is not
constant, there are fewer than 2eq(q − 1)(

√
q − 1) functions f ′ ∈ HMO(q) such that

πf ∼= πf ′ .

Proof. In (2.5) there are at most e possibilities for τ, q for k, q − 1 for u, and
√
q − 1 for

v. 2

It should be possible to prove Proposition 2.4 by a direct calculation, without any as-
sistance from groups as in Lemma 2.3. A similar argument is used in [9, Proposition 6.4]
to study Autπf .

3 The HMO-construction

In (1.4) we have already indicated the construction of a new plane πf of order q4 from the
plane πg,h of order q2 in (1.1):

Theorem 3.1 ([9]). (i) f ∈ HMO(q2). Hence, f determines an HMO-plane πf of
order q4.

(ii) πf is nondesarguesian.
(iii) πf is a semifield plane if and only if g and h are additive.

Clearly, g and h determine f , and the reverse is also true (cf. [10]).
Note that πg,h can be a semifield plane even when g and h are not additive, if the

“wrong” coordinate axes are chosen. Also note that, when q is odd, a simpler construction
is used in [9]: let r ∈ L−K with r2 ∈ K, write

f(x+ yr) = g(x, y) + h(x, y)r (3.2)

for all x, y ∈ K, and then the preceding theorem again holds. All of this is easy to check,
as is the following observation:

Lemma 3.3. In (1.4), f(z)/z̄ is not constant.

Proof. If f(x+yr) = c(x+yr̄) = c(x+y[−1−r]) for some constant c and all x, y ∈ K,
then h(x, y) = −cy by (1.4), which contradicts (1.2) when y1 = y2 but x1 6= x2. 2

4 Proofs of the theorems

Each of the planes in the theorems has K in its kernel, and is 4-dimensional over K,
so that every isomorphism (or automorphism) is induced by an element of the group
of invertible affine semilinear transformations of K4. We will focus on the stabilizer
(Autπ)0 of the point 0.
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Proposition 4.1. Let π be a translation plane of order q2 that can be presented as in (1.1).
Then
(a) The number of different pairs g, h of functions arising from such presentations of π is
between (q2+1)q2(q2−1)2(q2−q)2/|(Autπ)0| and (q2+1)q2(q2−1)2(q2−q)2/(q−1);
and
(b) If π is a nondesarguesian semifield plane, then the number of such pairs g, h of addi-
tive functions is between q2(q2−1)2(q2−q)2/|(Autπ)0| and (q2−1)2(q2−q)2/(q−1).

Proof. In (1.1) we chose two linesK×K×0×0 and 0× 0×K ×K through 0, and two
pairs of K-linearly independent points (vectors) of those lines: (1, 0, 0, 0), (0, 1, 0, 0) and
(0, 0, 1, 0), (0, 0, 0, 1). There are (q2 + 1)q2{(q2− 1)(q2− q)}2 such ordered 4-tuples of
points, and each produces a pair g, h. If two such ordered pairs of functions coincide then
there is an element of (Autπ)0 sending one such ordered 4-tuple to another. Hence, there
are at least as many distinct pairs g, h of these functions as there are orbits of Autπ on
the set of all such 4-tuples. Since the same pair is produced by two 4-tuples in the same
orbit of the group of homologies with center 0, this proves (a).

For (b), observe that one of the above lines is the axis of q2 elations, and hence is
uniquely determined since we want additive functions. Since these elations preserve the
pair g, h, we obtain the desired estimates. 2

Proof of Theorem 1.5. Let q = pe, K, L and r be as in (1.4).
(a) Start with one of Knuth’s semifield planes π of order q2 [18] for which |(Autπ)0|

≤ q2(q − 1)(p − 1)e. By Proposition 4.1(b), the plane π can be obtained using at least
q2(q2 − 1)2(q2 − q)2/q2(q − 1)(p − 1)e different pairs g, h of additive functions on
GF(q)2. Each of these pairs produces a function f ∈ HMO(q2), and hence a semifield
plane πf of order q4, by Theorem 3.1; and πf arises from at most 4eq2(q2 − 1)(q − 1)
functions in HMO(q2) by Corollary 2.7. Thus, we obtain at least

q2(q2 − 1)2(q2 − q)2/{q2(q − 1)(p− 1)e · 4eq2(q2 − 1)(q − 1)} > q2/4pe2

pairwise nonisomorphic semifield planes of order q4, as required.
(b) A construction due to Bruck [4] produces 2q−1 different spreads in PG(3, q)

whenever q = pe with p prime, corresponding to some of his subregular planes of order
q2. Since any isomorphism of planes arises from a collineation of PG(3, q), we obtain the
very crude lower bound 2q−1/q16e for the number of nondesarguesian planes obtained in
this manner. (A better bound is 2q−1/4q2e, but the difference is minuscule compared to
the exponential term 2q−1.)

Each such plane produces many pairs g, h in (1.1), and hence more than 2q−1/q16e
functions f ∈ HMO(q2) via (1.4). As above, each of the resulting planes πf of order
q4 arises from at most 4eq2(q2 − 1)(q − 1) functions in HMO(q2). Hence, we obtain
more than 2q−1/{q16e · 4eq2(q2 − 1)(q − 1)} > 2q−1/4q21e2 pairwise nonisomorphic
HMO-planes of order q4, as required.

(c) The obvious approach for NII.1 is to derive the duals of the planes πf that are not
semifield planes (so that the duals are not translation planes). This produces planes of type
II.1. The isomorphism problem is settled by an argument already in [11, Theorem 4.3]:
the dual planes are isomorphic if and only if their derived planes are. 2
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Proof of Theorem 1.6. By Proposition 4.1(b) there exist at most (q2 − 1)2(q2 − q)2/
(q− 1) < q7 different pairs of additive functions g, h in (1.1) for each of the N2SEMI(q2)
semifield planes of order q2. Thus, NSEMI.HMO(q4) < q7 N2SEMI(q2). Now iterate. 2

5 An operation on HMO-planes

In [3] there is a construction of a semifield plane starting with a semifield 2-dimensional
over its kernel. We apply our results to some of these and at the same time consider the
more general setting in [3].

Since we are considering semifields, the functions g and h in Section 1 can be written
g(x, y) = g1(x) + g2(y) and h(x, y) = h1(x) + h2(y) for additive functions g1, g2, h1,
h2 : K → K; (1.2) still holds in the following simplified form:

x[h1(x) + h2(y)] 6= y[g1(x) + g2(y)] whenever xy 6= 0. (5.1)

The associated presemifield operation on W = K2 is given by

(a, b) ∗ (x, y) = (ax+ bh1(x) + bh2(y), ay + bg1(x) + bg2(y)). (5.2)

Equip K with the nondegenerate symmetric bilinear form (x, y) := T (xy), where T
denotes the trace map from K to the prime field. We will often use the fact that (xa, y) =
(x, ay) for all a, x, y ∈ K. For any additive map f : K → K, define f t : K → K by
(f(x), y) = (x, f t(y)) for all x, y ∈ K. For example, if σ ∈ AutK then σt = σ−1 since
T (xσy) = T (xσy)σ

−1
.

By [3, Table in Section 6], the operation

(a, b) ◦ (x, y) = (ax+ bht1(x) + bgt1(y), ay + bht2(x) + bgt2(y)) (5.3)

defines a presemifield. This construction can also be described as follows:

Lemma 5.4. If the ordered 4-tuple (g1, g2, h1, h2) determines a presemifield via (5.2)
then so do the 4-tuples (ht2, g

t
2, h

t
1, g

t
1), (h2, h1, g2, g1) and (gt1, h

t
1, g

t
2, h

t
2).

Proof. By (5.1), for the 4-tuple (ht2, g
t
2, h

t
1, g

t
1) we need to show that

[ht1(x) + gt1(y)]x = [ht2(x) + gt2(y)]y implies that x = y = 0;

or, equivalently, that

T ([ht1(x) + gt1(y)]xu) = T ([(ht2(x) + gt2(y))]yu) for all u ∈ K∗

implies that x = y = 0. If we write X = xu, Y = −yu and v = 1/u, then the above
condition can be rewritten successively as

T (h1(xu)xu · v + g1(xu)yu · v) = T (h2(yu)xu · v + g2(yu)yu · v)

and
T ([h1(X) + h2(Y )]Xv) = T ([g1(X) + g2(Y )]Y v)
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for all v ∈ K∗. Hence, [h1(X) + h2(Y )]X = [g1(X) + g2(Y )]Y , so that X = Y = 0
by (5.1), as required.

For the 4-tuples (h2, g2, h1, g1) and (gt1, h
t
1, g

t
2, h

t
2) just interchange the roles of x and

y in (5.1). 2

See [3] for motivation and other proofs for the case (ht2, g
t
2, h

t
1, g

t
1).

In particular, if the initial plane arises from an additive function f ∈ HMO(q), and if
“bar” denotes the involutory field automorphism of K, then the HMO-construction uses
h1 = g2 = 0, h2 = f , g1 = bar, and we obtain the HMO-presemifield operation

(a, b) ∗ (x, y) = (ax+ bf(y), ay + bx̄). (5.5)

Since bart = bar, the lemma implies that f t ∈ HMO(q). Direct verification is, of course,
even easier in this special case.

Proposition 5.6. If f, f ′ ∈ HMO(q) and πf ∼= πf ′ , then πft ∼= πf ′t .

Proof. Note that (τfτ−1)t = τf tτ−1 since we have T (xf t(yτ
−1

)τ ) = T (f(xτ
−1

)τy) =
T (x(τfτ−1)t(y)). Thus, we may assume that τ = 1 in Proposition 2.4. If f ′(x) =
uf(vx) for all x ∈ K, then f ′t(x) = vf t(ux) since, for all y ∈ K, T (f ′t(x)y) =
T (xuf(vy)) = T (f t(xu)vy). Thus, Proposition 2.4 applies. The possibility f ′(x) =
uf−1(vx) is handled in the same way. 2

Thus, the HMO-plane πft is determined by the original HMO-plane πf rather than
by the specific function f used. We will generalize this in Theorem 6.1.

Our next goal is to discuss the (lack of) relationship between the BEL-construction
[3] and the Knuth transformations on presemifields [18]. For this we need the following
simple

Lemma 5.7. If an HMO-presemifield and its image under a Knuth transformation have
the same kernel, then they determine isomorphic planes.

Proof. By [3, Table in Section 6], in view of the stated kernel condition the only presemi-
field we need to consider is defined by

(a, b)(x, y) = (ax+ by, aȳ + bf(x)).

Let a′ = b, b′ = a, x′ = y, y′ = f(x), and obtain the new operation

(a′, b′) · (x′, y′) = (a′x′ + b′f−1(y′), a′y′ + b′x′)

producing the same plane. Now note that f and f−1 determine isomorphic planes by
Proposition 2.4. 2

In [3] it was evidently hoped, but not proved, that the BEL-construction produces new
planes, that is, planes not obtainable from the original one by a Knuth transformation. We
now give examples of this fact; there are undoubtedly simpler examples than the ones we
describe.
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Example 5.8. Start with one of Knuth’s semifields [18] of odd order q2, with multiplica-
tion given by

(a, b)(x, y) = (ax+ ebyα, ay + bx) for all x, y ∈ K = GF(q),

using q = pk for an odd k ≥ 3 and a prime p ≡ 1 (mod 4), 1 6= α ∈ AutK, and
a generator e of K∗. We view each field automorphism τ as a power of p, and then
(τ + 1, pk − 1) = 2 since k is odd.

Let L = GF(q2), and define f : L→ L using (3.2). We will prove the following

Claim. πft is not isomorphic to any plane produced from πf by a Knuth transformation.
In view of Lemma 5.7, we only need to show that πft and πf are not isomorphic.

We digress briefly: we will need the fact that K⊥ = rK with respect to the nonde-
generate symmetric bilinear form T (XY ) on L (here X,Y ∈ L; recall that r ∈ L −K
and r2 ∈ K). For, since r2q = r2 ∈ K but r /∈ K we have rq = −r. Then
k1rk2 + (k1rk2)q = 0 whenever k1, k2 ∈ K, so that rK ⊆ K⊥. Since dimGF(p) rK +
dimGF(p)K

⊥ = dimGF(p) L = 2 dimGF(p)K, it follows that K⊥ = rK.
In order to prove the claim, note that

f(x+ ry) = exα + ry for x, y ∈ K (5.9)

in (3.2). By Proposition 2.4, the planes πft and πf are isomorphic if and only if

uf(vX) = [f±1]t(Xτ−1
)τ for all X ∈ L

for some u, v ∈ L∗ with u/v ∈ K, some τ ∈ AutL and some choice of sign. Thus,

T (uf(vX)Y ) = T ({[f±1]t(Xτ−1
)}τY ) = T (X{f±1(Y τ

−1
)}τ ) (5.10)

for allX,Y ∈ L (recall that T maps to the prime field). We specialize this identity several
times in order to obtain information concerning the elements u, v, e, ultimately leading to
a contradiction. We will mostly consider the case [f−1]t of (5.10). We always let x and y
denote arbitrary elements of K∗.

When vX = rx and Y = y, (5.9) and (5.10) imply that

T (urxy) = T
(
[rx/v]f−1(yτ

−1
)τ
)

= T ([rx/v][yτ
−1
/e]α

−1τ ) = T ([rx/v]α[yτ
−1
/e]τ ),

so that urx − (rx/v)α/eτ ∈ K⊥ = rK. Then urx1−α − (r/v)α/eτ ∈ rK for all
x ∈ K∗, so that ur(x1−α−1) = [urx1−α− [r/v]α/eτ ]− [ur− [r/v]α/eτ ] ∈ rK. Since
α 6= 1 we have x1−α 6= 1 for some x. Then

u ∈ K and hence v = (u/v)−1u ∈ K.

Similarly, when vX = x and Y = y, (5.9) and (5.10) yield

T (uexαy) = T ([x/v][yτ
−1
/e]α

−1τ ) = T ([x/v]α[yτ
−1
/e]τ ),
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so that uexα− [x/v]α/eτ ∈ rK. Then ue− [1/vαeτ ] ∈ rK. Since we already know that
u, v, e ∈ K, it follows that

uvαeτ+1 = 1.

Finally, when vX = rx and Y = ry, (5.9) and (5.10) imply that

T (urxry) = T
(
[rx/v]{f

−1
([ry]τ

−1
)}τ
)

= T ([rx/v]{[ry]τ
−1
}τ )

since [ry]τ
−1

= r · rτ−1−1yτ
−1 ∈ rK, so that urxr − [rx/v]r ∈ rK. Then uvr2 = r2

since u, v, r2 ∈ K.
Consequently, vα−1eτ+1 = uvαeτ+1 = 1. Here vα−1 ∈ K∗4 since p ≡ 1 (mod 4).

However, eτ+1 generates K∗2 since (τ + 1, pk − 1) = 2 and e generates K∗. This is the
desired contradiction.

The case f t of (5.10) is similar but simpler. The two specializations vX = x, Y = y
and vX = x, Y = ry lead to the relations

uexα−α
−1
− [eα

−1τ/vα
−1

] ∈ rK and uexα−1 − [1/v] ∈ K

for all u ∈ K∗. These imply that u ∈ rK and u ∈ K both hold, which is again a
contradiction. 2

6 An operation on planes: general case

We conclude by digressing for a brief consideration of the general case of Proposition 5.6,
answering another open question in [3]:

Theorem 6.1. If the 4-tuples (g1, g2, h1, h2) and (g′1, g
′
2, h
′
1, h
′
2) determine isomorphic

semifield planes via (5.2), then so do the 4-tuples (ht2, g
t
2, h

t
1, g

t
1) and (h′2

t, g′2
t, h′1

t, g′1
t).

Proof. We may assume that an isomorphism of semifield planes fixes both axes. As in
the proof of Proposition 5.6, we only need to consider linear transformations.

In view of these reductions, by (1.1) we are given(
α β
γ δ

)(
m n
g h

)(
a b
c d

)
=
(
m′ n′

g′ h′

)
(6.2)

for some invertible 2× 2 matrices
( α β
γ δ

)
and

(
a b
c d

)
, where

g = g1(m) + g2(n) h = h1(m) + h2(n)
g′ = g′1(m′) + g′2(n′) h′ = h′1(m′) + h′2(n′).

By a tedious calculation,(
−δ β
γ −α

)(
x′ y′

g′1
t(x′) + h′t1 (y′) g′2

t(x′) + h′2
t(y′)

)(
a c
b d

)
=
(

x y
gt1(x) + ht1(y) gt2(x) + ht2(y)

)
,

(6.3)
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which implies the theorem. We will not provide all of the manipulations required to verify
(6.3), but will only discuss one of the four formulas implicit in (6.3).

From (6.2) we obtain

g′((αm+βg)a+ (αn+βh)c, (αm+βg)b+ (αn+βh)d) = (γm+ δg)a+ (γn+ δh)c.

Set n = 0:

T ([(αm+ βg1(m))a+ βh1(m)c]g′1
t(x) + [(αm+ βg1(m))b+ βh1(m)d]g′2

t(x))
= T ([(γm+ δg1(m))a+ δh1(m)c]x)

for all m,x ∈ K, so that

gt1(−δax+ βMg′1
t(x) + βbg′2

t(x)) + ht1(−δcx+ βcg′1
t(x) + βdg′2

t(x)

= −αHg′1t(x)− αbg′2t(x) + γax

for all x ∈ K, as required in (6.3). Similar calculations with m = 0, and using h′ in place
of g′, produce the desired equality (6.3). 2

Now that the above theorem is known to be true, it would be very desirable to have
a conceptual proof rather than the above disgustingly computational one. Based on re-
marks in [3, end of Section 4], a geometric description of the new planes is needed that is
different from the original one given in [3].

Acknowledgement. I am grateful to M. Cordero and the referees for their helpful com-
ments.
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