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Given a subgroup G = (F) of S n specified in terms of a generating set F, when n < 106 we 
present algorithms to test the simplicity of G, to find all of its composition factors, and to 
find a composition series. While there are already existing algorithms for these purposes (due 
to Luks or Neumann) valid for all n, the ones in the present note are designed to replace 
many group theoretic computations by arithmetic calculations using properties of n and 1GI. 

1. Introduction 

Suppose  that a subgroup G = ( F )  of S~ is given in terms of  a generating set F of 
permutat ions.  When discussing the structure of  G, one of the fundamental problems is: 
find a composit ion series for G. There is a beautiful polynomial-time algorithm for solving 
this problem due to Luks (1987), but this does not presently seem to be sufficiently 
pract ical  for implementation. There is also an algorithm due to Neumann (1987), parts 
o f  which already have been incorporated into CAYLEY (the ERNIE routine for finding 
an  earns: an elementary abelian regular normal subgroup). 

The  present note is intended to provide algorithms that do much less than this, but 
seem to have the advantage of speed. We will only consider permutation groups of  degree 
n "< 1 0  6. For such groups we will provide progressively more complicated (and hence 
slower) algorithms for solving the following problems. 

1. Test simplicity (section 3). 
2. Find all composit ion factors of O (section 4). 
3. F ind a composition series for G (section 5). 

I t  should be noted that finding all composition factors is drastically weaker than finding 
a composi t ion series: in the case of  solvable groups the composition factors are just cyclic 
groups  of  prime order, one for each prime in the factorization of tol (counting multi- 
plicities). The advantage of our approach over the more general ones in Luks (1987) and 
N e u m a n n  (1987) is that we are able to replace some of the computations in G itself by 
computat ions  o f  a purely arithmetic nature concerning I GI. Nevertheless, these algorithms 
fo l low the same pattern as those in Luks (1987) and Neumann (1987): reduce to the 
primit ive case, apply the O'Nan-Scot t  Theorem (see section 2), and use the validity of 
Schreier 's  Conjec ture - -"The  outer automorphism group of a finite simple group is 
so lvab l e " - - a  consequence of the classification of finite simple groups. We will, in fact, 
n e e d  slightly more detailed information than this concerning the finite simple groups: 
the i r  orders. 

2. Background 

We will presuppose the basic facts about permutation groups, together with the simpler 
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proper t ies  o f  G that  can be readily computed---for  example,  using C A Y L E Y  (Cannon,  
1984) - -when  we are given G = (F) -< Sym(X)  in terms of  a generating set F of  permutations.  
I f  Y _  X then  Otv) and G v  will denote, respectively, the pointwise and set stabilizers 
o f  Y in G. Throughout ,  x will always denote a point  of  X. 

The  fol lowing result  is fundamental .  

O ' N A N - S c o T ' r  THEOREM (Cameron,  1981; Aschbacher-Scot t ,  1985; Neumann ,  1987). 
Let  O be a primitive permutation group o f  degree n. Then one of  the following holds. 

(I) G has an elementary abelian regular normal subgroup ("earns")  A of  order n =pd 
for  some prime p and some d. 

(II)  The socle o f ( 3  is N = S l x .  �9 �9 x Skfor  isomorphic nonabelian simple groups St. Then 
one o f  the following holds. 

(a) X can be identified with a set X ~  such that n = nkt, nx---Ix, l, the action of  O on 
X is the wreathed product action, and there is a faithful  primitive permutation representation 
on X1 o f  a group containing Sl as a normal subgroup. (When k =  1, G has a simple normal 
subgroup.) 

(b) n = [$1[ ("-l)b for  integers a, b with ab = k >  1; N.~ = D1 x .  �9 �9 x Db where Di is a 
diagonal subgroup o f  S~i-l),+l x . �9 �9 x S~,; and G acts transitively on {$1 . . . . .  Sk} with block 
system {{S(i-t),+~, �9 �9  S,~}[i= 1 , . . . ,  b}. 

(c) n = Isd k, k >  l, and G acts transitively on { S l , . . . ,  Sk}. 
(d) n = IS, I and G has two orbits on {$1 . . . .  , Sk} of  length �89 

We will m a k e  frequent  references to Cases (I), ( I I a ) -  (IId).  The following remark is clear: 

LEMMA 1. In ( IIa ), IGI = tu. Isd where t l s d  = [Ccn)I a n d  u = IGo[ for I):= { S , , . . . ,  Ski, 
Here, t is the order o f  a subgroup of  the direct product o f  k copies of  Au t (  S~)/ S~ ; slightly 
more precisely, t is the order o f  a subgroup o f  ( T1 x . �9 . x Tk)/(S1 x . �9 . x Sk) where the Ti 
are isomorphic and $1 "~ 7"1 <- S y m ( X O .  

We will also need the following easy fact: 

LEMMA 2. (i) I f  n * <  -- 15 and G is a simple subgroup o f  S , .  o f  order y, whose normalizer 
G + in S , .  is primitive, then n* and y are listed in Table 1. In each case, O + / G  has order 
1 or 2 except i f  n* ~- 9 and y = 504, where G + / G  can have order 3, o r / f n *  = 10 and y = 360, 
where G+/ G can have order 4. 

Table 1 Table 2 

n* y m u 

5 6~/2 
6 5!/2; 61/2 

7 [VSL(3,2)[; 7t/2 
8 IVSL(3,2)I, 8t/2 
9 [PSL(2,8)I = 504; 9t/2 

10 51/2;6I/2; 10t/2 

11 IPSL(2,11)l; IMll]; 11!/2 

12 [PSL(2,11)[; IM,1I; [M,2[; 12t/2 

13 ]PSL(3,3)[; 13!/2 
14 ]PSL(2,13)[; 14!/2 

15 6!/2; 7t/2; 81/2; 15!/2 

5 5~/2 
6 5!/2; 6I/2 

7 IPSL(3,2)I; 7!/2 
8 I~'st(3,2)l; IAOL(3,2)I = 8.168; 8t/2 
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(ii) I f  m <- 8 and G = G' is a transitive subgroup o f  Sin o f  order u, then rn and u are listed 
in Table 2. 

REMARK. Although IAsI = IPSL(3,4)], whenever we refer to Tables 1 and 2 the relevant 
simple group of order 8 !/2 will be A8 since PSL(3,4) does not have a faithful permutat ion 
representation of  degree <21. In all other cases there is a unique simple group of  order  
y or  u (when u ~ 8.168). 

LEMMA 3. There is no finite simple group G whose order has the following shape: I GI = tu . ym 
where y is as in Table 1, m and u are as in Table 2, and either t = 2 i with i <- m, or t = 2 ~ 
with i<-2m when y = 3 6 0 ,  or t = 3  ~ with i<--m when y =504. 

PROOF. Suppose that G is such a simple group. Each simple sporadic group has a prime 
p >--- 11 dividing its order  to the first power. Then G cannot be sporadic, and similarly G 
cannot  be alternating. This leaves us with all of  the groups of  Lie type. Here it is only 
necessary to examine the formulas for the orders of the possible groups (see, e.g., 
Gorenstein (1968, p. 491)). For example, q4+ l  cannot divide IGI for any prime power 
q, since IGI is only divisible by primes ---13. On the other hand, 3 "+~ divides IGI, as does 
5 r~ or 7". A straightforward case-by-case analysis using elementary congruence arguments 
produces the desired contradiction. 

LEMMA 4. There is no finite simple group G o f  order n2--  < 1012 having a max imal  subgroup 
o f  order n. 

PROOF. The order of a sporadic simple group or an alternating group is divisible by some 
pr ime to the first power, so once again we only need to consider the orders of the simple 
groups of Lie type (Gorenstein, 1968, p. 491). Assume that la l  is a square. Since IGI--- 1012 
we obtain bounds on the size of the field and the Lie rank. Elementary arguments eliminate 
mos t  cases, producing a single situation: G = PSp(4,q)  and q2+ 1 = 2v 2 for an integer v, 
in which case Io1= {q2(q2_ 1)v}2. However, PSp(4,q)  has no maximal subgroup o f  order  
q2(q2_ 1)v (see, for example, Kantor & Liebler (1982, 5.6)). 

O f  course, the lemma is undoubtedly true with no restriction on n. 

LEMMA 5. Assume  that G =  O'  is a 2-transitive permutation group o f  degree pro= 
( q a _ 1)/(q - 1)for  a prime p, a prime power q, and integers m > 1 and d. I f  IGI--IPSL(d,q)l 
then G is simple. 

PROOF. If  G has no earns then this follows from the list of 2-transitive groups (contained, 
for  example, in Cameron (1981); note that this list shows that G ~-PSL(d ,q) ,  but we will 
not  need this fact). So assume that G has an earns. Then G can be viewed as a subgroup 
o f  A G L ( m , p ) .  

I f  d = 2  then p " = q + l ,  so that either q = 8  or q is a Mersenne prime. If q = 8  then 
]GI,rlAGL(2,3)I. If q is prime then the stabilizer Gx of  a point x has order q(q - 1), and 
hence has a normal Sylow q-subgroup by Sylow's Theorem; however, the normalizer of 
a Sylow q-subgroup in GL(m,2)  has order q m < q ( q - 1 )  (note that n = 2 m ~ 4  since 
G = G'). 

Consequently, d > 2. Then both d and q are primes, by Zsigmondy (1892). 
Clearly, q~dCa-1)= L GIqlIGL(m,p)Iq. Let k be the order of p mod q, so that q <p ~ ;  and 

write l = [ m / k ] .  Then ]GL(m,p)lq = (pk _ 1)tqltq, where l]q = qt'/ql+tJ/q~l+'"< ql/(q-1). It 
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follows that  q~d(d--l) <7 (pk 1)tqS/(q-~)<p,,,qt/(q-1}<2qa-lqt/Cq-1), so that  12d(d-1) < 
d + l / ( q - 1 ) .  Now q~d(d-3)(q-1)<(pk)~d(d-3)(q-l)<--pkl<2qd-1, SO that  ~ ( d - 3 ) <  

1 / ( q -  1 ) ~  1. Since d > 2 is prime, this leaves us with the case d = 3. Then it is easy to 
check that  q # 2, 3, so that  qa < 2qa-~qt/(q-~ < q[q2qt/(a-o implies that 3 < � 8 9  l / ( q -  1). 
But then q - 1 < 2 / p r o d u c e s  the contradiction q~(q-~) < ql <pgt < 2qa-~. 

Needless  to say, the arithmetic part  o f  the above argument  could be replaced by the 
use o f  a list o f  all perfect  2-transitive groups having an earns. 

3. Simplicity 

The s implest  algori thm in this note is as follows. It emphasizes numerical  calculations 
as m u c h  as possible. 

S I M P L Y  
Input :  O--<S, = S y m ( X ) ,  n_< 106. 
Output :  Whether  G is or is not  simple. 

1. I f  Y is a non-trivial orbit of G find G(v). 
I f  G(v) # 1 then output  " G  is not simple".  
W L O G  G ~  G v. W L O G  Y=X.  
2. Find a b lock system X such that G ~ is primitive. 
Find G(x). I f  G(x) # 1 then output " G  is not s imple".  
W L O G  G(x) = 1. Replace  X by E. Now G is primitive. 
3. Find [G[ and G ' .  
W L O G  G = O '  # 1: otderwise output  " G  is not s imple"  except if  [G I is prime, in which 

case ou tpu t  " G  is s imple".  
4. I f  [G I = n 2 then output  " G  is not  simple".  
W L O G  [G] # n 2. 
5. I f  n is a power  of  a pr ime then output " G  is not s imple" except in each of the 

following cases: 
= n ! / 2 ,  

n is pr ime,  
n = 9 and  [G[ = 504, 
n = 2 7  and [G[=25  920, or  
n = ( q a _  1 ) / ( q -  1) and ]G]= IPSL(M,q)I for  s o m e  q and d, and G i s  2-transitive, 

in which cases output  " G  is s imple".  
W L O G  n is not a pr ime power. 
6. I f  the only way to write n as a power  n = n *m is with m < 5 or n* < 5, then output 

" G  is s imple" .  
7. W L O G  there is at least one way to write n = n*" with m _> 5 and n* -> 5. 
Output  "'G is not s imple"  if, for some such n* and m, [G[ can be written in the form 

[G[ = tu. y"  where y is as in Table 1, m and u are as in Table 2, and either t =  2 ~ 
with i<.m, or t = 2  ~ with i<-2m when y = 3 6 0 ,  or t = 3  ~ with i<-m when y = 5 0 4 ,  

I f  [G[ cannot  be written in this form for any such n* and m then output  "G is simple".  
8. End.  



Composition Factors of Permutation Groups 521 

THEOREM 1. The output of S IMPLY is correct. 

PROOF. After Step 3, G is primitive and G = G '  ~ 1. Step 4 is correct by Lemma  4. 
Assume that n is a prime power. Then the only way G can be simple is to have one 

of  the exceptional cases in Step 5 (Kantor,  1985a; Guralnick, 1983). Conversely, if  one 
of  those cases occurs then G = An if I GI -- n 1/2; o has a simple normal subgroup if n is 
prime, and then G = G" is itself simple by Schreier's Conjecture; G is simple if n = 9 or  
27 and IGI is as in Step 5 (for, 504,,~[AGL(2,3)t, 25 920.,HAGL(3,3)[, and it is just as easy 
to eliminate the other cases in the O 'Nan-Scot t  Theorem); and G is simple if n = 
( q a - 1 ) / ( q - I )  and G are as in Step 5 (by Lemma 5). 

This completely settles the case in which n is a prime power  (of. Case (I) of  the 
O 'Nan-Sco t t  Theorem). In Case (IIc) ,  since G = G '  we have k >- 5 and n = [Sl[k >- 605 > 106, 
which is not the case. Similarly, Case (IId) cannot occur if  k >  2; while if k = 2 then 
G --- Sl • $2 (again by Schreier's Conjecture) which was handled in Step 4. 

In Case (IIb),  604> n = [S1[ (~-l)b implies that (a - 1 ) b  <4,  where ab = k; Since G =  G '  
while G has a block system of  size b, we must have b = 1, but then G = G'  and  1 < k = a < 5 
yield a contradiction. 

This leaves us with the possibility that G is simple or that we are in Case ( I Ia)  with 
n = n~, where we must have 5 -  k-----8 and 5 _< nl-< 15 (again because n-< 106), while I ol 
is as in Step 7 (with m = k and n* = nl; of. Lemma 1). Thus, if [G[ cannot be written as 
in Step 7 then G must be simple. On the other hand, by Lemma 3, no simple group has 
order as in Step 7. 

4. Composition Factors 

The idea in S IMPLY can be refined slightly as follows. 

C O M P F Y  
Input:  O<- Sn = Sym(X) ,  n -< 106. 
Output:  A list of  simple groups: the list of the composition factors of  (7 (including 
multiplicities). 

REMARK. Some clarification is needed concerning the output o f  COMPFY:  how is each 
of  the simple groups S described? In  some cases S is obtained as a section of G (up to 
isomorphism),  in which case this is the way S should be viewed. In other cases S is o f  
pr ime order, in which case only its order needs to be given (or, alternatively, an ISl-cycle 
in the symmetric group of degree ISI, if desired). 

Finally, there are some situations in the algorithm where S is obtained merely as an  
abstract group. In that case its " n a m e "  is all that is given--implici t ly via Table 1. However ,  
here Isl is small, and there is a faithful permutation representation of  S on at mos t  
15 points, in which ease it is not difficult to use the name in order to reconstruct that  
permutat ion representation. Consequently, in all cases one can view the algorithm as 
outputting a simple permutat ion group, (Compare the Remark following Lemma  2.) 

1. I f  Y is a non-trivial orbit of G find G(el. 
If  G(y)~ 1 then output  reeursively found lists for G(v~ and G v. 
WLOG G ~ G v. WLOG Y = X. 
2. Find a block system ~ such that  G ~ is primitive. 
Find G~I .  I f  G(x)~ 1 then output  recursively found lists for G(~ and G :~. 
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W L O G  Gtx)= 1. Replace X by X, Now G is primitive. 
3. Find [GI, Ox and G'. 
W L O G  [GI is not  a pr ime (otherwise output G). 
W L O G  G = G'.  (Otherwise output a recursively found list for  G' ,  together with a llst 

for  the abel ian g roup  G / G ' - - o n l y  the prime factorization of  ]G/G'I is needed in order 
to find the latter list.) 

W L O G  IGI ~ n I/2,  as otherwise output  the simple group G = A,.  
4. I f  [G[ --- n 2 then  output  two copies of  the simple group Gx. 
W L O O  IGI n 2 
5. I f  the only way  to write n as a power  n = n * "  is with m < 5  or n * < 5  then either 

5.1. n is not a pr ime power,  in which case output  the simple group G, or  
5.2. n is a p r ime  power  and then either 

5.2.1. I f  n = 9 and IGI = IPSL(2,8)I = 504, or i f  n = 27 and = IPSp(4,3)l = 25 920, 
then output  the simple group G 

5.2.2. I f  n = ( q a - 1 ) / ( q - 1 )  and Ial=lesL(a,q)l for some q and d, and G is 
2-transitive, then output  the simple group  O or 

5.2.3. Otherwise G has an earns, n = pa for some prime p, so output  d copies of  
Zp together  with a recursively found list for Gx. 

6. W L O G  n = n * "  for  some n*->5 and m>--5. Find such an n* and m. 
Here  5 - - m - - - 8  and  5 < - n * ~ 1 5  (as n-< 106). 
7. I f  I GI cannot be  written in the form 

[G[ = tu.  ym where y is as in Table 1, m and u are as in Table 2, and either t = 2 ~ 
with i<-rn, or t = 2  f with i<_2rn when y = 3 6 0 ,  or t = 3  i with i<-m when y =504,  

then ei ther  
n is not  a pr ime power,  in which case output  the  simple group G, or 
n is a pr ime power ,  in which ease proceed as in 5.2. 

8. W L O G  1(31 can be written in the form IGI = tu- as above. 
I f  the pa i r  (n*, y)  is not (8,168), then output m copies of  a simple group of  order y 

(see the Remark  following Lemma  2), i copies of 22 (or 23 when y = 504), and a simple 
group o f  order  u - -un l e s s  u = 8.168, in which case output  instead PSL(3,2) and 3 copies 
of  Z2. 

9. N o w  n* = 8 and  y = 168. 
Per form each of  the following tests. I f  any fails then there is an earns, so output  as in 

5.2.3. I f  all are passed then output  as in Step 8. 
Test whether  G~ has  a unique orbit  Y = x '~x of  length 7m; whether there is a non-trivial 

b lock B o f  Gx containing x' ;  and whether  IBI-7 .  
Test whether  ](Ox, B)BI = 21 or 42. (Since IBI--7 this computat ion requires little time.) 
Test whether  the pointwise stabilizer E := G~.(y-B) has order 21 or 42, and find e e E 

of  order  7. Test  whether  e fixes 8 m- '  points. 
Find a subset  A o f  G~ of  size m such that B a is the block system containing B, and 

test whether  the elements  e a, d e ,~, all commute.  
L e t f ~  G be  such that  x f = x', find h ~ Gx, with x ~ B yh, and replace f by fh .  (Then x e BY.) 
Test whether  (B u {x}) " : =  B w {x}, and whether (e, ef> B~'{~) has two non-commuting 

involutions.  (Since tB u {x}l = 8 these computat ions require little time.) 
End of  tests. 
10. End.  

REMARKS. (i) Step 9 sidestepped E R N I E  (Neumann,  1987), a slower but much more 



Composition Factors of Permutation Groups 523 

genera l~procedure .  E R N I E  requires finding Ca(G~y) for distinct x, y e X, which can be 
done  in polynomial time by working on sets of size 0(n:) ,  but that is presently impractical  
for degrees n as large as we are allowing. CAYLEY finds centralizers using backtracking,  
and  hence requires exponential time. The corresponding algorithm in Luks (1987) requires 
numerous  computat ions on sets of  size 0(n2). 

(ii) Step 9 concerned, in effect, two ways to have n = 8m: one with an earns and one 
without.  Note that  there are two primitive groups of degree n = 8" having permutat ion 
isomorphic  stabilizers, so that more than just arithmetic is needed for such an n. 

(iii) Steps 3-10 can be viewed as a test that detects, but does not find, an earns in a 
primitive group of  degree n <- 10 6. 

(iv) COMPFY will output composit ion factors in the order they occur in some composi -  
t ion series, starting at the bot tom of  the series. 

Tr~EOREM 2. The output of C O M P F Y  is correct. 

PROOF. Everything is similar to Theorem 1 except in Steps 4, 8 and 9. 
I f  IGI-- n 2 then G is not simple by Lemrna 4; n is not a prime power;  and if G = $1 • $2 

is as in Case ( I Id)  then the output  of Step 4 is correct. We will have to verify that no 
other  possibility in (II)  can arise when [GI = n ~. As in Theorem 1, since n <-- 106 only Case 
( I Ia )  needs to be examined. Here we must consider the equation I GI-- tu. ym = n,2,~ with 
n*>--5 and m>--5, and t and u as in Step 7. Since t is a power of  2 o r3 ,  while u has a 
pr ime divisor 5 or 7 occurring to the first power (Table 2), this equation is impossible. 

Assume that IGI can be written as in Step 7. By Lemma 3, G is not simple. First assume 
that  there is no earnsmwhich  is certainly the case i f  n is not a prime power. We can 
proceed  as in Theorem 1 to see that we must be in Case (IIa).  Then n = n~ = n *m. Since 
m, n*, k and nl are all at least 5, it follows easily that m = k and n* = nl.  Thus, m and 
n* are uniquely determined, and then the equation Iol  = tu. y" uniquely determines y, 
u and  t. (Namely,  since m--> 5, if p is a prime and p~'ll ~1 then p l y  by the Tables, and 
then  the Tables easily imply the stated uniqueness.) This justifies Step 8 if there is no earns. 

N o w  assume that  there is an earns. We will obtain a contradiction when (n *, y) ~ (8,168). 
Recall  that m = 5, 6, 7, or 8. We have n = n*" =pa, and Gx lies in G L (p ,d ) - -a n d  even 
in SL(d,p) since G =  G ' - - w i t h  p and d as follows (since 5 ~  n * -  < 15): e i the rp  = n* and 
d = m ,  or p = 3 ,  n * = 9 a n d  d = 2 m ,  or p = 2 ,  n * = 8  and d = 3 m .  

I f  n * = 5  or 11 then 1G[3---3" > [SL(m,n*)13 for m = 5, 6,7, 8. 
I f  n* = 7 then IGI  >-- 8 m > [SL(m,7)[2. 
I f  n* = 9 then I GIT-> 7"  > ISL(2m,3)IT, 
If n*= 13 then 1 l,>sm> ]St(m,13)ls. 
I f  n* = 8 and y = 7 l/2 then [GI5 >-- 5m> IsZ(3m,2)l~. 
This leaves us with the possibility considered in Step 9. There, we must show that the 

given tests will correctly detect whether or not X can be identified as in (IIa) with X ~  
where  Ix l = 8 and each simple group Si----PSL(2,7). 

I f  there is such an identification then it is easy to see that there is a unique shortest  
orbit  Y, where [YI = 7 m  and G Y is imprimitive with blocks of  size 7: i f x  = (o~, a , . . . ,  a ) e  
X ~  then B can be taken to be (XI-{or},  a . . . .  , a).  Moreover,  G~ acts 2-transitively on 
the "coordinates",  so that there is a unique non-trivial block system. The relation " x '  is 
in the unique shortest non-trivial orbit of G~" is symmetric (namely, (x, x ' )o  is the unique 
shortest  non-diagonal orbit of  G on X x X),  so that x ~ YY while B y is a block of Gx, 
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on YY. Then  we can modify f (using h) in order to have x ~ B y, after which Z := B u {x} = 
B Y u { x  '} is the orbi t  (X~, a . . . . .  ~) of Sa. Here,  ( S t ) ~ = E '  fixes all 8 "-1 points in 
(o~, X 1 , . . . ,  X1), and G z = PSL(2,7) or PGL(2,7) has two non-commuting involutions. 
Since e ~ $1, it follows that  (e, eC) z = PSL(2,7). Moreover,  e commutes with all o f  its 
conjugates in Gx: each such conjugate lies in the unique Sylow 7-group of (Si)~ for some 
i. Thus,  aU the tests in Step 9 produce correct answers when there is no earns. 

On the other hand,  assume that there is an earns A and yet all tests are passed. Since 
A = C a ( e ) x [ a ,  el ,  we have l[a, e]l--8. Since [(G~,B)~I=21 or 42, (e) '~E and hence 
(e)-~ G~,.m from which it follows that G~.n normalizes [A, el. Then the m subgroups 
[A, e a ] are permuted by Gx, and hence generate a G~-invariant subgroup of  A. In view 
of  the primitivity o f  G it follows that A is generated by these m groups [A, e a ] of  order  
8, and hence is their direct product  (since [A[ = 8~) .  Moreover,  since the elements e a, 
d e ~t, all commute,  each subgroup [A, e a ] ~ [A, e] lies in Ca(e).  If  we write A additively 
and ident i fy  X with A and x with 0, it follows that  L.J{[A, ea]ld ~ Zx}-{0} is the unique 
Go-orbit of  length 7m, and then we may assume that B = [A, e] -{0}. Since/(G~.~)~I = 21 
or 42, Gg  = [A, e]B(G,,,n) B is a solvable subgroup of  AGL(3,2). In fact, all involutions 
in (e, e l )  " ~ 1  lie in [A, e] "~c~r and hence commute: the last test in Step 9 cannot have 
been passed. This is the desired contradiction. 

5. Composition Series 

The final refinement of this approach actually produces subgroups of  G. This t ime we 
will have to obtain an earns using Neumann (1987). 

C O M P S E R  
Input: G--- < S, = Sym(X) ,  n - 1 0  6. 

Output:  A composit ion series for G. 

1. Reduce  to the case G primitive, G = G ' # I ,  and ]Glen!~2,  as in Steps 1-3 of 
COMPFY.  

2. Use E R N I E  (Neumann,  1987) to test whether or not G has an earns A. If it does 
then find G~, and output  a composition series for A together with the groups A H  for  H 
in a recursively found composition series for Gx. 

W L O G  G has no  earns. 
3. Find [G I and Gx. 
4. I f  IGI--n  2 then find a set ~b of n elements such that X = x * ;  then G =  GJ~.  Find 

all conjugacy classes of  involutions in G of size <- n/4. If C is such a class of  smallest 
size then output  the series 1, (C), G. 

5. W L O G  IGI ~ n 2. 
I f  the only way to write n as a power n = n*"  is with m < 5 or n* < 5 then output  the 

series 1, G. 
W L O G  n = n *m for some n* --- 5 and m --- 5. 
6. Compute  IG[. If this cannot be written in the form IG[ = tu. y "  where y is as in 

Table 1, m and u are as in Table 2, and either t = 2  ~ with i<-rn, or t = 2  ~ with i ~ 2 m  
when y =360,  or t = 3  ~ with i<-m when y = 5 0 4 ,  then output the series 1, G (since G is 
simple). 

W t O O  I G I  can be written in the form = tu. y" as  above. (At this point we know 
that G is not  simple; cf. COMPFY. The problem is to use this fact.) 
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7. Find a shortest orbit Y = x  '~ of Gx on X - { x } .  (This will have length m ( n * - l )  
wi th  the following exceptions: length 3m or 6m for n* = 10, y = 60 or n* = 15, y = 360, 
respectively.) 

Find a non-trivial block system E for G~ such that  G~ is primitive, and let B e E. 
(He re  [B I = IYI/m.) 

Find Gx,(r.-o) and (G~,(y_~))'. (These are small groups.) 
L e t f  ~ G be such that  x y = x' ,  find h ~ Gx, with x ~ B yh, and replacefbyfh.  (Then x E BY.) 
Find S:= ((G~.~y_m)', (Gx,~y_~))'Y). (This is a simple group of  order y.) 
Find a set A of  m elements of G~ such that E = B a, and find {$1, �9 �9 �9 S,~} := {S a I d ~ A}. 
Let  N := S~ x .  �9 �9 • Sm (this is the socle of G). 
Find the kernel K o f  the action of G on {$1 . . . .  , Sin}. Firtd a composition series for 

G / K .  (Here G / K  is a simple group unless m = 8 and O / K  = AGL(3,2), in which case 
a composit ion series is easily found.) 

Output  the groups S~ x .  �9 �9 x S~ for i = 0 , . . . ,  m - 1; together with groups which, modulo  
N, are a G~ K-composi t ion  series for the abelian group K~ N of  order t; as well as groups 
which, modulo K, are a composit ion series for G/K. 

8. End. 

THEOREM 3. The output of COMPSER is correct. 

PROOF. Everything is similar to Theorem 2 except for Steps 4 and 7- -bu t  of course this 
t ime we have used ERNIE.  

Cases ( I Ib ) - ( I Id )  are almost the same as in Theorem 1, except for ( I Id)  with k =  1. 
He re  G=S1xS2 .  This is handled in Step 4. For, Io  l=n2--I l so Then 
computing conjugacy classes of involutions can be accomplished by brute force since I GI 
is relatively small. The centralizer in $1 of one of its involutions has order -->4, so we 
only  need to consider conjugacy classes of  size <-Is, l~4. The smallest size of  a conjugacy 
class evidently can only arise for a class inside S~ or $2. (N.B. Alternatively, in the 
situation of Step 4 one could either use Z(Co(Gxx,)) for distinct x, x '  just as in N e u m a n n  
(1987), or the appropriate  part  of  Luks (1987).) 

When we get to Step 7 we know (of. Theorem 2) that we can identify X with X~' as 
in Case (IIa).  A simple group of  order y acting on a set of size n* is 2-transitive except 
in the case of A5 in degree 10 and A 6 in degree 15 (Table 1). In  all cases there is a unique 
shortest  orbit Y of G:, on X - { x } :  if x = ( a ,  a , . . . , a ) ~ X ~  then Y = ( W , a , . . . , a ) w  
' ' �9 u ( a , . . , ,  a, W), where W is the shortest orbit of  (Sl)x on X~-{a} .  Then B can be 
t aken  to be (W, a . . . . .  a) .  Moreover, Gx acts 2-transitively on the "coordinates",  so that  
B ~ is the unique non-trivial block system on Y on which G~ acts primitively. Note  that 
B y is a non-trivial block of the unique shortest orbit yS of  Cry, and that x ~ yr .  Thus, 
we can modify f (using h) so as to have x ~ B I. Now it is easy to check that ((Gx, t v -m) ' ,  
(Ox.(Y_B))':) ~. S l in every case appearing in Table 1 (note that Gx.(v-B) can contain outer 
automorphisms of Sa). The rn blocks in N correspond to the m direct factors of  the socle 
of  G. The remainder of  Step 7 is now clear. 

6. Concluding Remarks 

When n < 5 5 some of  our methods do not differ significantly from those of N e u m a n n  
(1987). However, for various values of  n he assumes that elements of a suitable pr ime 
order  p, and Sylow p-subgroups,  can be found efficiently; and in some situations he 
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requires finding the centralizer of a suitable p-element. While there are polynomial-time 
algorithms for some such problems (Kantor, 1985b), there have yet to be algorithms for 
solving them that are provably efficient in practice in all instances. In fact, finding 
centralizers is probably not, in general, possible in polynomial time (see Kantor (1988) 
for remarks concerning this observation of Luks). Our algorithms are designed to avoid 
these problems in the hope that this will increase efficiency. 

While Luks' composition series algorithm (Luks, 1987) is polynomial-time, it requires 
dealing with sets of size O(n2). As already remarked, this is prohibitive for n somewhat 
large. 

It should also be noted that we have avoided using too many relatively expensive 
normal closures--the obvious exception being the use of G'. 

Finally, we remark that the algorithms presented here are readily extended to somewhat 
larger values of n by similar but more detailed arguments. We have chosen 106 as an 
arbitrary but reasonable-looking bound. 

IMPLEMENTATION. Algorithms SIMPLY and COMPFY have been implemented in Cayley 
Version 3.7. According to J. J. Cannon, in one sample run the composition factors of 
PSL(2,7) wreath As, where n = 85 = 32768, were obtained in 11 100 seconds, 10 250 of 
which were consumed finding IO[, Gx and G' in Step 3 of COMPFY. 

This  research was supported in part by N S F  Grant  D M S  87-01794 and N S A  Grant  M D A  904-88-H- 
2040. 
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