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0. Introduction

In [KL] it is proved that the probability of two randomly chosen elements of a finite
classical simple group G actually generating G tends to 1 as |G| increases. If g € G,
let Pg(g) be the probability that, if h is chosen randomly in G, then {(g,h) # G. Let
Pg:=max{Pslg) | ¢ € G¥}. In [KL, Conjecture 2] it is suggested that a stronger result
might hold: Pz — 0 as |G| — oc for simple classical groups G. In this paper we investigate
this question. It turns out that there is an interesting dichotomy here: while the answer
is positive when the defining dimension is fixed and the field size increases, this is not so
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s fed. We mvestigate the two cases separatelys along the way we
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Eha e vesatdts are ns follows,
Theorem 1. fet G be a quasisiuple classical group over By Then
1
=5
2t 2

5
g >

Theorem Lo Lor ¢ b guasruaph elassical gronp of dunension noov F,. Thews, for

Inn Py - DL

g

1. Fixed Field

srelinnnary peneral result, I G acts on o set X, el Goodenote e
v ol e X I g e (0 Yot Bl be the set of fixed points of g0 18 W0 X let
oot the probability that a random elewent of G lixes sowme clement of B Note

e Tone cegnndiny Pelgy o P g
1 A [N NS [y

Lo Lole Let €8 beoatriensitive subaroup of Syml X ), where (X1 = a0 Lot be ile
Lee WO X wiil “1'| oo ) Thien

ceviiern deanth of acorldi of Gpoon XNo- {r)

g w — 1y
Pr";i”}’i—‘(] T J
i 3
Proof Lot N Genote thie nuntber of clements of G fixing sowe clement of W Forany y & &
Lo ety be the mnber of -elenient subsets of W N Fix(g). Note that 17 ay{y) - agly]
TR
Ve 50 Nt
WV >_J”1‘.,‘H L'Q(FJJ
e yEU
N >_JG' L Gyt
rety Aty
refy’
. T wiw 1) 1
ORI
" 2 s
Ao [T Bans. O

There 13 an intrausitive version of the lemima (with the siune proof). Note that one can
apply the lenmn to G — Ay or Sy with =0 = s+ 1 =w+3. Then W) = 1i2—1/2n.
Thos, if g 15 00 3 eyele in G then Pglg) = 1/2 — 1720 is bounded away from 0.

We wilt apply the lemma to classical groups. Throughout the remainder of this paper,
Gowill be o ok
F oo F, (ov Fzn the unitary case),

It

al group, with corresponding natural r-dimensional module 17 over

It the lemina let X be the set of singular 1-spaces of V' {or all I-spaces, if there 15 no
fortn present s, and let = Fix(g) with ¢ a long root element of G. If G is an orthiogonal
asstune thit the dimension of Vs at least 5. Thus, in all cases, G is cither doubly
transitive on X or has rank 3. The quantities 1, s and w = |W| are easily caleulated in
cach ease. Let Pho= PLFix{g)), so that Pg 2 PL. Write (Ir)q =g —1)/(¢—1).
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We first consider the ease SLo(g) < G € GLa(g). Here, m = (1) w = ("'}, and
» =t — 1. Substituting these values into the lemma vields

i -1 1)—2
iU TR

Fg=

Thus:
Proposition 1.2. I SL.(¢) € G £ GL,{¢) withn = 2, then

) 1
Py 2 ~—.
g+1

Next, consider ¢ = Spn(g) with n > 4 and even. Since g is a transvection and all
1-spaces are singular, mn and w are the same as above. In this cage, s = w — 1. This yields
Pz (¢"7 = 13/2(g™ — 1), and hence we have

Propositiou 1.3. If G = Sp,(q) withn > 4 and even, then

PLy —
= 9g+1)

The next case is SUL(¢) € G < GUu{g),n 2 3. Again, g is a transvection. Set
e=(—1)". Then m = f(g,n): = (¢" — eig" t +e)f(¢® - Land s = Eflan—2y=w—1L
Hence PL = w/2m = f(g,n}/(1+ @ flg,n—2)).

Next, consider 2,(¢) < G < On(g) with n > § and ng odd. In this case, in = ("rl)q
and s = q(“r:’)q. There is an orthogonal decomposition V = Vi L V2, where Viis a
ronsingular subspace invariant under g, Vi is 4-dimensional of + type, and g acts trivially
on V,. Morcover, the q + 1 fixed l-spaces of g contained in V) are all singular. Thus
w=("7",1* + ¢+ 1. This yields Py > (" =" = g - 1)

Finally, consider Q4(4) € G < O4(q) withn = 2k 2 § and € = & In this case,
m o= h(g,n): = (¢f — eD)(g* ! + el)/(g — 1) and s = gh(g,n — 2). We decompose V' as for
the odd dimensions] orthogonal groups with V) a 4-dimensional space of + type and V5 of
the same type as V. Thus w = h(g,n — 4)4° + ¢+ 1. In all cases, we find that:

Proposition 1.4. Let SU.{¢) < G < GUa{g),n = 3, or {(g) < G < Oilgyn = 3

Then
1

13
Foz s

Propositions 1.2-1.4 complete the proof of Theorem I.

Note that the same argument shows that, if the codimension of the fixed point space
of 4 is bounded, then for h random in G there is a reasonable probability that not only will
{y,#} not be & but in fact it will fix some l-space. This should be compared to I, 3.3]:
if ,h are chosen randomly ameng nongenerating pairs of elements of a simple classical
group of dimension n > § (but n > 8 in the orthogonal case), then the group they gencrate
will most likely fix a 1-space or a hyperplane.

Of course, additional variations on this theme are easily manufactured. For exaiple,
if ¢ is restricted to being an involution of the classical group G, then Fix(g) can still be
quite large if n > 2, and hence Pg(g) is bounded away from 0 for fixed ¢. On the other
hand, it is not clear what happens if, for example, g is restricted to being fixed-point-free

on X.
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W close this section with a proposition giving the number of non-fixed-point-free
ats of GL,iy) o ies action on ¥ — {0}, See [W, Thearems 1, 2} when ¢ a priwue.

T
e

White we will ot need this result. it seemns of interest i its own right.

Proposition .50 Let O beeither GL(g) or SLaigy The nurnber of efenrents of G fixing

ar sl cgie monzero veetor of Voo
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Now consider the contribution 1o the right hand side of (3) for each element g € G
I¥ 1 fines uo nonzero veotor, i features in none of the sets 5, and so contributes nothing
o3 S0 assome that Cyig) has dimension § > 0. Then the contribution to (3) of ¢ is

j .
1 {2 :
I 1! (),
PR SR N
-1 4
However, 0 is o well-known result of Cauchy that this expression is 1 (cf. [GT,
201220 Thus Ads the number of clements of G fixing some nouzero vector, as elaimed. O

Suppose IV s a g-dimensional subspace of V. Then the argument of the previous
pronof shows that the number of clements of G fixing some nonzero vector of Ws

J .
- (") e,
i=1 g
2. Fixed Dunension

Fix a positive integer 7 and let G be a classieal quasisimple group of dimension n
defined over the field Fy with ¢ = #%, » prime. Let V' be as hefore,

Cur approach is similar to that in [KL). The major difference is that, in [KL], small
maximal subgroups contribute less than large ones and the important quanity is 3 [M],
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where the swin is over a set of ropresentatives of conjugaey clusses of maxinal subgroups.
Instend we need to obtain a bound on the number p(G) of conjugacy classes of maxi-
mal subgroups of G, We split up the maximal subgroups mto nine families of maximal
subgroups wecording to o theoremn of Aschibacher [A] (sec also [IKTA]).

The famibes are:
[(s] Stabilizers of totally singular or nonsingalar subspaces of V.
[€2] Stabilizers of direct sum decompositions of V.
(Cso Stabilicers of extension ficlds of F'of prime degree.

|Cy] Stabilizers of tensor product decompositions Vo= V) &

L) Stalalizers of subfields of ' of prime mdex.

[Co] Normalizers of symplectic-type £-groups (€ # » prime) in absolutely irreducible rep-
resentations.

[C7] Stabilizers of tensor product decompositions V = V1 & -8 Vi with each V, of the
saine dimension.

Cs, Stabilizers of forms.
S1 Normalizers of simple groups acting absolutely itreducibly on ¥ such that the repre-

sentation 1 defined over no proper subfield of F.

Aselibachor proved that every maximal subgroup of G is in one of the families listed
ahove, Let A be the normalizer of G in the corresponding projective linear group (so As
the group of similurities of the form on V/ involved in the definition of G).

Let p:G) be the number of A-conjugacy classes of maximal subgroups of G in (.
Tle next result follows from [[KLi, Chapter 4] (see also [KKL]}. Let log{m) = logy(m).

Lenuma 2.1,

fa) M{GY <13/ 2)n.

(L} (G < 2d{n) + 1, where d{n)} is the number of divisors of n.
{e) pal G

(dl (G
(el vl
(f1 et G
(gl (G
{1} pel€7)

I

win) -+ 2, where w(n) is the number of prime divisors of .
RUIETAR

mla) -1 < logla) < loglog(q).

1

Jlogin).
q.

[AA A1 A

Let py( €] be the number of G-conjugacy classes of maximal subgroups of G in Ui_, i

Corallary 2.2, 60(G) < ey(n) loglog(q) for some constant ¢1(n) depending only on n.

Proof.  This follows from Lemma 2.1 and the observation that a A-conjugacy class of
subgroups of G breaks up inte at most n G-conjugacy classes. O

New we must count the number of classes of maximal subgroups of & in 5. It s
convenient 1o consider two families of simple groups. Let §) (respectively Sp) be the set of
simple subgroups of G which act absolutely irreducibly on V, are defined over no subficld
and are not [respectively are) isomorphic to a Chevalley group of the same characteristic
as G Let 0,(G) be the nunber of G-eonjugacy classes of subgroups of & in 8.

Lemma 2.3. 7(G) < cz(n) for some constant ez{r) depending only on n.
Proof.  As above, it suffices to prove this for A-conjugacy classes. Note that two simple

subgronps are in the same A-class if and anly if the corresponding represcutations of the
coveritng proups are cquivalent. By [LaS] (see also [KLi,§5.3]), there exists & finite family
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{ ~inple gronps sacl that & Fln) These groups have a total of at most eving

weedlinelie representations aud the vesult follows, O

o

colueble renresentations of dimension o owhiackh are defined over no proper subfield of

nallv, we consider Sz We ondy obtadn an upper honnd for the number of absolutely

i Tl b sgficiont for one application. We do not address the issue of wlien these

vopresentations correspoud 1o maxinal subgroups o the corresponding classical group.

Lolee el
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foparsivalar, the wmber of somorphism classes of stuple groups in 8 15 bounded ahove
foon Bareerione of

Proal. The bHound o o follows frome the fact that the rank of L is bounded by the rank
o the syenr gronp it is contaiaed . Now (1) - (131) follow from from the Steinberg tensor

preeliet thecrem {see [, 50406 800 Sinee bfa’ < log(n), the divisibibity conditious in

Sy that there aze wt mose 3loglog possibilities for b Sinee there 15 o constant ¢
Swlorlat there are al nuost en possibibibies for the tepe of L iby the bomud on d1, it follows

toat rhere ave an maost 3eiclogi o) possibilities for the ssomorphism type of L]

Leyuna 2.5, Let L€ S The munmnber of irrediucilde representations of Linto GL G Fis
Connded aove T ey L loe gy e

oot Suppose Los detined over Foao By Stetuberg’s teusor product theoren, the irre-
- ' . =
dacible medndes for L ocan all be cxpressed as tensor products o4, RY !
peetricled bredneible module Tor L and 1) Vs the module By twisted Dy the ith power of
sutotorplosme 16 R is o restricted module for Lo then B R A) for somme

! . . .
be v, are fundamental \\'l']L"h[-h: here o s the antwisted Tie

where 11, 15 a

o Fuobenn

e G where

of LBy the preceding lenuua, o < 0 PR s dinsension at nost o it follows (by

catreting o Shy ) thar eacl e < n (this s not a very good bound). Thus, there are at
i possbilities for ench KB

F L ":i‘:,fB:-"lJ i frreducible of dimension n, then at most log(n) of the R, are
nontrivial, Let ¢ be the greatest integer at most log{n). The mumber of subsets of size tin
oot al size b is bounded above by 5. Thus, the number of irreducible representations of
Loof dimension s bounded by (o™ loglniyt

By Lewmua 2.4, B < 2alogin] < 2login) logly), and so the number of sreducible

veprenentations of Lol diension sois at most e (0ilogl g 800 as desdred,

Carollary 2.6, 0,06 < ey la)ilogg) s,

Pioof s foliows fromn the two preceding Lenunas, 0O

Theorem 2.7, There exists a function c(n) such that p{G) < e(r)(logl 4))'vs0?)
Proof. This follows from Lenumas 2.1, 2.3 and 2.6. O

e faer, with more effort one should be able to improve the statement of Theorem
27w G el loglog{e) However, the above version is more than sufficient for our

PUTPIOnes
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Proof of Theorem 11 Fix ¢ € G#. For each conjugiey class AM; of maximal subgroups
of G, let Aq,0g) be the set of those subgroups in A, which contaln g. Let M, € M. It
follows from the main result in [LS] that | A.(g)] < (2/9)| M| (unless G is Ly{g) with
¢ = Torqg— 9% Then, since | M, | = |G M,

Poly) <IGI7Y ) IMute)lid)

< (/)Y 1AM |GL

= (2/9)p(&)
< ‘_),r:(n)(log(q))“lgtn)qﬂA
by Theorem 2.7, The result follows. [

A similar result is undoubtedly true for the exceptional Chevalley greups. The only
obstacle is that there is no kuown general bound for the number of classes of embeddings
of a simple group into an exceptional group.

As an immediate consequence of Theoremn 11, we see that any finite simple classical
group is generated by an involution and one other element, provided ¢ is sufficiently large
{depending upon n). This additional restriction on ¢ is in fact not necessary {MSW).

Finally, we note another consequence of Theorem 2.7, Let & be a simple classical gronp
of dimension 2 i characteristie r. It follows from Steinberg's tensor product theorem that
the mumber of conjugacy classes of r'-elements in G is ¢f where £ is the (untwisted) Lie
rank of . Tlus Theerem 2.7 implies that, for sufficiently large ¢ (depending upon n),
the munber of conjugacy classes of maximal subgroups of G is less than the number of
corjugacy classes of elements. This should be true without restriction on ¢. In [AG] it was
proved that it true for finite sulvable groups and was conjectured to be true for all finite
groups.
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