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We describe symmetric designs D with classical parameters v=(q6 − 1)/(q − 1),
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1. INTRODUCTION

The classical point-hyperplane design Dn − 1(n, q) of an n-dimensional
GF(q)-space has classical parameters v=(qn − 1)/(q − 1), k=(qn − 1 − 1)/
(q − 1), l=(qn − 2 − 1)/(q − 1). When n+1 and q are odd, another symme-
tric design with these same parameters is the orthogonal design DO(n, q) of
Higman [Hi]; its points are the singular points x of an (n+1)-dimensional
orthogonal GF(q)-space and its blocks correspond to the hyperplanes x + .
These two classes play a special role among the symmetric designs with
classical parameters since they admit nonabelian simple point-primitive
automorphism groups. In this note we will describe further symmetric
designs sharing some of these properties.



We associate with each generalized hexagon H of order (q, q) a symme-
tric design D(H) with parameters v=(q6 − 1)/(q − 1), k=(q5 − 1)/(q − 1),
l=(q4 − 1)/(q − 1). Let H(q) be the usual generalized hexagon associated
with the Chevalley group G2(q) and let H(q)g be the dual hexagon. If q is
not a power of 3 we show that D(H(q)g) is isomorphic to neither D5(6, q)
nor DO(6, q), and that AutD(H(q)g) 5 Aut G2(q). Moreover, G2(q) acts
primitively on the points and blocks of this design as a rank 4 group, and
hence is antiflag transitive.

2. DESIGNS FROM GENERALIZED HEXAGONS

Let H be a generalized hexagon of order (q, q) with point set P, line set
L and usual metric d on P 2 L (cf. [vM, p. 4]). Each point x determines
a partition P={x} 2 C2(x) 2 C4(x) 2 C6(x) where Ci(x)={y ¥ P |
d(x, y)=i}, |C2(x)|=q2+q, |C4(x)|=q4+q3 and |C6(x)|=q5.

Set x + ={y ¥ P | d(x, y) [ 4}. Denote by D(H) the incidence structure
with point set P and block set {x + | x ¥ P}. Then:

Proposition 2.1. D(H) is a symmetric ((q6 − 1)/(q − 1), (q5 − 1)/(q − 1),
(q4 − 1)/(q − 1))-design, and x W x + is a null polarity of D(H).

Proof. Generalized hexagons induce rank 3 association schemes on the
set of points, using the above partition (see, e.g., [Ma, p. 133]). Checking
the parameters of this association scheme we find that |C6(x) 5 C6(y)|=
q5 − q4 for any distinct points x, y. This implies that the map x W x + is
injective hence that the incidence structure complementary to D(H) is a
symmetric design. It follows that D(H) is a symmetric design with the
stated parameters. The final assertion is clear from the definition. L

The only known generalized hexagons of order (q, q) are the usual one
H(q) related to G2(q), as well as its dual H(q)g [Ti] (cf. [vM, Sec-
tion 2.4]). Therefore, we will focus on these instances of the proposition.
First we digress for some general results concerning symmetric designs.

3. PRELIMINARY CHARACTERIZATIONS

For any symmetric design, if x and y are distinct points then their line xy
is defined to be the intersection of all blocks containing x and y; two points
are on exactly one line [DW]. For example, in the preceding section the
lines of H are also lines of D(H). The Dembowski–Wagner Theorem
[DW] characterizes projective spaces as the only symmetric designs such
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that all lines have size (v − l)/(k − l). The designs D(H) provided motiva-
tion for variations on their result. For a symmetric design equipped with a
null polarity x Q x + call a line singular if it contains distinct points x, y
such that y ¥ x + , and nonsingular otherwise.

Theorem 3.1 [Ka2]. Let D be a symmetric design admitting a null
polarity.

(i) If all singular lines have size (v − l)/(k − l) then D is either a
projective space or an orthogonal design.

(ii) If all nonsingular lines have size (v − l)/(k − l) then D is a projec-
tive space.

4. RECOVERING THE GENERALIZED HEXAGON
FROM ITS DESIGN

Once again consider the symmetric design D=D(H) associated to the
generalized hexagon H. We wish to recover H from D(H) using the geom-
etry of the design. However, this is not possible for D(H(q)) in a canon-
ical manner, since the design arises from large numbers (namely,
|AutD(H(q)) : Aut H(q)|) of hexagons:

Proposition 4.1.

(a) If q is odd then D(H(q)) 5 DO(6, q).

(b) If q is even then D(H(q)) 4 D5(6, q).

(c) If q is a power of 3 then D(H(q)g) 5 D(H(q)).

Proof. (a, b) These are clear from the standard embedding of H(q)
into a 7-dimensional orthogonal vector space [Ti] (cf. [Ya, CK, vM, Sec-
tion 2.4]), in view of the isomorphism W(7, q) 5 Sp(6, q) when q is even.

(c) H(q)g 5 H(q) for these q. L

Theorem 4.2. If q is not a power of 3 then AutD(H(q)g) 5 Aut G2(q).
In particular, D(H(q)g) is isomorphic to neither D5(6, q) nor DO(6, q).

Proof. G2(q) acts distance-transitively on the points of H(q)g): G2(q)x is
transitive on Ci(x) for each point x and i=2, 4, 6. Thus, at least one of the
following holds: (i) The only q+1-point lines of D(H(q)g) are the lines of
H(q)g; (ii) all singular lines have size q+1; or (iii) all nonsingular lines have
size q+1.
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In case (i) the hexagon clearly can be recovered from the design in a
geometric manner, and hence the assertions of the theorem hold.

It remains to show that (ii) and (iii) do not occur. In either of these
situations, we can apply the results of Section 3 and conclude that
D(H(q)g) is D5(6, q) or DO(6, q); moreover, those results imply that (ii)
must hold. Then G2(q) must act on D(H(q)g). However, when q is odd this
group does not have a nontrivial projective 6-dimensional GF(q)-
representation, so that D(H(q)g) cannot be D5(6, q). Consequently, for q
even as well as odd, we can identify the points x of D(H(q)g) with the sin-
gular points of a 7-dimensional orthogonal geometry in such a way that
blocks are identified with the hyperplanes x + of that space.

By [Ya, Theorem 1.1], [Ro] or [CK, Appendix], it follows that H(q)g

is isomorphic to H(q). However, H(q) is not self-dual since q is not a
power of 3. Thus, (ii) and (iii) cannot occur. L

The group G2(q)can be used to obtain slightly more information about
the designs D(H(q)g), namely, the sizes of their lines.

Proposition 4.3. If q is not a power of 3 then, except for the q+1-point
lines of H(q)g, all lines of D(H(q)g) have size 2.

Proof. Let H denote a subgroup of G2(q) of order (q − 1)2 (a split torus;
cf. [Ca, Chapter 7]). It is straightforward to use the commutator relations
in [Ca, Theorem 12.1.1]) to check that H fixes 6 points of H(q)g and that
all other point–orbits have length at least q − 1 (this is even true if q=2). If
D(H(q)g) has a line of size > 2 other than a line of H(q)g, then it follows
that this line has size q+1. Now we can proceed exactly as in the proof of
the preceding theorem. L

5. CONCLUDING REMARKS

1. For q a prime power and n \ 3 there are large numbers of
(pairwise nonisomorphic) symmetric designs with classical parameters
v=(qn − 1)/(q − 1), k=(qn − 1 − 1)/(q − 1), l=(qn − 2 − 1)/(q − 1) [Ju],
including large numbers having full automorphism group isomorphic to
any given group [Ka1]. However, no design constructed in those papers
has an automorphism group transitive on points.

It seems likely that the designs Dn − 1(n, q), DO(n, q) and D(H(q)g) are the
only symmetric designs with classical parameters having an antiflag transi-
tive automorphism group. We have some preliminary results in this direc-
tion.

2. The proof of Proposition 4.3 used the commutator relations
to study the action of H. A more geometric approach is provided by
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[CK, Appendix]. Namely, H lies in a subgroup SL(3, q) preserving a
decomposition of an 7-dimensional orthogonal (vector) space as the per-
pendicular sum of a nonsingular 1-space and two totally singular 3-spaces.
Using this description it is easy to check that H fixes 6 totally singular lines
and that all other H-orbits of totally singular lines have length \ q − 1.

3. We determined the automorphism group of D(H(q)g) in
Theorem 4.2. More computation within the group G=G2(q) can be used
to obtain a direct proof of Proposition 4.3 and then of Theorem 4.2. We
now outline a third type of proof of the proposition and hence of the
theorem, this time citing group-theoretic results. We may assume that q is
not a power of 3.

Clearly, G1 :=AutG [ A :=AutD(H(q)g). If G1 < A we deduce from
[LPS, p. 133] that there is a subgroup Y [ A with G < Y such that
Y 5 Sp(6, q) or L6(q) if q is even, while Y 5 W(7, q) if q is odd. If q is even
the stabilizer G1

x in G1 of a point x of H(q)g is therefore the stabilizer of a
point in the vector space V=V(6, q) underlying Y. However, by [Li, 2.10]
any two nontrivial 6-dimensional G2(q)-modules are algebraically conju-
gate. In particular, G1

x must be G1-conjugate to the stabilizer of a point of
H(q), which is not the case. The case q odd is similar.

Of course, since the proof in [LPS] involves the classification of finite
simple groups the preceding is not the simplest approach to the determina-
tion of the desired automorphism group.
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