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1. Introduction 

The purpose of this paper is to obtain exponential lower bounds on the 
numbers of non-isomorphic linear codes or symmetric designs of certain types. 
This will be accomplished using a famil iar--even mundane- -ob jec t  related to the 
desarguesian affine plane AG(2,  q"). Namely, let V be a 2-dimensional vector 
space over GF(q") ,  and let A be its set of l-spaces. We will use subsets £ of A to 
define a code C:~ and, when q = 2, a difference set U~ and a symmetric design D~. 
As in [5], we will then use Sylow's Theorem in order to deal with isomorphisn,, 

questions. 

2. Constructions 

In order to construct C~, regard V as a 2n-dimensional vector space over 
GF(q),  fix a basis, and let u .v  denote the usua! dot product with respect to that 
basis. Let Uz denote the union of the members of £,  0~o that lull-- 1 ÷1_~[ (q" - 1). 
Let (ul) . . . . .  (uN) be all the l-spaces contained in Ur. Set 

C:~ ={ (x 'u l  . . . . .  x 'uN)~  GF(q)  N Ix  ~ V}. 

Then Cz is a projective two-weight code of length N. We will assume that 
2 < l X [ < q " - l ,  n > 2 ,  and 61"5/:2 6. (Note that X c - A  where I A [ = q " + l . )  Then 
dim C:~ = 2n and the weight distribution of C:~ is completely determined by q, n 
and t. We refer to [1] for a discussion of this simple construction. 

Theorem 1. Let 2 < t < q r - 1 .  Then there are at least 

+ l ) / 2 ( q "  + l)q2"(q " -  1) 2 
q" t  
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pairwise inequivalent projective linear [t(q" - 1)/(q - 1), 2n]  two-weight codes over 
GF(q) o[ the form Cz~ with ~ c A and I-~1 = t. 

For bounded 1½q"-tl and large n, the number  of  codes is asymptotically 

at least C2q"/q ~"~2 for some constant C. 
Next, let q = 2  and I , ~ l = 2 " - t + l .  Then  U~ is a difference set in the additive 

group V (Dillon [3]).. Its parameters are v = 22", k = 2 ~'-~ + 2  "-~, X = 22" -2+2  "-x. 

Theorem 2. There are at least 

,,+ /2 1\ I 
2 " - '  ) /  2" + 1 )2" (2" -  1)2n 

pairwise mequivalent (2"". 2 2'~- t + 2 "-~, 2 z ' - z  + 2"-~) difference sets in V of the [orm 
Uz with Z c A. 

Note that each U~ determines a symmetric (v, k, A)-design. While these designs 
arc undoubtedly not isomorphic when the corresponding U~ are inequiv~lent, this 
seems difficult to prove. 

However,  we have been able to deal w]th other ~ymmetric designs having the 
same parameters. Let q = 2 and l-Y[ = 2 "-~ + 1 once again. Consider all symmetric 
differences of U:~ with the hyperplanes of AG(2n,  2). Each has size /< = IEr~l or 
v - k ;  and those of size k, together with U,., form a symmetric cesign Dz 
(compare [3, 4, 6]). 

Theorem 3. 'There are at least 

2" + 1\  / ,, 
2" ' ) / ( 2  + 1 )2" (2" -  l)2n 

pairwise non-isomorphtc (2 z", 2 z"- i + 2.-~, 2z.-2 + 2,, -1) designs D~ w~th ~ c .4. 

Notc that the design D:~ and the difference set design produced by l.l~ treed not 
be isomorphic. It seems likely that they are isomorphic onl~ if Us is the set of 
zeros of a quadratic form (cf. [4]). 

I am indebted to J.F. Dillon for posin[.; the question that led to Theorem 2. 

3. Syiow subgroul~ 

Let q, n, V and A be as before. Let p be the prime dividir~g q. There is a prime 
power r ~ (where r is prime) such that r e I q " - I  but r e X p ' - I  for 0 < p ' - 1 <  
q " - 1  (Zsigmondy [7]). Let R be a Sylow r-subgroup of the group of maps 
(x, y)-- ,  (cCx, t~y) belonging to FL(2, q"). Then R sends e~tch member  of A to 
itse!f. 
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lt~ml~sit~n. Let ,S, ,~' c d .  Assume that R is a Sylow subgroup of the st,'lbilizer ol 
in 1"7_.(2, q"). l f  g is in the afline group AFL(2n, q) of V, and if ~ U~) ~ =- U~,, then 

there is an element h ~ FL(2n, q) such that ( U~ ) gh = U~, and gh~ FL(2, c,J") (so that 
A ~h = d). 

lt~r~i. First, note that the normalizer of R in AFL(2n, q) is just FL(2, q~). For, R 
fixes exactly one vector, name!y 0; and, in view of our choice of r, d is precisely 
the set of proper R-invariant subspaces of V. Thus, the normalizer fixes 0 and 
sends A to itself. 

Set H = {h e AFL(2n, q) I (U~) h = U~}, and define H '  similarly. Clearly, R 
H N t t ' .  

We claim that R is a Sylow r-subgroup of H. For otherwise, there is an 
r-subgroup R~ of H with Rt I;>R. Then Rt <~FL(2, q"), so that R~ preserves both 
A and U~. But then R~ also preserves Z, contrary to the hypothesis of the 
proposition. 

Now R g = g-~Rg is a Sylow r-subgroup of H ~ = H' .  By Sylow's Theorem, 
( R ~ ) ~ = R  for some h ~ H ' .  Then gh~FL(2,  q") and (U~) gh =(U~,)"= U~,, as 
required. 

4. Theorems 1, 2 and 3 

ll~aot o! Tl~eorem 1. Let ,~, ,~' c A with IXI = !X'I = t. If U~ and U~, are inequival- 
ent under GL(2n, q), then C~ and C~, are inequivalent (see, e.g., [1, §2B]). By the 
proposition, we ol~!y need to find a lower bound for the number of FL(2, q")- 
orbits of subsets X of size t. 

Let X c A  with I,Y[ = t, and assume that some r-subgroup R1 of FL(2, q") 
preserves X, where R~>R.  Then R~ fixes exactly two members of A. Thus, if 
t~0 ,  1, 2 (mod r), then no such R~ can exist In this situation, the proposition 
asserts that the number of inequivalent sets U~ is at least 

( q " +  1 ) / I P F L ( 2  ' q , , ) l = ( q ~ ;  1 ) / ( q ,  + 1 )q , (qn -  1)2 Iogp q,, ' 

where p is the prime dividing q. 
Now consider the cases t ~ e (mod r) with e = 0. 1 or 2. We will estimate the 

number of t-element subsets X of A fixed by a subgroup R~ of PFL(2, q") of 
order r. The number of Rl is (q" + 1)q"/2(2, q -  1), and RI fixes exactly 

(q" + I - 

( t - ~ ) / r  18 

t-sets X, where 8 = 1 if e = 0 or 2, but 8 = 2 if e = l. Thus, we must avoid at most 

,~+ 
{(q 1 - e ) / r ~ . ,  "a- 1)q"/2(2, 1) )o tq q-  
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t-sets ~.~ in order to apply the proposition. Splitting the remaining ones into orbits 
under PFL(2, q"), we obtain at least 

{[q "+l '~  [(q" + l - e ) / r ~ t  ~.(q"-t-1),~"'] / ,  , 
" - - -T  ~ ~ t q  t / - t  (t-e)/r ] 2(-~-~ci-I~ Jl  +l)q"(q"-l)21°gPq" 

different orbits, and hence at least that many mequivalent se~s U~. The preceding 
number is at least as large as the required bound. 

Proof of Theorem 2, Two difference sets Ux and Ux. are (by definition) equival- 
ent if and only if there is an element of AFL(2n, 2) taking the first to the second. 
But ] v l = 2 " - ~ + l ¢ 0 , 1 . 2 ( m o d r ) ;  for example, if 2 ~ I + l = 0 ( m o d r ) ,  then 
2 2"~2 ~ 1 -= 2" (mod r) and he-lce 2 2 ~ 1 (mod r). Thus, the proposition applies as 
above 

Proof of Theorem 3. Consider all the symmetric differences of pair~ ,)~ distinct 
blocks, and the complements of these symmetric differences. These sets of points 
constitute all the hyperplanes of AG(2n.. 2). Thus, any isomorphism between 
designs D,. induces (and is then induced by) a collineation of AG(2u, 2~. Conse- 
quently, we can proceed exactly as before. 

Remark. The case n = 2 can be handled very similarly. Note that all proofs 
applied so long as q+  I was not a power of 2; but that case does not create any 
significant difficulties. 
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