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ABSTRACT 

This paper, written in honor of Ted Ostrom, summarizes recent work on affine 

translation planes arising from spreads of symplectic and orthogonal geom­

etries. 

This summary of parts of [4,5] also includes some details not explicit­

ly in those papers. We will first describe properties of a number of trans­

lation planes, then explain how they all arise, and conclude with open 

problems. 

I. SOME TRANSLATION PLANES 

All the translation planes will have order q2n-1 > 8, where q is even and 

n > 2. In many cases, the full collineation groups are known-and "easily" 

computed-a situKtion relatively unusual in the literature on translation 

planes. 

(1) Flag-transitive planes. There are at least q/(2 log2 q) flag-transitive 
. 2n-1 

planes of order q > 8, for each n ~ 2 (their spreads will be given below). 
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In each case, the full translation complement has order (q - 1)(q2n-1 + 1)· 

(2n - 1)2" where £ is a divisor of log2q ; it is a subgroup of GF(q 4n-2)'~ 
>4 Aut GF(q4n-2), and has a cyclic subgroup of order q2n-1 + 1 which is tran­

sitive on the line at infinity. There are exactly q - 1 homologies with 

center 0. 
4n-2 Let F = GF(q ) and K = GF(q). 2n-1 Let T:GF(q ) ~ K be the trace 

2 
map, and let W be the kernel of T. Fix r E GF(q ) - K. Then 

{ew + erKle E F, lei Iq2n-1 + 1} is one of the required spreads for each r. 

(2) One large cycle. Let q > 2. There are at least (q - 2)/(2 log2q) planes 

which will be called large-cycle planes (quasifields will be given below). 
2n-1 // 

These are planes of order q having a cyclic collineation group of order 
2n-1 q - 1 fixing ° and two points x and y at infinity, while transitively 

permuting the points of xy - {x,y}, Ox - {O,x} and Oy - {O,y}. The full 
2n-1 

translation complement fixes x and y, has order (q - 1)(2n - 1)£ for a 

divisor £ for log2q , and is a subgroup of GF(q2n-1)* ~ Aut GF(q2n-1). 

There are exactly q - 1 homologies with center 0. 
. 2n-1 

Let F = GF(q ) .and K = GF(q). Let T:F --> K be the trace map. Fix 

k E K - GF(2). For x,y E F, define 

2 
x*y = x y + kxT(xy). 

Let x -..;> x denote the inverse of x -..;> (x*1) / (k + 1) and y -..;> y' the 

inverse of y -..;> (1*y) /k + 1). Finally, let 

xoy = (~*y')/(k + 1). 

Then (F,o) is one of the desired quasifields. 

(3) SL(2,q) planes. 
3 There are planes of order q where log2q is odd and 

not 1. The full translation complement is (GL(2,q) x Zq+1) ~ Aut GF(q). 

The group Zq+1 fixes pointwise a desarguesian subplane of order q, and 

fL(2,q) is induced on this subplane. (Note that AG(2,q3) has no such col­

lineation of order q + 1 if q > 8.) 

The group SL(2,q) has orbit lengths q + 1 and q3 - q at infinity. 

There is a partition of the line at infinity into q2 - q + 1 sets of size 

q + 1, each fixed pointwise by a collineation of order q + 1 whose fixed 

subplane is desarguesian of order q. 

The underlying vector space has dimension 6 over K = GF(q). The group 

SL(2,q) splits it into the sum of invariant 2- and 4-spaces. More precisely, 

set F = GF(q2), and consider the K-space F3. Let w3 = 1 I w. If a E F 
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set a = aq • Then the spread consists of the q + 1 subspaces 

{(aa2,ya,ycr)la E K, Y E F} 

3 as a ranges over F*, and the q - q subspaces 

2 - 2 - --
{(ya +yS ,awa + yS, awS + ya) la E K, Y E F} 

as (~ID ranges over SU(2,q) ~ SL(2,q). 
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(4) An 5L(2,8) plane. 
3 This is a plane of order 8 The full translation 

* complement is GF(8) (Z3 x prL(2,8». The Z3 fixes pointwise a desarguesian 

subplane of order 8, and fL(2,8) is induced on that subplane. The group 
3 

SL(2,8) has orbit lengths 8+1 and 8 - 8 at infinity. 

This plane is neigher desarguesian nor the one of order 83 appearing 

in (3). 

The only descriptions I have for the spread are worthless from a com­

putational point of view: it seems impossible to use them in order to 
3 

attempt to generalize this plane to others of order q. On the other hand, 

it seems likely that such a generalization exists. 

(5) (q + 1) 2 planes. 3 These are planes of order q , where logZq is odd and 

not 1. Their full translation complements have the form 

* G = (GF(q) x Zq+I x Zq+I) ~ Aut GF(q). There are three subgroups Zq+I 

fixing pointwise Desarguesian subplanes of order q. Here, G acts irreduc­

ibly but imprimitively on the underlying 6-dimensional vector space. I 

have no explicit descriptions for the required spreads or quasifields. 

2 
(6) q + q + l-planes. 

- 2 
These are planes of qrder q3 > 8 admitting a cyclic 

group of order q ± q + 1. 
2 3 

(q - I)2(q ± q + I)log2q • 

The full collineation group has order 
2 The q + q + I-plane has one orbit at infinity 

2 
of length 2 and all others of lengths divisible by q + q + 1. The 

2 
q - q + I-plane has all its orbits at infinity of lengths divisible by 

2 
q - q + 1. 

Set F = GF(q3) and K 

x,y E F, set 

x*y 
2 2 

q+q )yq+q T(xy 

GF(q). Let T:F --'» K be the trace map. If 

(Note that (x*y)*y-I 

y --'» 1 *y, and set 

x if Y '" 0.) Let y --'» y' denote the inverse of 
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xoy = x*y'. 

2 Then (F,o) is a quasifield for the q + q + 1-plane. 

In order to construct the q2 - q + 1-plane, start with F = GF(q6), 
2 q3 

K == GF(q ), .T:F ~ K, x*y and xoy as above. Set x = x Then 

(x,y) ~ (y,~) is a Baer involution whose fixed point subplane is the 

desired q2 - q + 1-plane. These fixed points are the points (x,~), x E F, 

while the fixed lines through 0 are all the lines y = x*m with mm = 1. 

(7) Semifield planes. 2n-1 There is a semifield of order q (to be con-

structed below) for each n > 2 and even q, which is not a field if 
2n-1 -

q > 8. The full translation complement of the .corresponding plane has 
order (q _ 1) 2n-11 2n-1 q og2q • 

Let F GF(q2n-I) and K GF(q). Let T:F ~ K be the trace map. 

For x,y E F, define 

2 x*y = x y + xT(y) + T(xy). 

Let x ~ x be the inverse of x -> x*I, and set 

xoy = x*y. 

Then (F,o) is the desired semifield. It is noncommutative. Its left 

nucleus is GF(2) and its right nucleus is K. 

(8) q(q + I)-planes. These are planes of order q3 where i = log2q is odd 

and not 1. Their full translation complements have order (q - l)q(q + 1)i. 

There is a normal cyclic subgroup of or.der q + 1 whose fixed point subplane 

is AG(2,q). There is a normal subgroup of order q consisting of elations 

with axis in the aforementioned subplane. 

(9) Planes with very small groups. If 2n - 1 is composite, there is a plane 

of order 22n-1 whose translation complement has order 1. Such a plane can 

best be described as "dull." 

(1'), (2'), (5'), (6'). There are flag-transitive, large-
2 2 

cycle, (q + 1) and q ± q + I-planes other than those whose quasifields 

or spreads appeared in (1), (2), and (6). These planes have full trans­

lation complements acting essentially the same as for the aforementioned 

planes, except perhaps for fewer field automorphism occurring. The corre­

sponding spreads or quasifields are extremely messy, even though it is not 

difficult to prove that these planes exist. 
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II. SYMPLECTIC AND ORTHOGONAL SPREADS 

Let V' be a 2m-dimensional vector space over GF(q) , equipped with a sym­

plectic form (u,v). A symplectic spread of V'is a spread L' each of whose 
-'-

members is a totally singular m-space. (Thus, if MEL then M = M.) 

Everyone of the planes in part I arises from a symplectic spread in a 

4n-2-dimensional vector space. The only translation planes of concern to 

us in this paper arise from symplectic spreads. 

If L' is a symplectic spread, let A(L') denote the corresponding affine 

plane. The first basic result concerning symplectic spreads is the follow­

ing theorem. 

Isomorphism Theorem. Let Li be a symplectic spread of an Sp(2m,q) space 

Vi(i = 1,2), where q is even. Let g be an isomorphism from A(L1) to A(L2). 

Then there is a perspectivity t of A(L2) with axis the line at infinity, and 

a semilinear transformation s:V1 ~ V2 , such that 

(i) 

(ii) 

(iii) 

and 
T 

= a(u,v)1 for some a E GF(q) , 

some T E Aut GF(q), and all u,v E VI' 

Proof. We may assume that og = O. Then g is a semilinear transfor­

mation from VI to V2• 

For each subspace W of VI' set wS = W-'-. Then S is a polarity of 

PG(2m - l,q). Define ¢ for V2 in a similar manner. 

the identity on L1, while ¢ induces the identity on 

polarity of PG(2m-l,q) inducing the identity on L2 • 

Note that S induces 

L2 • Also, sg is a 

Then ¢sg is a collinea-

tion of PG(2m - l,q) inducing the identity on L2 , and hence induces a 

homology of A(b2). In particular, ¢sg has odd order, and hence (Sg)h = ¢ 

for some homology h E <¢sg> of A(L2) with center O. Also, Lrh L~ L2 • 

Consequently, s = gh behaves as required. 

The Isomorphism Theorem asserts that affine plane isomorphisms essen­

tially arise from transformations preserving the underlying symplectic geome­

tries. In particular, the translation complement of A(L') can be factored 

as the product_of its homologies (with center 0) and its intersection with 

the symplectic group. 

While the above theorem tells us when two planes of a certain sort are 

isomorphic, it gives us no information concerning the construction of planes. 

For this we need to consider orthogonal geometries. 
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Let V be & 4n-dimension&1 vector sp&ce over GF(q), equipped with & 

qu&dr&tic form Q(v) &nd &ssoci&ted nonsingul&r biline&r form (u,v). Thus, 

2 
Q(&v) -= & Q(v) 

Q(u + v) Q(u) + Q(v) + (u,v) 

for &11 u,v E V &nd & E GF(q). We &ssume th&t totally singular 2n-sp&ces 

exist: 2n-sp&ces W such th&t Q(W) -= D. This me&ns th&t Q is equiv&lent to 
2n 4 

the form E x2 ._1x2 . defined on GF(q) n. There &re ex&ctly 
i-=l ~ ~ 

(q2n+1 + 1)(q2n _ l)/(q _ 1) singul&r points. An orthogonal spread of V is 

& f&mily E of q2n-1 + 1 tot&lly singul&r 2n-sp&ces which p&rtitions the 

singul&r points. Such an orthogonal spre&d is not the same &s the usual 

kind of spre&d: it is only & maxim&l partial spre&d in the l&nguage of 

tr&nslation pl&nes. 

Note th&t we h&ve &ssumed th&t dim V = D(mod 4). If dim V = 2(mod 4) 

thenorthogon&l spre&ds of tot&lly singul&r ~ dim V-sp.&ces do not exist. 

Now &ssume th&t q is even. Take &ny nonsingul&r point b of V. Then 

b~ is &n orthogon&l sp&ce of dimension 4n - 1, &nd b E b~. (This is where 

ch&r&cteristic 2 is needed.) The sp&ce b~/b is no longer &n orthogon&l 

sp&ce, but it does inherit the symplectic form (u,v) in the n&tur&l m&nner. 

Moreover, the n&tur&l projection b~ ~ b~/b induces a bijection between 

the tot&lly singul&r subsp&ces of b~ and the tot&lly isotropic subsp&ces 

of b~/b. 

Let E be &n orthogon&l spre&d of V. 

&nd the f&mily {b~ n wJw E E} p&rtitions 

jecting into b~/b, we obt&in & f&mily of 

2n - l-sp&ces p&rtitioning the points of 

If WEE then dim b~ n W -= 2n - 1, 

the singul&r points of b~. Pro-
2n-1 q + 1 tot&lly isotropic 

b~/b. Thus, we obt&in a spre&d 

(in the usu&l sense), c&lled the slice E(b) of E. 

E&ch nonsingul&r point b of V produces a slice E(b), &nd hence & tr&ns­

l&tion pl&ne A(E(b». In order to comp&re these pl&nes, we need to see how 

to go from & pl&ne to &n orthogon&l spre&d. This is the content of the next 

result (where "equivalence" refers to the existence of & suit&ble type of 

orthogon&l or symplectic tr&nsform&tion). 

Extension Theorem. Let E' be & spre&d of & 4n - 2-dimension&1 symplectic 

sp&ce over GF(q) , where q is even. Then there is & unique (up to equiv&l­

ence) orthogon&l spre&d E* in & 4n-dimension&1 sp&ce such th&t E' is equiv&l­

ent to & slice of E*. 
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Proof (Dillon [2], Dye [3]). Let V and b be as before. We may 

assume that L' is a spread of b~/b. Pulling back to b~, we obtain a family 

L" of totally singular 2n-l-spaces of b~. 

There are two classes of totally singular 2n-spaces of V, two totally 

singular 2n-spaces belonging to the same class if and only if their inter­

section has even dimension. Pick one of these classes. Each element W of 

L" belongs to a unique member W* of this class. If w
1

,W
2 

E L" then 

dim W! n W~ is even and at most 1. Thus, L* = {W*IW E L'} is a family of 
2n-l 

q + 1 totally singular 2n-spaces, no two having a common point. The 
2n-l 2n 

union of L* has (q + 1)(q - 1)/(q - 1) points, so L* is an orthogonal 

spread. 

Uniqueness follows from the fact that the orthogonal transvection with 
-'-

axis b interchanges the two classes of totally singular 2n-spaces. 

The process of passing from L' to L* will be called spreading. 

Given a symplectic spread, we can spread it and then slice the result, 

thereby obtaining many new symplectic spreads. Any equivalence between 

symplectic spreads induces an equivalence between their spread spreads (by the 

Extension Theorem). In particular, inequivalent orthogonal spreads never 

produce isomorphic translation planes (by the Isomorphism Theorem). More­

over, if L is an orthogonal spread of V and G(L) denotes the group of pro­

jective semilinear orthogonal transformations preserving L, then A(L(b
1
)) 

and A(L(b
2
)) are non-isomorphic whenever b 1 and b2 are in different G(L)­

orbits. Similarly, G(L)b is the group induced by Aut A(L(b)) on the line 

at infinity. This explains the introductory remark concerning the ease of 

determining collineation groups. 

Additional sympl~ctic and orthogonal spreads can be obtained as follows. 
e Let V' be a 2m-dimensional symplectic space over GF(q ), where e > 1, and 

let L' be a symplectic spread of V'. Let (u,v) be the form on V', and let 

T:GF(qe) ~ GF(q) be the trace map. Then T(u,v) turns V' into a 2me­

dimensional symplectic space over GF(q). Since totally isotropic subspaces 

remain totally isotropic, we obtain a symplectic spread of_ the GF(q)-space 

V'. Of course, the resulting spread defines the same translation pla~e 

A(L') as before. However, if q is even and me is odd we can spread this 

GF(q) spread in order to obtain a spread in an orthogonal 2me + 2-space over 

GF(q). This procedure is called expanding the spread L' into 2me + 2 

dimensions. 

We now have enough machinery in order to begin discussing the examples 

in part I. 

."). 
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The most obvious symplectic spreads are the desarguesian ones. If V' 
2n-I 

is a 2-dimensional symplectic space over GF(q ), where q is even and 

n ~ 3, we can form the corresponding spread I' of I-spaces. Now expand this 

into an orthogonal spread I of a 4n-dimensional GF(q) space V. This is the 

spread first constructed by Dillon [2] and ~ye [3], and is called a 

desarguesian spread in [4,5]. Its group G(I) was determined by Dye [3] and 
3 2n-I 

Cohen and Wilbrink [1]. Namely, G(I) is A9 if q = 8 and prL(2,q ) 

otherwise. 

EXAMPLES (1), (2), (7). These constitute all the nondesarguesian slices of 

a desarguesian spread I. Since the orbits of G(I) on nonsingular points are 

known (Dye [3]), the Isomorphism and Extension Theorems permit us to dis­

tinguish between planes and to determine (most of) their collineation groups. 

Namely, G(I)b is the group induced on the line at infinity by the full trans­

lation complement. This only leaves homologies to be determined, and this 

is done by brute force in [5]. 

Of course, the quasifields or spreads in (1), (2), and (7) can only be 

found after a coordinate description of L has been obtained. We refer the 

reader to [5] for such a description. 

EXAMPLES (3), (5), (8). These arise from an 8-dimensional orthogonal spread 

I, which is closely related to the unitary group GU(3,q). Thus, in some 
/ 2 

sense the planes in (3) and (5) stem from PG(2,q ). 

Let F = GF(q2) and K = GF(q). If a E F write a = aq • Let V be the 

8-dimensional K-space consisting of all 3 x3 matrices M = (~ij) over F 

which have trace 0 and satisfy Mt = M, where M = (~ .. ). Set 
lJ 

Q(M) = L (~ii~J'J' + ~iJ'~J'i)· Then Q is a quadratic form, and 
i<j 

V has totally 

singular 4-spaces if and only if log2q is odd (or, equivalently, if and only 
- 3 

if w I w when w = 1 I w). One such 4-space W consists of all the matrices 

with y E F and a,b E K. 
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If A E GF(3,q) then A-I = At, and hence (A-1MA)t = ~IMA. Thus, 

GU(3,q) acts on V, inducing PGU(3,q) there. In fact rU(3,q) acts, and 

preserves Q (semilinearly). 

Note that transvections (elations) in GU(3,q) have the form I + X with 

I the identity matrix and X E V, where X2 = O. A full group of q trans-

vections has the form I + KX with X f o. One such X is 
1 
1 
o 

~] , and the o . 

normalizer of I + KX in rU(3,q) stablizes the above 4-space W. The images 

of Wunder GU(3,q) form the desired spread ~. 

If q = 2 then ~ is equivalent to the desarguesian spread. If q > 2 

then G(~) ~ PGU(3,q), and hence ~ is nondesarguesian. In particular, none 

of its slices ~(b) can be desarguesian or among examples (1), (2), or (7). 

Moreover, G(~)b is the group induced at infinity by the full translation 

complement of A(~(b». 

When b is spanned by [~1 001 000] , A(~(b» is just example (3). The 

group SL(2,q) x Zq+l consists of all matrices [ BO ~) with B~ I, 

det B 1 and 88 = 1. 

When b is spanned by [
1 0 
o a with a E K - GF(2), A(~(b» is example 
o 0 

(5). Note that this matrix is diagonalizable; the Zq+l x Zq+l consists of 

diagonal matrices. 

[ O~ ~1 O~] When b is spanned by , A(~(b» is example (8). 

As noted in [4, (7.6)], a suitably chosen slice of ~ produces a 
2 

q - q + I-plane. 

Regardless of which slice ~(b) is used, the full translation comple­

ment acts at infinity as G(~)b acts on the unital associated with the uni­

tary group. Thus, for example, the partition into q2 - q + 1 sets of size 

q + 1 appearing in example (3) arises from the partition of the unital into 

the lines fixed by a homology. 
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REMARK. The proof given in [4] that L is a spread was valid in odd char­

acteristic as well. In our situation, a simpler proof is as follows. 

[~ 
1 

g] If X 1 then {M E VIMX XM = o} consists of all matrices 
0 

[~ 
a t]· that M2 M = a Note yyx, so that M uniquely determines X. Also 
y 

Q(M) = O. Thus, we have q3 + 1 totally singular 3-spaces, any two meeting 

trivally. Also, W is a totally singular 4-space containing the above 3-

space. Since any two images of Wunder GU(3,q) meet in at most a I-space, 

it follows that L is a spread. 

EXAMPLE (4). The relevant orthogonal spread L was discovered by Dye [3]. 

His construction shows that G(L) ~ Ag x Z3 (in fact, equality holds). Thus, 

L cannot be one of the spreads already encountered. The Z3 contains a field 

automorphism, and hence fixes pointwise an orthogonal space over GF(2) upon 

which A9 acts. If b is chosen to be fixed by the Z3 then G(L)b = 

PfL(2,8) x Z3. 

However, I do not know of any simple description of L. Dye used 

triality. I can describe L in a complicated manner which does not take 

proper advantage of the group PSL(2,8) and which seems relatively useless 

if one wants to study the above slice. No other slice of L seems interest­

ing. 

EXAMPLE (6). There is another spread L of an orthogonal 8-space over GF(q) 

such that G(L) = PfL(2,q3) if q > 2. Unlike the desarguesian case, this 

group acts irreducibly on the 8-space. Moreover, there are just two orbits 

of nonsingular points, and the resulting slices produce the planes in 

example (6). 

Once again G(L) permits us to distinguish these planes from the others 

we have seen. 

EXAMPLES (1'), (2'), (5'), (6'). These are obtained by expanding and suit­

ably slicing spreads already arising in (1), (2), (5), or (6). 

EXAMPLE (9). Expand and then suitably slice example (1). 
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3. OPEN PROBLEMS 

(i) Generalize example (4) to SL(2,q) planes whenever log2q is odd. 

(ii) Find all translation planes of order q3 admitting a collineation 
3 group SL(2,q) having orbits of lengths q + 1 and q - q at 

infinity. 
(iii) Prove directly that the 4-spaces listed in example (3) form a 

spread. 
(iv) Find more examples of symplectic spreads. Find new ways of 

modifying one example in order to obtain others. 
(v) Study the expansion process further. Symplectic spreads can be 

expanded and sliced repeatedly. The resulting planes should tend 
to be new, while having progressively smaller groups. 

In particular, the flag-transitive examples (1) can be 
expanded over and over while continuing to produce flag-transitive 

planes. 
2 

Similar remarks apply to large-cycle, (q + 
2 

1) and 

q ± q + I-planes. Prove that large numbers of new planes arise 
in this manner. 

(vi) 

(vii) 

(viii) 
(ix) 
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