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Let G be an n-dimensional geometric lattice. Suppose that 1 < e, f < n - 1, 
e + f  > n, but e and f are not both n - 1. Then, in general, there are E, FE G 
with dimE=e, dimF=f, EvF=l, and dimEhF=e+f-n-l; 
any exception can be embedded in an n-dimensional modular geometric lattice 
M in such a way that joins and dimensions agree in G and M, as do intersections 
of modular pairs, while each point and line of M is the intersection (in M) of 
the elements of G containing it. 

1. INTRODUCTION 

The following situation has been considered in several recent papers 
[8, 10, 11, 141, although lattices were not explicitly mentioned. A finite 
geometric lattice G was given in which, for each point p, the elements > p 

formed a projective space of dimension d 3 2. Moreover, it was assumed 
that, for each i, all i-spaces had the same number of points. When d 3 3, 
it was deduced that G must be a projective or affine space; when a highly 
transitive automorphism group was available, the same conclusion was 
obtained for d = 2, with one exception: the Witt space W,, associated 
with the Mathieu group M,, [17, 181. A natural extension of this idea was 
used in [I I] and [14] to also characterize the Witt spaces W,, and W,, . 

We will prove similar results, without assuming the finiteness of G. 
Let G be an n-dimensional geometric lattice with n 3 4. If, for each WE G 
of dimension 12 - 4, the elements 3 W of G form a lattice embeddable 
as a large chunk of a 3-dimensional modular geometric lattice, then G 
can be embedded as a large chunk of an n-dimensional modular geometric 
lattice. This embedding is isometric (i.e., join- and dimension-preserving) 
and under suitable conditions provides the unique smallest isometric 
embedding of G into a modular geometric lattice. For more precise, 
technical statements, see Section 4. 
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It was originally hoped that our methods would yield generalizations 
of the Dembowski-Wagner Theorem [7; 6, p. 671 or the main result of [lo]. 
In terms of lattices, these can be stated as follows. Let G be a finite 
geometric lattice of dimension IZ 3 2 in which each II - l-space is not on 
at least two points, and in which all 12 - l-spaces have the same number 
of points and all n - 2-spaces have the same number of points. The 
Dembowski-Wagner Theorem asserts that, if all points are on the same 
number of n - l-spaces, while any two n - l-spaces meet in an n - 2- 
space, then G is a projective space. In [lo] it is shown that G is a projective 
or affine space if n > 4 and any two n - l-spaces meet in 0 or in an 
IZ - 2-space. These suggested that the following might be true: for 
sufficiently large n, an n-dimensional geometric lattice in which any two 
IZ - l-spaces meet in an II - 2-space can be strongly embedded (in the 
sense of Section 4) in an n-dimensional modular geometric lattice. 
Unfortunately, this is false for all n 3 3 when G is allowed to be infinite 
(see Section 5). We conjecture that the above statement is true when G is 
finite, but the proof of this would require entirely different methods from 
ours. All we can prove in this direction is a very special case of this 
(see Section 6) and the result on intersections of e- and f-spaces stated 
above. 

In Section 3, we prove a preliminary embedding lemma which does not 
even require finite dimensionality. The situation is essentially the one 
mentioned in the first paragraph. The main difference is that, because of 
the use of this lemma in Section 4, we could not regard lines or planes 
as sets of points. Once one guesses that there is an embedding into a 
(generalized) projective space, the actual verification turns out to be a 
relatively straightforward application of the classical notion of adjoining 
ideal points and lines (see, e.g., [12]). 

The main results are in Section 4. The complicated definitions given 
there are designed to make induction work. After induction is applied, 
we have to make sure that all the resulting modular lattices can be glued 
together coherently. The result of Section 3 can then be applied. 

One unexpected bonus obtained from the embedding theorem is that, 
as a corollary, we deduce the existence of the well-known 6-dimensional 
projective representation of the Mathieu group n/r,, over GF(3). This is 
found in Section 5. In that section examples are also given of geometric 
lattices not isometrically embeddable into any modular geometric lattice. 
Finally, in Section 6 we characterize some classical lattices in terms of a 
transitivity property of their automorphism groups. 

We remark that the situations we will consider are similar to those of 
[4, pp. 148-1491 and [16]. Embedding problems are not, however, studied 
there. 
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I am indebted to H. P. Young for pointing out that the main result of 
[lo] was actually a theorem on lattices. 

2. PRELIMINARIES 

All lattices will have a 0 and 1. The elements of a lattice will sometimes 
be called its subspaces. We will frequently call the symbols v, A, and <, 
join, intersection, and containment. 

Let G be a geometric lattice (see [2, Chap. IV]). If U E G, all maximal 
chains from 0 to U have the same length dim U + 1, where dim U is the 
dimension of U. We write dim G = dim 1. The elements of dimension 
0, 1, 2 are called points, lines, and planes. Each element # 0 is a join of 
points. If p is a point and p Q U, then dimp v U = dim U + 1. For all 
U,V~G,dimU+dimV>dimUv V+dimUA V;thepair U, Vis 
called a modular pair if equality holds, or, equivalently, if (U v W) A V = 
(U A V) v W whenever W < V. The codimension of U is codim U = 
dim G - dim U - 1. Every element # 1 of G is the intersection of 
elements of codimension 1. 

If WE G, Gw = [0, W] = {X E G / X ,< W} is a geometric lattice of 
dimension dim W, and GW = [W, l] = {X E G / X 2 W} is a geometric 
lattice of dimension codim W. 

If G, and G, are geometric lattices, a join-monomorphism from G1 to G, 
is an injective map F: G, --f G, such that (U v V)w = U” v V’” for all 
U, VEGA. 

The product of two geometric lattices is defined on their product set by 
defining the operations componentwise. 

A generalized projective space consists of a set S of points, together 
with certain distinguished subsets, called lines, such that the following 
axioms hold: 

(PSI) Two distinct points are on a unique line; 

(PS2) Each line has at least two points; and 
(PS3) If a line intersects two sides of a triangle (not at their 

intersection), then it also intersects the third side. 

This is a projective space if 

(PS2’) Each line has at least three points. 

A subspace of a generalized projective space is a subset of S closed 
under joins. The subspaces form a complete atomic complemented 
modular lattice, S being its set of atoms. Conversely, Birkhoff [l] showed 

582alh-3 
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that each modular geometric lattice M is isomorphic to the subspace 
lattice of some generalized projective space. Moreover, each such M is the 
product of a Boolean algebra and a finite number of simple modular 
geometric lattices, each coming from a projective space. The dimension of 
a generalized projective space is defined to be the dimension of the 
corresponding lattice. 

LEMMA. Let G be a geometric lattice of dimension n, and let 
1 < e < f < n - I with e + f 3 n. Assume that every e-space E and 

f-space F of G satisfy 

dimEhF#eff-n-1 if EvF=1. 

Then for any e + f - n - I-space W, Gw is modular. 

Proof. We might as well pass to Gw and so assume that W = 0. Thus, 
e + f - n - 1 = - 1. We now proceed by induction on f. (PSl, 2) are 
obvious. 

Iff = 1, then e = f = 1, n = 2, and any two lines have intersection # 0. 
Thus, (PS3) is clear. 

Let 2 < f < n. Fix an n - l-space H. Take any e-space E 
and f - l-space U with E v U = H. We claim that dim E A U # 
e + (f - 1) - (n - 1) - 1 = --I. For, there is an f-space F with 
CJ-=CFQH.T~~~U=FAH,EVF>H,EVF=~,~~~ 

dimEA U=dimEhF~ H=dimEfrFfe+.f-n-l. 

By induction, GH is a generalized projective space of dimension n - 1 > 2. 
Since His arbitrary, (PS3) is immediate. We must show G contains every 
subspace of the resulting generalized projective space. 

It suffices to show Gfl is modular for each point p. Let E and F be 
any e- and f-spaces with p Q: E, p < F, and (E v p) v F = 1. In Gn, 
dimEvp=eanddimF=f-l,wheree+(f-l)=dimG”.Suppose 
(x v E) A F = x. Then E A F < E A (x v E) A F = E A x = 0, which is 
not the case by hypothesis. Thus, (X v E) A F > x, so Gp inherits our 
hypothesis. Induction now completes the proof. 

3. EMBEDDING LEMMA 

In this section we will consider certain axioms concerning a poset G. 
We will frequently say a is on b when a > b or a < b. The elements of G 
are assumed to be partitioned into four subsets: the points, lines, planes, 
and 3-spaces. If it were not for the application of the results of this section 
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in the next one, we would simply regard the lines, planes, and 3-spaces as 
sets of points. However, we are forced to consider a more general setting. 
Our axioms are as follows. 

(El) For each point p, the poset G” of lines, planes and 3-spaces 
on p is the set of all points, all lines, and some planes (respectively) of a 
generalized projective space of dimension >, 3. 

(E2) Two distinct points are on a unique line; no point is on any 
other point. 

(E3) If two distinct planes are on (at least) two points, they are on 
a 3-space. 

(E4) Each line, plane, and 3-space is on at least one point. 

(E5) No element of G is on all points. 

Obviously, (El) is the crucial axiom. Note that G” need not be finite- 
dimensional. Special cases of (El) were considered in [4, 8, 10, 11, 14, 161. 

EMBEDDING LEMMA. Suppose G satisJies (El-5). Then there is an order- 
monomorphism 9 from G into the lattice M of all subspaces of a generalized 
prqjective space such that the following hold: 

(i) ‘p maps points to points, lines to lines, planes to planes, and 
3-spaces to 3-spaces. 

(ii) For each point p of G, (GI’P contains all lines andplanes of M 
containing pw. 

(iii) If the generalized projective space G” has jinite dimension 
n - 1, then dim M = n. 

Proof. Points will be denoted by a, b, c, p, q, r, x, y, lines by L, M, 
planes by E, F, and 3-spaces by T. The proof will be given in several steps. 

(I) We begin with some elementary consequences of the axioms. 
Define v and A as is usual in posets. Expressions such as L v E and L A E 
are not always defined. 

By (E2), we never have p > q. By (E4, l), we never have L > M, 
E > F, or TI > T2 . 

From (El) we deduce the following. If E # F and E, F > L, then 
EhF=L.IfT1#T2andT,,T,>E,thenT,~Tz=E.IfLQ:Tand 
L,T>p,thenL~ T=p.IfEQ: TandE,T> L,thenEh T=L.If 
L # M and L, M > p, then L A M = p; moreover L v M exists and is 
a plane. 

If L Q: E and L, E > p, then L A E = p. Suppose that, in addition, 
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E > p v q > p. Then L v E exists and is a 3-space. For, L v p v q and E 
are two planes on p and q, so (E3) applies. 

If p Qc L, then p v L exists and is a plane. For, by (E4), we can find 
q < L, and then (p v q) v L is a plane (by (El)). 

Similarly, if p 4: E, then p v E is a 3-space. For, by (El, 4), E is on at 
least 2 concurrent lines, so (E3) can be applied. 

(11) We first show that, if 4 lines are such that no 2 are on a 
common point, no 3 are coplanar, and 5 of the 6 pairs of lines are coplanar, 
then so is the sixth pair. 

For, let the lines be L, , L, , L, , L, , where we must show L, , L, are 
coplanar. Let pi < Li (see (E4)). Then pi v Lf = Li v Lj for i f j, 
{i,j} # {3,4}. Thus, for i, .j, k distinct, we have a 3-space pi v Lj v LI, = 
L< v Li v Lk (by (I)). 

If L, v L, v L, # L, v L, v L, ) then, viewing from Gp.1, we see two 
different planes containing the lines p4 v L, and p3 v L, . Thus, L, and L, 
are coplanar in this case. 

Suppose L, v L, v L, = L, v L, v L, . By (E5), we can find ps Q: 
L1 v L, v L, . Thenp, v L, v L, is a 3-space; in GPs it is a plane containing 
the distinct lines ps v L, , p5 v L, . By (El) we can find a line 
L, = (p5 v L,) A (p5 v L,). Here L, is on no point r of L, v L, v L, ; 
for otherwise, we can suppose r Q: L, , and then p5 < ps v L, = 
L, v L, = r v L, < L, v L, v L, . By the preceding paragraph (applied 
to L, , L, , L, , L, and L, , L, , L, , L5), L, , L, and L, , L, are coplanar 
pairs. Now use L, , L, , L, , L, to get that L, , L, are coplanar. 

(III) Define an ideal point to be a family (Y of pairwise coplanar 
lines such that each point is on a unique member of 01. 

Let L, M be coplanar lines on no common point. We claim that there is 
a unique ideal point containing them. 

Set E = L v M. For each p Q: E, p v E, is a 3-space; in GP, it is a plane 
containing the distinct lines p v L, p v M. We thus obtain a line 
(Y*’ = (p v L) A (p v M) E G. Here L and CXP are on no common point, as 
otherwise E = (a” A L) v M < ~2 v M = p v M. Also, if q Q: an, E, 
then (Y%’ and Op are on no common point. By (II), any two ap’s are coplanar. 

Fix p Q E, q Q p v E. For each x < E, as above we obtain a line 
CP > X, namely 01~ = E A (x v a”). Use L, ~9, a*, a” in (II) to get oln, (II” 
coplanar. Now (II) shows that any two of our a.% are coplanar. No two 
are on a common point. Both L and M occur as CP’S. 

Thus, the set of ay’s is an ideal point containing L and M. It is unique as 
everything was unique at every stage of the construction. This proves our 
claim. 
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(IV) Let 01 be an ideal point. If L E 01, we write 01 < L and say 
that 01 is on L. For each point p, let p v 01 = 01 v p denote the unique line 
of cu onp. 

We write 01 < E if there is a line L with 01 < L < E. Suppose b < E, 
b Qr L. Since L and (II v b are coplanar, we must have u v b < E. Thus, 
each line of 0: is on E or has no point on E. 

We write 01 < T when a: < E < T for some E. Let G, consist of G and 
all ideal points. We have just partially ordered G, . A *-point is defined 
to be a point or an ideal point. 

For distinct *-points 01, /3, let 01 v * /I be the set of all *-points on every 
plane on 01 and p. There are at least two such planes. For, by (E2) and (III) 
there is at most one line of the form p v 01 = p v p. By (E5) we can thus 
find distinct planes of the form (q v  a) v  (q v  /3), (I v  a) v  (r v  p). 

(V) Let 01, /3 be distinct *-points and El, E2 distinct planes on 
them. We claim that cy v * fi is the set of all *-points common to El and E2 . 
This amounts to saying that each *-point y # 01, /3 on El, E2 is on each 
plane E # El, E2 on 01, p. 

First, note that there is a point x Qc El, E, such that x v El and x v E2 
are distinct 3-spaces. For, by (E5) there are points y 4: El and x Q: y v El . 
We cannot have both y v El b y v E2 and x v El >, x v E, , as then we 
would have x < x v El = El v  E2 = y  v  El . 

Next note that x v oi 2 x v /3. For otherwise, x v 01 = x v b and we 
may assume 01 is ideal. Let p < El, so p Q: x v 01 as x Q: El. Then 
(pv4v(xv4>~,/$ so 4, (pv4v(.xv4>pvc~ pvP. 
By (II), p v 01 3 p v /3. Thus, El = (p v CX) v (x v a) > x, which is not 
the case. 

Set E3 = (x v  a) v  (x v  p). Since x v El > x v  01, x v  p, x v  y, 
we have x v El = E3 v El . Similarly, x v E2 = E3 v  E, > x v  y. Thus, 
E3 = (x v  El) A (x v  E,) > x v  y  > y. 

Let p < E. By the preceding paragraph, we may assume that p -c El , 

P <E,, or p v El = p v E2 = El v E, . We may also assume that 
p # 01 and that p is on at most one of El , E, , E3 ; for if p < Ei , Ei with 
i#j,thenE,~E=p~a=E,AE~>p~y,soE>y. 

If p Q: El , Es, thenp v E, < p v  El = El v  E, , sop v  El # p v  E3, 
As for E3 , this implies that E > y. 

1fp~E,,thenpQ:E,,E,,sopvE,=pvE,.Leta<LcE,; 
then p v CC < p v L < El v E, . Similarly, p v y < El v E2. Thus, 
y  < p v  y  < E3 A (El v  E2) = p v  a < E. 

(VI) For each line (or plane) L (or E) of G, let L* (or E*) be its 
set of *-points. Call a set of points a *-line if it has the form o( v* fl for 
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distinct *-points 01, p. According to (V), if 01, /3 < El, E2 with El # E2, 
thenav*/?=E1*nEZ*. 

Two distinct *-points 01, /3 are on a unique *-line. For, let 01 # y E 01 v * /3, 
and let El, E2 be as above. Then IX, y E 01 v.+ fl = El* n E,* implies, 
by(V),thata:v*y=El*nE,*=olv+$. 

Note that L* is a *-line for all lines L of G. (This is, of course, clear if L 
is on two points.) Let p < L, q d: L. Then q v L is a line of Gq, and hence 
by (El) is on at least 2 lines of G* through q. By (III), L is on a *-point 
a: # p, so L = p v 0~. By the definition in (V), L* = p v  * (II. 

Let M, consist of the set of *-points and *-lines, ordered by set- 
inclusion. 

(VII) We wish to show that M, is a generalized projective space. 
The only axiom that needs to be checked is (PS3). 

Let 01, /3, y, 6, E be distinct *-points with 6~a: v*p, EEY v* 6, but 
y$sv*/3, We must show that a!v.+y and /3v*~ have a common 
*-point. 

Take any point p. Denote by A, the meet operation in the generalized 
projective space determined by G”. By (ES), we may assume that p, (Y, /z?, y, 
6, E are not on a plane of G; by (El) these then determine a plane TP of the 
generalized projective space G” (here Tp may not be in G). Consequently, 
L” = ((p v a) v (p v y)) A~ (p v /I) v (p v c)) is a point of TP. By (El), 
L~isalineofG,soL~=((pvm)v(pvy))~((pv~)v(p~~)). 

By (E3,5), there is a point q for whichp v q is not on T*. Then q, 01, p, 
y, 6, E are not on a plane of G, as otherwise p, q, 01, /I, y, 6, E would be on 
a 3-space of G by (I). We can thus define LQ as above: Ln = 

((4 v  4 v  (4 v  YN * ((4 v  B> v  (4 v  4)- 
By (I), there are 3-spaces Tl = P v ((4 v 4 v (4 v YN and 

q v ((p v (Y) v (p v y)) ofG. Both are onp v (q v  CY) = (p v  CX) v  (q v  CX) = 
q v (p v a) and p v (q v y) = q v (p v y) by (IV). Thus, they are equal 
and are on p v Lq and q v L”. Similarly, T, = p v  ((q v  /3) v  (q v  c)) is a 
3-space of G on p v Ln and q v  L p. Here Tl # T2 by our choice of q. 
Thus, Tl A T2 = p v La = q v Lg. By (III), there is a *-point cr on Lp 
and Ln. 

BY 6, 

Similarly, u E /3 v * E. This proves (PS3). (Remark: For a beautiful proof 
of (PS3) in a similar context, see [12, pp. 52-531, where, however, more 
points than we have available are used, but only 3 dimensions are required.) 
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(VIII) Finally, let M denote the lattice of ail subspaces of the 
generalized projective space M, . Each point of G may be regarded as a 
point of M. Each line L of G determines a unique line L* of M. Let E be 
a plane of G. Let LY. and /3 be distinct *-points of E. Then, by definition, 
01 v * /? C E*. Thus, E* E M. By (VII), E* is a plane of M. 

Similarly, for each 3-space T of G, let T* be the set of all *-points on 
some plane on T. Take distinct *-points 01, /3 E T*. By (E4), we can find 
p < T. Then (p v a) v (p v ,fI) is a line or plane of G. Thus, by definition, 
cxv.pCT*,andT*EM. 

We thus obtain an order-preserving injection y: G -+ M, defined by 
p + p, L -+ L*, E + E*, T + T*. By (VI), (Gp)” contains all L*, E* 
with p < L, E, so (Gn)” contains all lines and planes of M through pq. 
Each point and line of M is in M, , and hence is the intersection of 
planes of Gw. This completes the proof of the lemma. 

4. MAIN RESULTS 

We begin with some definitions, 

DEFINITION I. An isometry from a geometric lattice Gr to a geometric 
lattice G, is a join-monomorphism 8: G, --+ Gz which preserves dimension. 
G, is said to be isometrically embedded into G, . 

Clearly, a join-monomorphism 0 is an isometry if and only if 
dim le = dim 1. A basic property of isometries is that, if U, Vis a modular 
pair in G, , then (U A I’)e = UB A P. For, (U A V)e < Ue A V8 and 

dim(U A V)e = dim U + dim T/ - dim U v V 

= dim Ue + dim Ve - dim Ue v V@ -3 dim U8 A VB. 

In particular, if G, is modular, then 0 is also a lattice monomorphism. 

DEFINITION 2. Let G be a geometric lattice and M a modular geometric 
lattice. G is strongly embeddedin M (via f3) if there is an isometry 9: G + M 
such that, for all WE Ge, 

(SEl) dim G = dim M = n > 2; 

(SE2) If dim W < n - 4, every element > W of M of dimension 
< dim W + 2 is the intersection (in M) of those members of Ge containing 
it; and 

(SE3) If dim W = n - 3, (Ge)w is either MrY or is obtained from 
MW by removing a line and all its points. 
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Here, (SE3) is intended to allow (G8)W to be a (possibly degenerate) 
projective plane or an affine plane. 

DEFINITION 3. For a geometric lattice G of dimension n > 2, let 
‘$(G) denote the set of all proper subsets 2 of G satisfying the following 
conditions: 

(Pl) UE.& U < VEGimply VEZ. 

(P2) If U, I/ E Z is a modular pair, then U A V E .Z. 
(P3) For each WE G of dimension < n - 3, Z:w = {U E ,Z j 

W < U> is either all of Gw or is maximal in Gw with respect to satisfying 
03 72). 

Define 

9(G) = {Z 1 (1) C Z C G and Z is the intersection of two members 
of WG)>. 

We remark that, in (P3), conditions (P1,2) are automatically inherited 
by Xw. This is clear for (PI). If U, V E Zw, then U A V 3 W, so if 
dim U + dim V = dim U v V + dim U A V in Gw, then the same is true 
in G, and hence (P2) holds for Zw. 

The following result is the key to induction. 

UNIQUENESS LEMMA. Let G be a geometric lattice strongly embedded 
in a modular geometric lattice M via 8. Set G’ = Ge, and define operations 
on G’ in the natural way so it becomes a lattice isomorphic to G. 

(ULl) If U E G’, then U has the same dimensions in G’ and in M. 

(UL2) Joins are the same in G’ and M. If U, V E G’ is a modular 
pair, then U A V is the same in G’ and M. G’ is strongly embedded in M 
(via the inclusion map). 

(UL3) If WE G’ has dimension < n - 3, then Gw is strongly 
embedded in MW (via the inclusion map). 

(UL4) Let .Z C G. Then ,Z E v(G) if and only if D’ is the set of all 
elements of G containing a point CT of M. Moreover, a = A .Z? (the inter- 
section being taken in M). 

(UL5) Let {I} C Z C G. Then Z E B(G) if and only if.?? is the set 
of all elements of G containing a line A of M. Moreover, h = A Ze, and 
every line of M arises in this way except possibly when n = 2. 

(UL6) Zf G can be strongly embedded in Mr , then M and M1 are 
isomorphic. Every nontrivial automorphism of G induces a nontrivial 
automorphism of M. 
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(UL7) In (SE3) assume that (GO)w always equals MW. Let CJJ be an 
isometry from G into a modular geometric lattice N. Then there is a unique 
isometry y*: M + N such that OF* = 9. 

Proof. Let v and A denote the operations in M. 

(ULl) 13 is an isometry. 

(UL2) This is clear from the definitions. 

(UL3) Clearly Gw C MW, where MW is modular. By (ULI), 
Gw and MW have dimension n - 1 - dim W, and the elements of Gfw 
have the same dimension in GW and MW. 

Take U E GW of codimension > 3. Each element of MW containing U 
as a subspace of codimension < 2 is also an element of M containing U 
as a subspace of codimension < 2. Also, (G’w)u = G’“. Thus, (SE2) for 
Gw, MW follows from (SE2) for G’, M. (SE3) is checked in the same way. 

(UL4) Since !13(G)e = ‘p(G), we need only consider subsets Z of 
G’. For oEM, write [u] = {XEG’ / u < X}. 

We proceed by induction on n. Let n = 2. Plug W = 0 into (SE3) to get 
that G’ is M or one of the natural affine subplanes of M. Then L‘ E ‘@(G’) 
if and only if Z = G’p for some point p of G’ or Z is a parallel class. Thus, 
(UL4) is clear here. 

Let n > 3. Take a point (J of M. We claim that [a] E ‘$3(G). (PI) is clear, 
while (P2) follows from (UL2). We must prove (P3). Take any point p # u 
of G’. Then [a]~ consists of all elements of G’P containing the point p v a 
of MD. By induction, [u]” E ‘;P(G’p). Comparison of (P3) for G’p and G 
shows that we only need to check that [u] is maximal in G’ with respect to 
PL2). 

Suppose [a] C Z C G’, where .Z satisfies (P1,2). Let U E Z - [u]. There 
is a point p < U of G’. Then ZP contains [u]” and U, while satisfying 
(P1,2). By induction, [u]p is maximal in G’*, so Zp = G’p. Take any point 
qQpvu of G’. Then pvqEG’“=D, but pvq$[o]. As above, 
Zg = G’Q. Now p, q E Z, so 0 E 2 by (P2), and hence Z = G’. This proves 
the maximality of [u]. 

Conversely, let Z E (P(G). If 2 contains a point p of G’, then Z >_ [p] 
by (PI), and then Z = [p] by what has just been proved. We may thus 
assume that ,Z contains no point p of G’. For each p, Zp is then a proper 
subset of GP satisfying (Pl-3). By induction, Zn = [hp] for some point 
hp > p of MD. Here, Xp is a line of M. 

Let q Q: hp be any point of G’. Define XQ as above. Then Zg = [hQ] and 
p 4: h*. Bothp v h’~ and q v hp are planes of M containingp v q. We claim 
that Xp and XQ are coplanar. Suppose that p v h* is the intersection (in M) 
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of those U E G’ containing it. Then p v hq < U implies that U E ,P _C Z 
and hence that U E Z”, so hp < U. Thus, hp < p v hq in this case. 
Similarly, if q v xp = A [q v hp], then hg < p v hp. By (SE2,3), the only 
other alternative is: n - I = 2 and p v Xq and q v hf’ are both the unique 
exceptional line of G’” which can occur in (SE3). Thus, hP and hg are 
coplanar in any case. 

Define u = XP A XQ. It suffices to show that .Z > [u]. Since n 2 3, we 
can find a point r of G’ with r 4: hi’ v Xg. As before, XV A Xp # 0 # h* A Xq. 
since hr Q: hp v hq, it follows that A’ > hp A hg = u. 

Consequently, u < P for each point x of G. However, whenever 
u < X E G, we can find such an x < X, and then hz = (T v x < X implies 
that XEPCZ. 

(UL5) Let X be a line of M. Then h = u v T for points u, T of M, 
so [X] = [u] n [T]. If h = A [h], then [h] E g(G) by (UL4). By (SE2,3), 
A f A [X] implies that n = 2 and [X] = (1). 

Conversely, if Z E g(G), then, by (UL4), Z = [u] n [T] = [a v T] .  

(UL6) If IZ = 2, G’ is M or a natural affine subplane of M, and 
(UL6) is clear. When n > 2, just use (UL4, 5). 

(UL7) The proof is very similar to those of (UL4, 5). We may 
assume that G C N and v is the inclusion map. For u EN, let 
(a) = (X E G / (z < X]. We make the inductive hypothesis that, for each 
.Z in ‘@O(G) (or Q(G)), Z = (u) for a point (or line) u of N, and u is the 
intersection in N of Z. When n = 2, G’ = M and this is clear. Suppose 
?I 3 3. 

Let Z E ‘$3(G). We may assume that Z contains no point p of G. Since 
,P C GP 2 NP, it follows by induction that ZJ’ = (hp) for a line hp > p 

of N, and h* is the intersection of Zp. Take any point q Q hP of G. Then 
q v Xv is a line of ND, and hence by induction is the intersection in N of 
those U E G containing it. Since U E C@, U > XQ. Thus, q v hp 2 hg. As 
in the proof of (UL4), ,Z > (u) for a point u of N. However, ZP = (p v a) 

for each p. Thus, Z = (a). Moreover, it is clear that u is the intersection 
of z. 

Next, let .Z E Q(G). Since Z = Z; n & with Z; , & E Q(G), C = 
{u) n (T) = (U v 7) with u and 7 distinct points of N. Take p G u v T  

and q Q: p v u v 7. Then u V 7 = (p V u V T)  A (q V u V T). Here, 
p v u v 7 and q v u v 7 are the intersections in N of elements of G. Hence, 
so is u v 7. This completes the induction. 

It follows from (UL4,5) that v induces a map q* from the points and 
lines of M to those of N, namely, 01 Q* is the intersection in N of [a]“-‘+’ 
for each point or line 01 of M. Here, y* is injective and preserves inclusion. 
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There is thus a unique extension of ~ZJ* to an isometry v*: M -+ N. Since 
&p* and v agree on the points of G while preserving joins, 8q~* = v. The 
uniqueness of y* is easy to check. 

The restriction made in (UL7) is probably essential. Without it, (UL7) is 
false when n = 2 (for example, G = AG(2, 3) is isometrically embeddable 
in N = PG(2,4)), and we suspect higher dimensional counterexamples 
also exist. 

We are now ready to state the dimension theorem. 

THEOREM 1. Let G be an n-dimensional geometric lattice. Let 1 < e, 
f,(n-lwithe+f>nbutnote=f=n-l.Supposethatnoe-space 
andf-space with join 1 have their intersection of dimension e + f - n - 1. 
Then G can be strongly embedded in an n-dimensional modular geometric 
lattice. 

Proof Take any e + f - n - l-space W. By Section 2, Gw is modular. 
On the other hand, we have n - 4 3 e + f - n - 1 3 -1. Thus, for 
each n - 4-space U, G” is 3-dimensional and modular. Thus, the theorem 
is a special case of the following embedding theorem. 

THEOREM 2. Let G be a geometric lattice of dimension n 3 3. Suppose 
that, for each n - 4-space U, G” can be strongly embedded in a 3-dimensional 
modular geometric lattice. Then G can be strongly embedded in an n- 
dimensional modular geometric lattice. 

Proof. We use induction on n. There is nothing to prove if n = 3. 
Suppose n > 4. Let p and q denote distinct points of G. 

(I) Gp satisfies the hypothesis of the theorem. For, dim Gp = 
n - 1 > 3, and if U E GJ’ has codimension 3 in G”, it has codimension 3 
in G, while (Gp)u = G”. 

By induction, we obtain a modular geometric lattice M(G”) such that 
Gg is strongly embedded in M(Gp). We may assume that G” C M(Gp) and 
that the inclusion map yields the strong embedding. 

If u E M(G”), set [cr] = {XE Gp 1 u < X>. 

(II) Let Gt, consist of the sets [p] = GP and the members of 
‘$(Gp), Q(GP), and e(G*“*), for allp, q. By (UL3,4, 5), these are the subsets 
of G corresponding to the points of G and M(Gp), the lines of M(Gp), and 
most of the lines of M(GpvQ) (all of them if n > 4). 

Partially order Gt, by the opposite of set inclusion. 
We claim that [q] < EEG~ implies that Z is in q(GQ), 2(GQ), or 

T2(GQvr) for some r. 
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Suppose first that 22 E ‘@(Gp), p f q. Then .Z C [p] n [q] = [p v q]. 
BY W-4), .Z = [P v 41 E rP(G”>. 

Next let [q] < Z E I. Then, by (UL5), Z = [p v q] n Z; with 
Z; E ‘!j3(Gp). From (P3) and (UL4) we see that Z = Zyq E Cp((G”)“‘“) = 
(Ip((Gq)pyq). By (UL3), (Gq),“, is strongly embedded in M(Gq)p’q. Thus, 
by (UL4), 2 = [u] for some point (T of M(G@)9”P, that is, for some line 
u > p v q of M(Gq). By (UL5), Z E 2(G*). 

Finally, suppose [q] < Z E 2(GVv’) with p, q, r distinct. If q -C p v r 
and, say, p # q, then p v r = p v q and Z E !i?(G~““). We may thus 
assume that q 4: p v r. (Gp),“’ is strongly embedded in M(Gp)pyT. By 
(UL5) and (SE3), Z = [u] for some line u of M(G”)““, that is, for some 
plane u of M(G)p. Since 2 _C [p] n [q], u > p v q, so u is a line of 
M(Gp)pvQ. Again by (UL3, 5), 2 E ~((GP)~“~) = 2(G,““). 

This proves our claim. Note that the same arguments show that 
‘$(G”“~ C ii?( 

(III) Define G, as follows. If y1 > 4, G, = GI, . If n = 4, G, is Gt, 
together with a new symbol T(L) for each line L such that GL is an affine 
plane (cf. (SE3)). Here, T(L) will play the role of the line at infinity in GL. 

Order G, as follows. Order agrees on Gt, and G, . We never have 
T(L) -=z g for any g E G, . For 2 E G, , write Z < 7’(L) if and only if one 
of the following holds: 

(i) Z=G”withp<L; 

(ii) Z = GL; 
(iii) [L] Z 2 E !J.J(GP), wherep < L and 2 n GL is a parallel class 

of lines of GL; 
(iv) ZE f!(Gp), where p < L, Z CGL, and Z contains no plane 

of G; or 
(v) Z E X?(Gp), where p < L, and 2 n GL = ~3. 

Note that this is all well-defined. This is clear for (i) and (ii). In (iii), p is 
the only point of L with Z E I; in (v), p is also unique. If Z is as in (iv), 
then 2 E I for each q < L, but the remaining requirements are 
unaltered. 

Let Z E (G$, p < L. In (II) we saw that Z = [a], where u is p or a 
point, line, or plane of M(Gp). By (UL5), there is at most one plane > L of 
M(Gp) not of the form [OZ] with IX E M(Gp). If this plane is identified with 
T(L), the conditions (i-v) are precisely what are needed to ensure that 
u < T(L) in M(Gp). Thus, (G,)” is indeed partially ordered. Moreover, 
suppose u < T(L) in M(Gp), and let r Q: L. Then r v L is a point of the 
affine plane GL = (GP)~, so p v L Q: T(L) in M(Gp). Thus, p v r < 
u < T(L) is impossible. Consequently, Z g G’ for any point r < L. 
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We can now prove that G, is a poset. For suppose & < 2 < T(L) 
with Z1 , Z E Gh . Let Z; C Gr for a point I of G. Since Z; 12, it follows 
that ,Z C G’, so P < L. Then Z1 < T(L) since (G,)’ is partially ordered. 

(1V) G, is a poset. Its points, lines, and planes are defined to be 
those of its elements which, respectively, have the form [p] or are in ‘$(GP) 
or Q(Gp) for some p. Its 3-spaces will be the elements of JZ(Gpvg) for all 
plf q, and also the symbols T(L). 

We now check that G, satisfies (El-j) of Section 2. Note that, by 
(II, III), (G,)P consists of all elements of ‘$(Gp), I’), and S(GPvq), 
p # q, together with those of the T(L) having p < L. 

(El) By (UL4, 5), ‘@(GP) and !i?(Gp) correspond to all the points 
and lines of the modular geometric lattice M(Gp). Consider 2 E !Z(GPvq). 
By (II), Z = [o] for a line u of M(Gp)pVP; thus, (T is a plane of M(Ga). 
Similarly, if p < L and T(L) exists, then, by (III), T(L) is essentially 
a plane of M(GP). We saw in (III) that our ordering of (G,)P corresponds 
correctly to that of M(Gp). Finally, dim M(G*) = n - 1 3 3. Thus, 
(El) holds. 

(E2) Consider distinct points [p], [q] of G, . By (II), any line of Gt, 
on both of them is in Cp(Gp) and hence is unique; [p] > [q] by definition. 

(E3) Let Z; , ZZ be distinct planes of G, on the distinct points [p] 
[q]. By (II), Z1 = [CQ] and ZZ = [az] for distinct lines ul, gZ of M(Gp). 
Since a, , u2 > p v q, there is a plane T > ul, u2 of M(Gp). Since 
7 > p v q, T is a line of M(Gp),“,. By (UL3, 5) and (III), T f !i?(GPvQ) or 
7 = T(p v q). 

(E4) This is clear from the definitions. 

(E5) Suppose g E G, is on all points of G, . Since G contains an 
independent set of 5 points, g E (G,)P is on each of an independent set 
of 4 points of the generalized projective space (G&p. However, in (G,)P, 
g has dimension < 2 by (El), which is a contradiction. 

(V) By the Embedding Lemma of Section 2, there is a comple- 
mented modular lattice M and a poset monomorphism 91: G, + M which 
satisfy: dim M = (n - 1) + 1; points, lines, planes, and 3-spaces are 
mapped to the same kinds of elements of M; and for each [p], every line 
and plane of M containing [p]+’ = p* is in (G,~)Q’. Thus, (G+P)‘D and MP* 
contain precisely the same lines and planes of M. 

Define an isometry d(p): M(Gp) + M”‘ as follows. Let u, 7 E M(Gp). 
If u is p or a point or line of M(Gp), let uB(*) = [u]“. Extend this inductively 
to all of M(GP) by setting (a v T)e(p) = Us v TV. 
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Let U E Gp. Write U = (p v pl) v ... v (p v pJ with eachp, a point of 
G. Then 

UB’P’ = (p v p,)@(P) v ... v (p v p,)B’P) 

=[PVPllmv’.~v[PvP!J= 
= (p* v PI*) v ... v (p* v pk*) 

= p* v pl* v ... v pK*. (*I 

Consequently, if p # q < U, then we can assume p1 = q and get 
UB(P) = us(q) 

We thus obtain a map 8: G + M by defining Oe = 0 and Ue = UBtp) 
whenever p < U E G. 

(VI) Finally, we will show that G is strongly embedded in M via 19. 

For U, V E G, (U v V)e = Ue v ve follows from Oe = 0 and (*). Also, 
r9 is injective. For, if Ue = Ve, we may assume U, V # 0. Let p < U. 
Then Uefp) = Ue = (U v V)e = (U v V)e(@, so U = U v V. Similarly, 
V = U v V. Thus, 0 is a join-monomorphism. Clearly, 6’ preserves 
dimension. 

(SEI) In (V) we noted that dim M = IZ = dim G. 

(SE2,3) Let WEG, SEM, We <S, dim W < n -3, and 
dim S < dim W + 2. Note that, since n 3 4, W is not 0 if dim W = 
n - 3, as is the case in (SE3). 

First suppose W # 0. Letp < W. Then We(p) = We < S, so W < Se(p)-1 
with WE Gp’, Se(P)-’ E M(Gp), and dim Se(p)-l < dim W + 2. If 
dim W = n - 3, then (SE3) for G”, M(Gp) implies that Se(p)-’ E G*, 
except possibly for those Se(p)-’ corresponding to a certain line of M(Gp)‘)W 
and all its points. Then S = Se(P)-le E Ge, except possibly for those S 
corresponding to a certain line of (M(Gp))w)e = (M”e)we = M@ and all 
its points. This proves (SE3) for G, M. Next, we can write Se(p)-’ = 
V, A ... A V, with Vi E Gn (by (SE2) for Gp, M(G*); here A denotes the 
operation in M(Gp)). Then S = Vfc8) A ... A VicD) = Vie A ... A Vke, SO 

(SE2) holds when W # 0. 
Finally, let W = 0. Then (SE2) requires that every point and line of M 

be the intersection of elements of Ge. We only need to check this for a line X 
of M. By the Embedding Lemma, X is the intersection of planes rr of 
(G,)Q. Here, +-I = [a] for some line (3 of some M(GQ). Then 7~ = ue(*). 
By (SE2) for GP, M(Gp), cr is the intersection of elements of Gp. Hence, 
r is the intersection of elements of Ge. Consequently, so is X. 

This completes the proof of the theorem. 
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5. SOME EXAMPLES AND REMARKS 

Each of the following examples satisfies conditions very similar to those 
of Theorems 1 or 2. In all but Example 4, there is a geometric lattice which 
cannot be isometrically embedded into any modular geometric lattice. All 
but Example 2 are simple (i.e., indecomposable) lattices. 

EXAMPLE 1. G = W,, , W,, , W,, . These Witt spaces [17, 181 have 
dimensions 3, 4, and 5. If codim U = 2, then GU = [U, l] is PG(2,4) 
while GU = [0, U] is distributive. There is no isometry 0 from G into a 
modular geometric lattice M. 

Proof. Suppose 8: M -+ G exists. We may assume that G = Wzz , 
G C M, and 19 is the inclusion map. Let A denote the operation in M. Fix 
a line L of G. There are lines L, , L, , K of G such that L, L, , L, are 
coplanar and no two have a common point of G, while L v K, L, v K and 
Lz v K are planes f L v L, . Each of the 6 points of G on L v L, is on 
one of L, L, , L, . Since dim L v L, v Lz v K = 3, we obtain a point u 
of M by 

u = L A L, = L A (L, v K) = L A K. 

By symmetry, u = L A L, . Each of the planes of G other than L v L, 
which contains L has such a K. Thus, there are 2212 lines u v x, x E G. 
(Note that ~7 is equally well determined by L or K.) Each such line is on 
5 planes of G, while each plane of G on u (such as L v L, v LJ contains 3 
such lines. Thus, u is on 11 . 5/3 planes of G, which is ridiculous. 

Remark 1. Let G be a jinite n-dimensional geometric lattice. Suppose 
- 1 < k < n - 3, andfor all k-spaces U, GU is a projective space and G, 
is distributive. Then G is a projective space, an afine space over GF(2), 
a Witt space W,, , Wz3 , or Wza , or G is the lattice associated in the natural 
way with a 3-(112, 12, 1) design (in which case Gp would, dubiously, be a 
projective plane of order 10 for each point p). This is essentially 
[6, pp. 76-771, [18], and [IO, p. 701 or [8], translated in terms of lattices; 
the proof is an easy counting argument. This result has no infinite 
analogue -see Example 5. 

EXAMPLE 2. If G is any geometric lattice containing Wzz as an interval, 
then there is no isometry from G into a modular geometric lattice. In 
particular, this is the case if G is the product of W,, and a modular 
geometric lattice of dimension >, 3. For such a G, GU is modular for all 
U E G of codimension 2 and for all but one element U of codimension 3. 
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EXAMPLE 3. Let G be the 3-dimensional lattice consisting of the 
empty set, the points, the pairs of points, and the circles of a finite 
inversive plane [6, Chap. 61. For each point p, GP is an affine plane of the 
same order n. One of the main results on finite inversive planes is 
Dembowski’s theorem [6, p. 2681, which implies that when II is even, G 
can be strongly embedded into PG(3, n). One of the central problems in the 
area is whether or not this is also true when II is odd. In the infinite case, 
examples are known in which some of the affine planes G*’ are non- 
desarguesian [9], and it is easy to check that G is not isometrically 
embeddable into a modular geometric lattice. (Of course, infinite examples 
of geometric lattices not isometrically embeddable into any modular 
geometric lattice are easy to come by-just consider the 2-dimensional 
lattice whose elements # 0, 1 are the points and lines of an infinite- 
dimensional projective space.) 

EXAMPLE 4. G = Wll, W1, . These Witt spaces [17, 181 are geometric 
lattices of dimensions 4 and 5, and if codim U = 2, then GU is AG(2, 3) 
and Gu is distributive. If codim W = 3, Gw is an inversive plane of order 3. 
Hence, Gw can be strongly embedded in PG(3,3) [6, p. 273; 181. By 
Theorem 2, G can be strongly embedded in a modular lattice M; we may 
assume that G C M and that the inclusion map induces the embedding. 
By (UL3,6), MW = PG(3, 3). Here, W has just one or two points. Conse- 
quently, since Wis arbitrary, we must have M = PG(5, 3). This yields the 
well-known description of Wlz inside PG(5, 3) [3]. Moreover, by (UL6), 
MI, extends from Wlz to a subgroup of PSL(6, 3); this is the standard 
6-dimensional projective representation of MI, . 

The difference between the behavior of W,, and W,, is due to the fact 
that, in the standard representation of W,, inside PG(Il,2) [15], its 
points, lines, planes, 3+paces, and 4-spaces are represented by points, 
lines, planes, 3-spaces, and 6-spaces of PG(l1, 2). 

Remark 2. Let G be a finite n-dimensional geometric lattice. Suppose 
0 < k < n - 3, and for all k-spaces U, G” is an a@ne space and Gu is 
distributive. Then G is a Boolean algebra, an inverse plane, a Witt space W,r 
or WI2 , or dim G = 3 and G” is an afine plane of order 13 for each line U. 
Here, G is a Boolean algebra if each G” is AG(2,2). We must have 
dim G” = 2, for if dim GU >, 3, we may assume that U is a point and 
dim G = 4, and an elementary counting argument yields a contradiction 
[6, p. 771. If dim G = 3, G is an inversive plane. Suppose dim G = 4 and, 
for each line U, G” is an affine plane. Then each G” has the same order q, 
and there are (q2 + 2)(q2 + 1) q2(q2 - I)/(q + 2)(q + 1) q(q - 1) 3-spaces. 
By the result of Dembowski [6, p. 2681 mentioned earlier, if q is even, it is 
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a power of 2. Consequently, q = 2, 3, 4, 8, or 13. The case q = 2 has 
already been handled, while q = 3 leads to W,, [18]. If q = 4 or 8, 
Dembowski’s theorem implies that, for each point p, Gp can be strongly 
embedded in PG(3, q). By Theorem 2 and (UL3, 6), G can be strongly 
embedded in PG(4, q). We may assume that G C PG(4, q). Since planes of 
G have just 3 points, skew lines of G are skew in PG(4, q). Thus, the total 
number of points of PG(4, q) on all lines of G is 

w + 2) + (4” ; ‘) (9 - 1) > (cl5 - 1)/b - 11, 

which is impossible. This only leaves the possibility q = 13. (The preceding 
argument shows that when q = 13, some Gp would have to be a non- 
miquelian inversive plane of order 13; it seems unlikely that such an 
inversive plane exists.) Finally, when dim G > 5 and G” is not AG(2,2), 
we can count the number of n - l-spaces and use [IS] to find that G is 
W,, . Again, there is no infinite analogue of this result. (We note that the 
case 12 = q = 4, k = 2, of Remark 2 is stated in Witt [18, Satz 61.) 

EXAMPLE 5. For each integer n 3 3, there is an n-dimensional 
geometric lattice G such that any two n - l-spaces meet in an n - 2-space 
while G is not isometrically embeddable into a modular geometric lattice. 

Proof. We will imitate the usual construction of free projective planes. 
Define a sequence {Gk} of “partial geometries” of points and blocks 
inductively as follows (compare [5]). 

G, is any set of cardinality 3 n + 2. Its elements are called points, and 
it has no blocks. If k is odd, and if N is any set of n points of Gxel not on 
a block of GkPl , adjoin a block whose only points are those in N; Gk is 
G,-, together with all the new blocks. If k > 0 is even, and if B, , & are 
distinct blocks of Ge-l having 1 B, n B2 j < n - 1 common points, adjoin 
YE - I - 1 B, n B, / new points which are on no block # B, , B, ; Gk is 
G,-, together with all these points. Set G, = lJk G, . Then any it points of 
G, are on a unique block, and any two blocks have exactly n - 1 common 
points. G, determines a geometric lattice G, whose elements are 1, the 
blocks, and the sets of at most y1 - 1 points. For X # 0, 1 in G, define 
degree (X) = min{k I all points of X are in Gk} if dim X < 12 - 2 and 
degree (X) = minfk I XE G,} if dim X = n - 1. 

Let W be any it - 3-space. Then Gw is a projective plane. The restriction 
of the degree function grades Gw in the sense that each point (line) is on 
at most two lines (points) of smaller degree. The usual proof [13, p. 281 
now shows that Gw contains no closed configurations. 

If there were an isometry from G into a modular geometric lattice, 

s84v/z-4 
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then there would be an isomorphism from Gw into a desarguesian 
projective plane. This is impossible as Gw has no desargues configurations. 

This example shows that Theorem 1 is false for e = f = n - 1. We 
conjecture, however, that it is true in the finite case. This is tied up with 
some interesting questions concerning finite projective planes. 

There are obviously several variations possible in the above construction. 
For example, lines of G could have been arranged to have various numbers 
of points instead of always having two; some intersections of n - l-spaces 
could have been allowed to have dimension 3 --I but < n - 4. 

6. AUTOMORPHISM GROUPS 

On page 80 of [2], Birkhoff observes that the classical geometric lattices 
-projective and affine spaces-are highly symmetric: their automorphism 
groups are highly transitive. The following result characterizes these 
lattices in terms of just such a property. 

THEOREM 3. Let G be a$nite geometric lattice of dimension n 2 3. Let 
r be its automorphism group. Suppose that r is transitive on (i) the ordered 
pairs of distinct n - l-spaces having nonzero intersection, and (ii) the 
ordered pairs consisting of an n - l-space and a point not on it. Then G is a 
Boolean algebra, a projective space, an afine space, or Wzz . 

Proof. (I) Let G be a counterexample with the fewest number of 
points. 

r is transitive on n - l-spaces and on n - 2-spaces. Any two n - I- 
spaces meet in 0 or an n - 2-space. 

It is easy to see that, since G is not a Boolean algebra, some and hence 
every block does not contain at least two points. Consequently, by [IO], 
n = 3 and, for each point x, G” is a projective plane of order q not 
depending on x. 

Let v be the number of points, k the number of points per plane, and h 
the number of points per line. In [S] it is shown (using more efficiently the 
exact same information as in [lo, Section 41) that these parameters must 
satisfy either (A) q = h2, k = h(h” - h + I), or (B) q = h3 + h, 
k = h2(h2 - h + 1). In either case, v - k = q2(h - 1). 

If (A) holds, then h f 2, as otherwise G would be Wz2 by [18]. 

(II) We next boost the given amount of transitivity. Fix a plane E, 
and let r, be its (global) stabilizer. By hypothesis, FE is transitive on the 
points Q E, the lines < E, and the planes meeting E in a line. The points 
and lines of E form a design. By [6, p. 781, r, is transitive on the points 
< E. Also, r is transitive on the points of G. 
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Consequently, r, is transitive on the planes > x and on those k x. 
Again by [6, p. 781, r, is transitive on the points # x; that is, r is 
2-transitive on points. 

The stabilizer F, of a line L is 2-transitive on the h points < L and on 
the q + 1 planes > L. In cases (A) and (B), (h, q + 1) = 1. It follows 
that, if x < L, r,, is transitive on the planes > L. Thus, r, is transitive 
on the incident point-line pairs of the projective plane G”. 

WI) BY m, I rz I is divisible by the number k(v - 1) q of 
planes > x. Thus, if y # x then h2 - h + 1 1 I r,, j. 

Also by (II), r, is transitive on the (q + 1) k/h lines L < E and on the 
q2(h - 1) points y Q E. Then q2(h - 1) j I’,, : r,,, I = ((q + 1) k/h) 
I rLE : r,,, I. Now assume (A). Then 

(q2(h - I), (q + 1) k/h) = (h4(h - I>, (A2 + l)(h2 - h + 1)) 
= (2, h - l), 

so (q + 1) k/h(2, h - 1) divides I r,, : Sz,,, I. 

Thus, r,, is either transitive on the lines < E or has exactly two orbits of 
such lines of the same length. Correspondingly, r,, is either transitive on 
the points Q: E or has two orbits of such points, each of length h4(h - 1)/2. 

(IV) Consider case (B). By (II), I’, is transitive on the points of 
the plane G”. By [6, p. 1771, q # 10, so h > 2. 

Suppose r, has an element inducing an involutory collineation of G”. 
Since q = h3 + h is not a square, this must be a perspectivity [6, p. 1721, 
and then G” is desarguesian [6, pp. 193, 1971, whereas q is not a prime 
power. 

(V) We now eliminate case (B) by showing that some element of 
r, induces an involution on G”, contrary to (IV). At the same time we 
will show that, in (III), I’,, was in fact transitive on the lines < E. 

Since h > 2, there is a prime s / h2 - h + 1, s # 3. By (III), r,, has 
a Sylow s-subgroup Z # 1. Let G* consist of 0 and those elements of G 
fixed by Z which contain a point fixed by 2. Clearly G, is a sublattice of G. 

By a standard result on permutation groups, the normalizer N(Z) of Z 
in r is 2-transitive on the points of G, [17]. If L is a line in 
G* , s 7 h(h - 1)(/z - 2) implies that L contains at least 3 points of G, . 
Since s { (q2 + 1) q2, L is contained in at least 2 planes in G, , and since 
s f k - h each such plane contains a triangle from G, . Thus, G, is a 
3-dimensional geometric lattice. Moreover, if E and F are planes of G, 
such that E A F = L is a line, then a Sylow s-subgroup of r,, fixes at 
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least 2 points of L and so is conjugate in I’,, to Z As above, N(Z)L is 
2-transitive on the planes > L of G, . Similarly, as s { 2, - k - 1, Z is 
a Sylow s-subgroup of the stabilizer of a nonincident point-plane pair 
from G, , so N(Z) is transitive on such pairs. 

Since G was a minimal counterexample, G* must be a projective space 
PG(3, m) or an affine space AG(3, m). In either case, G,” is a subplane 
of G”. Since a line of G,= has (q + 1) - (m + 1) points of G* not in 
G,“, s I q - m. Then s 7 h - m, so G, must be PG(3, m). 

By [6, p. 391, some element of N(Z), induces an involution on G*“, 
while for any line L and plane E of G, with L -C E, N(Z),, is transitive 
on the points Q: E of G, . By (IV), the first statement eliminates (B). The 
second implies that FL, is transitive on the points Q E of G. For, if fLE 
were intransitive, by (III) it would have two orbits of points Q: E of length 
h4(h - 1)/2 not divisible by s; then G, would have a point in each of these 
orbits, and N(Z),, could not be transitive on the points Q: E of G, . 

(VI) Only case (A) remains. By (III) and (V), if y Q E then r,, 
is transitive on the lines < E. By [6, p. 781, I’,, is transitive on the points 
x < E. Thus, r,, is transitive on the lines M > x with M 4 E. By 
[6, p. 2141, Gx is desarguesian. In particular, q = h2 = qp with q,, a prime 
and e an integer. 

By (III), h2 - h + 1 1 1 r,, j. If y E r,, has order si for some i, then, 
as in (V), y induces a planar coliineation y” of G”, and j yZ 1 12e. Since 
(h2 - h + I)/@ + 1, 3) does not divide 2e, we cannot have 1 yZ j = si for 
each such si. Thus, we can choose our prime s # 3 dividing h2 - h + 1 
such that some y E r,, of order s induces the identity on G”. As in (V), 
y fixes a point # x of each line > X. Then y fixes a plane F k x, and hence 
fixes each point z of F. Now y induces a perspectivity of G”, but 
s f q2(q - I), so y induces the identity on G”. Since each point 4: F of G 
is the intersection of two lines meeting Fin a point, y fixes each point of G, 
which is ridiculous. 

This contradiction completes the proof of the theorem. 

It seems very likely that condition (ii) of Theorem 3 is superfluous. 
However, we have only been able to show this in case (B). Of course, 
one could ask what happens when the automorphism group of a finite 
geometric lattice G is 2-transitive on the II - l-spaces. But here the answer 
is easy: G must be a Boolean algebra or a projective space. In fact, by [lo], 
this conclusion requires no assumption concerning automorphism groups, 
only that all n - l-spaces have the same number of points, all n - a-spaces 
have the same number of points, and any two n - l-spaces have inter- 
section an n - 2-space. 
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Note Added in proof. R. Wille has called my attention to his paper On incidence 
geometries of grade n, in Atti Cow. Geom. Comb. Appl. (1971), 421-426 (Perugia).If his 
main result (Theorem 6) is specialized to the geometric lattice case, it becomes our 
Theorem 1. His results do not, however, contain our Theorem 2 (or even Remark 2 of 
Section 5). 
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