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1. Introduction

The purpose of this paper is to obtain exponential lower bounds on the
numbers of non-isomorphic linear codes or symmetric designs of certain types.
This will be accomplished using a familiar—even mundane—-object related to the
desarguesian affine plane AG(2, q"). Namely, let V be a 2-dimensional vector
space over GF(q™), and let A be its set of 1-spaces. We will use subsets ¥ of 4 to
define a code Cs and, when q =2, a difference set Uy and a symmetric design Ds.
As in [5], we will then use Sylow’s Theorem in order to deal with isomorphism
questions.

2. Constructions

In order to construct Cs, regard V as a 2n-dimensional vector space over
GF(q), fix a basis, and let u-v dencte the usual dot product with respect to that
basis. Let U, denote the union of the members of X, so that |[Uy|=1+|3](g" —1).
Let (uy), ..., {un) be all the 1-spaces contained in Us. Set

Cy={(x-uy, ..., xuy)eGF(@)" | xe V}.

Then C; is a proiective two-weight code of length N. We will assume that
2<|3|<q"—1, n>2, and q"#2° (Note that £ < 4 where |4|=q"+1.) Then
dim Cz =2n and the weight Jistribution of Cs is completely determined by g, n
and t. We refer to [1] for a discussion of this simple construction.

Theorem 1. Let 2<t<q" —1. Then there are at least
"+1
(7" 1) 2t + ngrian <17
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pairwise inequivalent projective linear [t(q" —1)/(q — 1), 2n] two-weight codes cvei
GF(q) of the form Cs with 3< A and |Z|=1.

For bounded |3q"—t] and large n. the number of codes is asymptotically
at least C279"/q*'™? for some constant C.

Next, let g=2 and |3]=2""'+1. Then Us is a difference set in the additive
group V (Dillon [3]). Its parameters are v =27, k =22""142""1 A =224 "1,

Theorem 2. There are at least

(2"+1

an—1

) / (2" + 127 (2" = 1)%n

pairwise inequivalent (22", 2271+ 21 2724 2°°Y) difference sets in V of the form
U, with ¥ < A.

Note that each U; determines a symmetric (v, k, A)~design. While these designs
ar¢ undoubtedly not isomorphic when the corresponding Us are inequivolent, this
seems difficult to prove.

However, we have been able to deal with other symmetric designs having the
same parameters. Let ¢ =2 and |3|=2"""+1 once again. Consider all symmetric
differences of U; with the hyperplanes of AG(Za, 2). Each has size k =|Us] or
v~k; and those of size k, together with Uy, form a symmetric cesign Ds
{compare [3. 4, 6]).

Theorem 3. There are at least

(22"+ ,‘) / 2"+ 122"~ 1)°n

pairwise non-isomorphic (22", 27" '+ 2"1 22242 Y designs Dy with 3 < A.

Note that the design Dy and the difference set design produced by U5 reed not
be isomorphic. It seems likely that they are isomorphic only if Uz is the set of
zeros of a quadratic form (cf. [4].

I am indebted 10 J.F. Dillon for posing the question that led to Theorem 2.

3. Sylow subgroups

Let q. n, V and A be as before. Let p be the prime dividinig q. There is a prime
power r¢ (where r is prime) such that r*|{q"~1 but r* X p'—1 for 0<p'-1<
q" —1 (Zsigmondy [7]). Let R be a Sylow r-subgroup of the group of maps
(x, y)— (e, ay) belonging to I'L(2,q"). Then R sends cach member of A to
itse!f.
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Proposition. Let 3, 3'< A. Assume that R is a Sylow subgroup cf the stabilizer of
32 inTL(2, q"). If g is in the affine group ATL(2n, q) of V, and if Us)* = Us., then
there is an element h e 'L(2n, q) such that (Us)™ = Us. and gheTL(2, ") (so that
A% = A).

Proof. First, note that the normalizer of R in AI'L(2n, q) is just T'L(2, ¢°). For, R
fixes exactly one vector, namely 0; and, in view of our choice of r, A is precisely
the set of proper R-invariant subspaces of V. Thus, the normalizer fixes 0 and
sends A to itself.

Set H={heAlL(2n, q)|(Us)" = U}, and define H’ similarly. Clearly, R <
HNH'.

We claim that R is a Sylow r-subgroup of H. For otherwise, there is an
r-subgroup R, of H with R,>R. Then R, <TL(2, "), so that R, preserves both
A and Us. But then R, also preserves 3, contrary to the hypothesis of the
proposition.

Now R*=g 'Rg is a Sylow r-subgroup of H®=H'. By Sylow’s Theorem,
(R®)" =R for some he H'. Then gheTL(2,q") and (Us)* =(Us)" = Uy, as
required.

4. Theorems 1, 2 and 3

Proof of Theorem 1. Let 3, 3'c A with |3|=13"|=1. If Us and Us. are inequival-
ent under GL(2n, q), then C; and Gy are inequivalent (see, e.g., [1, §2B]). By the
proposition, we on'y need to find a lower bound for the number of I'L(2, g")-
orbits of subsets X of size t.

Let <A with {3|=1t, and assume that some r-subgroup R, of L2, q"
preserves X, where R, >R. Then R, fixes exactly two members of A. Thus, if
t#0, 1,2 (mod r), then no such R, can exist In this situation, the proposition
asserts that the number of inequivalent sets Uy, is at least

<q"z+ 1)/ |PrL(2,q")I‘—‘(q“:r 1)/ (@"+1)q"(q" ~ 1) log, q",

where p is the prime dividing q.

Now consider the cases t==¢ (mod r) with £ =0, 1 or 2. We will estimate the
number of f-element subsets 3 of A fixed by a subgroup R, of PI'L(Z, g") of
order r. The number of R, is (q" +1)q"/2(2, g~ 1), and R, fixes exactly

((q’1 +1- 8)/')8

(t—&)ir
t-sets 3, where 8 =1if e =0 or 2, but § =2 if ¢ = 1. Thus, we must avoid at most
(q"+l—e)/r)
§:-(qg"+1)q"/2(2,q—-1
(O_E)/, (q"+1)q"2(2,q9—-1)
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t-sets 3 in order to apply the proposition. Splitting the remaining ones into orbits
under PI'L(2, q"), we obtain at least

q"+ 1) ((Q" +1- s)/r) 8-(q"+ l)q"} e+ 1va (- 112 oo an
- +1)gq" N _
{( t (t—&)r 22,q-1) }1 (@"+1)q"(q" — 1)’ log,q

different orbits, and hence at least that many inequivalent sets Us. The preceding
number is at least as large as the required bound.

Proof of Theorem 2. Two difference sets Us and Uy are (by definition) equivai-
ent if and only if there is an element of AT'L(2n, 2) taking the first to the second.
But [X]=2"""+1%#0,1.2{(mod r); for example, if 27 '+ 1=0(modr), then
22""2=1=2" (mod r) and hexce 2°=1 (mod r). Thus, the proposition applies as
above

Proof of Theorem 3. Consider all the symmetric differences of pairs »t distinci
blocks, and the complements of these symmetric differences. These sets of points
constitute all the hyperplanes of AG(2n,2). Thus, any isomorphisni between
designs O induces (and is then induced by) a collineation of AG(2+, 2). Conse-
quently, we can proceed exacily as before.

Remark. The case n =2 can be handied very similarly. Note th.t all proofs
applied so long as g+ 1 was not a power of 2; but that case does not create any
significant difficulties,
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