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1. ENUMERATION

There is nothing unusual about asymptotics in finite group theory: there are a num-
ber of known (or even well-known) asymptotic results. While these are not really
the subject of this paper, it seems appropriate to begin with some especially in-
triguing examples (the first and last of which will be need later).

1.1. If pis prime then the number of isomorphism classes of groups of order pk

210 - 6k 203, O3B
is at least p?’ (Higman [Hi]), and asymptotically = p*’ - O (Sims [Si])-

1.2 (Neumann [Ne, MN]). gt
The number of isomorphism classes of groups of order n is less than 1’ e

Here, and throughout this paper, logarithms will be to the base 2. The preceding
result, as well as the next three, depend on the classification of finite simple
groups.

1.3 (Holt [Ho]).
# isomorphism classes of perfect groups of order = n
# isomorphism classes of groups of order < n

— 0 as n — oo.

1.4 (Cameron-Neumann-Teague [CaNT]).
For almost all n (in the sense of density), the only primitive permutation groups of
degree n are 5, and A,

1.5 (Cameron [Ca]). If G is a primitive subgroup of S, having no elementary
abelian regular normal subgroup, then either
m A
Dn=1, and G is a subgroup of S, wreas#S with S, acting on the
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k-sets of an m-set, or
(i) |G| < ntl +o{l)ilogn,

These gquestions are, in some sense, in a classical enumerative vein: estimate the
number of groups of a certain sort. The remainder of this paper is concerned with
rather different types of asymptotic questions, involving lengths of presentations
or of words given in terms of generators, or the proportion of pairs of elements of
a simple group that generate the group. These questions (or at least those in
§82 4) are motivated, to some extent, by questions that arose in Theoretical
Computer Science. Sketches of some proofs will be given, especially in the cases
of some results not in print. For a survey of related results see [BHKLS].

2. SHORT PRESENTATIONS

The femgts of a presentation ¢ X | R » is the sum of |X| together with the sum of the
lengths of all of the members of R as words in X\UX-!. This is motivated, in part,
by thinking of inputting ¢ X | R » into a computer.

Stupid-looking Example: The usual presentation for a cyclic group of order n
has length _12+ n. % shoratler presentation is (X | R with X = {x,,... x,} and
R={xx X X11 x| i=0,...m }, where m =[1 + log,n] and n = Za2i
in base 2. Its length is at most (m + 1) + 3m + (m + 1) < 4log n. In fact, however
stupid-looking this may seem to be as a way to represent a cyclic group, this
method has, indeed, been used in practise.

2.1 Conjecture: Avery finde group G fas 4 preseatation of lengrh O((log|Gl)3).

Note that the constant 3 is best possible here. For, using Higman}s bound 1.1,
for all € > 0 and all C = 0 itis easy to check that
# p-groups of order pk
# presentations of length = C(logpk)3-¢

— 0 as k—o0

since the denominator is straightforward to calculate.

2.2 Theorem (Babai-Kantor-Luks-PUlfy [BKLP]). 7#e Coasecrure 15 frue ex-
cept, pertaps, if some composiifon factor of G 15 fsomotplic to2A,(q), 2B,(q) or
2G,(q)-

2

The remainder of this section is devoted to an indication of the ideas involved in
the proof of this theorem, along with comments on the difficulties encountered
with the groups 2A,(q), 2B,(q) and 2G,(q). The proof falls into two main steps:
[. Simple Groups, and II. Glueing.

STEP I. Simple Groups.



3
2.3 Proposition. Avery simple group Aas a preseotation of leneth O((log|Gl)2),
except perfiaps for the groups 2A,(q), 2B,(q) azd 2G,(q).
Sporadic groups can be ignored here. The usual presentation for A, has length
< n?. Therefore, it remains only to consider a group G of Lie type over IF,, of
characteristic p and rank ¢, say, in which case the order of magnitude of log|Gl is
22log q. We presuppose various parts of [Car] here and in later portions of this

paper.

Groups of Rank ? >2. Here the obvious approach is to try to use the Curtis-
Steinberg-Tits presentation [Cu], but this is much too long (its length involves g
instead of log q). Nevertheless, it is not at all surprising that this presentation can
be modified so as to behave as desired. The details are as follows.

Assume, for the moment, that G is untwisted. Then the Curtis-Steinberg-Tits pre-
sentation for a perfect central extension G of G uses generators Xq(t) for certain
roots &, where telF,. (Specifically, & belongs to the union of the rank 2 subsys-
tems determined by pairs of fundamental roots, so the number of these roots & has
order of magnitude 22.) The relations are

X E)Xg(u) = xo(t + )
[x6(0), xp@] = ] Xiers jp(Cijopt'a’)
1,70
for all relevant & and 3 with § = +Gt, and all t, uelF,, where 1, j and Ciju[; are inte-

gers (and |C(x[3ij| < 3). In order to shorten this presentation, let 8;,... 0, be a basis

of IFq over F,,. Then use only the generators xo(0y), together with the relations of
the form

Xo(0)P =1, [x0(01), X(0m)] = 1
[%a(0), Xp(0m)] = [ Xiasp(Cijapdkdih),
ij>0

which are interpreted as follows. For any s €I, and any root Y, expand
(s Oy) as Hk}:y(ek)sk, where expressions such as Xq(6; )P and x\,(ek)sk are them-
selves expanded as in the Stupid-looking Example by adjoining up to 4logp
additional generators and relations for each such term. The length of this presenta-
tion is dominated by that of the commutator relations, which is O(2%ee-elog p).
Thus, this is a presentation for G of length O((log|G[)3).

In order to shorten this presentation somewhat, and at the same time kill the center
of G, choose each O as Ok for a generator 8 of IFy - In addition to the generators
X,(0K), introduce generators w,,(1), w(0) and h,,, together with the following re-
lations for all & and [} = (¢ restricted as above:

w,, (1) = x (Dx_, (1) 1x,(1), w,,(0) = x,(0)x_,(-0-1)x(0)
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hy = wo(Q)w, (1)1, [hehpl =1,
X (0K = x_(020k) X (BK)5 = x (62 BB Bgk)

(where x_,(-071), x,(020k) and x (02@B¥(B.BIYK) are computed by expansion as
above, and (&, 3) denotes the usual inner product of roots). Then our earlier rela-
tions can be shortened to

Xo(0K)P =1, [x(6%), x5,(6m)] = 1
[xa(0%), xp(0™)] = [ Xige: p(Cijopd™1 1)),

with 0=k, m=2. For, thléég (z)md conjugation by the various elements h, imply
the remaining ones given earlier. Now there are O((%e + ¢ + Y)log p) generators,
and the relations have total length O(2+ Lelogp + 2+ e+ Yogp + % +
22-elog p) = O(log|Gl). The center of G is killed using products of the elements
h,,, where the required relations are explicitly written down on a case by case ba-
sis.

All of this involves an unfortunate loss of the beauty of the original Curtis-
Steinberg-Tits presentation in order to achieve efficiency.

Twisted Groups of Rank ?:>2. While there are straightforward modifica-
tions of the above presentations valid for twisted groups, an annoving snag does
occur. Namely, we used the fact that Xa(t)ha = x,(02t) in order to see that (hy had
very few orbits on X,. Such a situation does not occur for odd-dimensional uni-
tary groups, in which one type of root group is nonabelian. Newvertheless, in this
case a presentation of length O({(log|G[)?) can still be obtained.

Very briefly, G =PSUQ2? + 1,q), 2 =2, is best viewed as having a {root system1{
of type BCy, namely, the union of a B, and a C, system. However, [Gr] provides
a presentation suitable for our purposes using a C, system ©. His generators are
x,(t) with & short, tEquz, as well as x(t,u) with & long, t, uEqu2 andu+u =
€qtt , where €, = 1 and the involutory field automorphism of ¥ , 15t —t . The
obvious sorts of commutator relations then suffice for a presentation (cf. [Gr]).
These can be shortened by using generators XQ(Bk) for short roots ¢, as well as
suitable generators x.,(0, 0m) and x,(0k, Om) for long roots G, where g2 = pe and 0
15 a generator of ]F:‘1 5; and then introducing further generators hy, for all & as well
as additional generators required in order to take various powers of generators.
Relatively little care is needed to obtain a presentation of length O((log|G[)2). It is
presently not known how to obtain a presentation for G of length O(log|G|). This
is the only (bad{ twisted case of rank ? > 2: in all other cases all root groups are
abelian, and the usual group H has at most 3 orbits on each root group. Similar
considerations reappear as we examine rank 1 groups, but there they produce a
much more serious obstacle.



Groups of Rank ¢ = 1. The standard presentations in this case involve all of the
elements of a field IFy, but this time 2 £5 gor at all clear fow fo cut the presealalions
dowr o the desrred size —— assuming, of course, that these groups do, indeed,
have presentations of the desired lengths! The easiest way to explain the problem
1S to give a suitably short presentation for the group PSL(2, q) (similar to [To]).

A Presentation for PSL(2, q).

Let g = p¢ with p odd, and write K:={(g - 1)/(2,q - 1).
Crenerdlfors,

hrx,1=0,..e-1.

Relarons.

h‘<=1,r2=1,h1‘=h‘1,I:J . . ol
[xq, x] = X, x]=1,%x =%y =1,r :aXOXO Xy, hlr = XX X,
X;o=%X forO=<i=ze-2, xe9 =ILxe* Xeg =[x &,

with the a,, by &lF,, dictated by a single irreducible polynomial over I, used to de-
fine Fy (. e-, h corresponds to multiplication by the square of a generator 8 of ]Fc*l
and 9¢ = 3, a,0k, Berl = T, b,0K), where powers Xg¥, ka are viewed as being ex-
panded as in the Stupid-looking Example (i.e., by adjoining O(log p) additional
generators and relators for each such term). The length of the resulting presenta-
tion for PSL(2 q) is O(log q)-

In order to understand more clearly the preceding presentation, consider any rank 1
group G = PSLA(2, q), 2A,(q), 2B,(q) and 2G,(q). There is a standard presentation
for G. Namely, let B = UH be a Borel subgroup, where H = (hy is (isomorphic
to) a subgroup of index 1,2 or 3 in ]Fc*l (]F;z in the unitary case) and hence K = |H]
is explicitly known. Moreover, N = H¢r> is dihedral except in the unitary case,
where it has the presentation ¢h,r |h¥=1,r2=1, h"=hd . Then a presentation
for G is obtained by starting with ones for U and N, by giving the action of h on
U, and finally by giving all the relations of the form w =uvu' with welhor,
u,u'el, and v2Ur [Se2].

When G =PSL(2,q) we greatly decreased the number of generators by building in
conjugation by h: there are at most 2 orbits of <hy on U-{1}, and we gave the ac-
tion of h on a representative of each such orbit. Then all q of the relations
w =uvu' could be deduced from at most two of them, simply by conjugating by
h. For each of the remaining rank 1 groups ¢h’ has at least q orbits on U-{1}.
The problem in those cases is to find some way to Jegvce most of these relations
from a dousdednumber of them. Until some way is found to deal with this prob-
lem (or somehow circumvent it by using a different type of presentation for G),
2.1 will remain open: e exssteace of short presealatrons of these ragk | groups



15 the oly obstacle t02-1.

STEP II. Glueing.
Now consider any finite group G, and let IN be a maximal normal subgroup of G.
We may assume that N = 1. Then, by induction, there are presentations

GN=(X|R)andN=(Y|[S)

each of which is suitably short (i.e., of respective lengths O((log|G/N|)2) and
O((log|N|)2). The problem is to glue these together to form a new presentation that
is itself sufficiently short. Glueing together the two presentations is standard, so
once again it 1s necessary to find a way to proceed efficiently. This is less obvious
and more interesting than Step I

By abuse of language, view X as a subset of G and Y as a subset of N. Then R
consists of elements of N, so each rER is a word in YUY-!. However, the
presentations { X |R 7 and ¢ Y | S ) have nothing to do with one another, so there is
no reason to expect that r will be a (nicel word in YUY-!. In particular, it may
have very large length as a word in YUY!, which would be unacceptable for our
purposes. Fortunately, there is a way around this difficulty using the following
surprising result of Szemer?di:

2.4 Proposition [BS]. Zer N #e g fiuie group and Y a set of gegerators of N.
Ler rEN.  Fligi there 15 3 SegUencew ... Wy =t of elements of N such thar
eachw, s ether Y
or I35 the product of [Wo previous w; Is
or 15 the mverse of 2 previouswi,
and k < 2(log|NJ| + 1)2.

Proof. We may assume that N = 1. We will construct a sequence A of elements
of N and a subsequence B © A such that the following all hold: each term in A is
either in Y ar is the product or inverse of terms occurring earlier in the sequence,
|A| < 2(log IN|)2, |B| = log|N|, and N=TII(B)'II{B). Here, for any sequence
B =(by,... by) of elements of N we write
1 k
(B):= { b5 b | each i) =0 or 1 }.

The construction of the sequences A and B will be accomplished by successive
increasing approximations.

Start with A = B consisting of one element = 1 of Y (so initially [II(B)| =2). 1If,
after several increases, we still have N = II(B)"III(B), then II(B)'II(B)Y =
II(B)'TI(B), so there exist u,veII(B) and y=Y such that z:= ulvyeII(B)'II(B).
Then extend A and B to the following sequences by appending the indicated terms



or sequences:

A Alfvial u, [vial,v,ul ulv, z

B B,z
Here refers to the fact that a product such as by=-by (with by,... by in B, in
order) can be embedded in a sequence bib,y, byby-bsy,... bbby of k-1

terms, each of which is a product of terms either in B or occurring earlier in this
appended sequence.

Now observe that [TII(B")| = 2|II{(B)| since II(B)NII{(B)z =, so that at most
log[N| - | increases can take place: |B| < log|N|. Also, |A|=<|Al+2(B|-1)+ 3,
where A is increased at most log|N| - | times, so at the end of all the increases we
have A = 1 + (log[N| - 1){(2logN| + 1). This completes the construction of the
desired sequences A and B.

Finally, each element of B (in fact, of A) occurs in a sequence of the sort required
in 2.4, of length < |Al; and we saw that each element of TI(B) occurs in such a se-
quence of length =< |A|l+ (|B|-1). For the same reason, each element of
N =II(B!TI(B) occurs in such a sequence of length < |A|+ [B|+ (B|l-1)<
2(logN])2 + logN|- 1. O

Note that this proof is short and ingenious while not looking at all like standard
group theory. Somewhat sharper bounds are possible in 2.4. Note also that the
preceding proof is not at all effective.

Returning to the situation preceding the Proposition, adjoin a sequence using 2.4
in order to obtain additional generators for es7c# rER, together with the relations
implicit in the sequence. Similarly, adjoin further generators and relations in order
to express the fact that N < G. This readily produces a presentation of length
O((1og|G[)3). Much more careful bookkeeping turns the exponent 5 into a 3.

3. THE PROBABILITY OF GENERATING

If G is a finite group generated by 2 elements, what proportion of the pairs of ele-
ments of G generate G? In other words, what is the probability that two randomly
chosen elements of G generate G? This section will consider this question in the
case of nearly simple groups. The most lovely result along these lines is due to
Dixon:

3
3.1 Theorem [Di]. Pr( x, yeS, generate S, ) — 7 a5 n— oo,

1
Pr( x, yES, generate A, ) — 7 a5 1 — oo



In other words, x and v @dzost always generare A, or'S,,, depending upon the par-
ity of x and y. In order to show that

Pr( x, yeS, do mor generate A, or S, ) — 0asn — oo,

Dixon used two ingredients:

1. ANumber Theory ([ET], as interpreted in [Di]):
(XESn has a cycle of length a prime < n - 3 while
Thall other cycles have length relatively prime to this one
2. 1873 Croup Theory [Jor]:
If G < S, 15 a primitive permutation group and containing a p-cycle for some prime
p=<n-3 then Gis A, orS,.

)—>1asn—>c>o.

( Historical commen: The preceding result appears to be the first published appli-
cation of Sylow }s Theorem, which had been published only a year earlier. It is,
of course, only the conjugacy part required here -- in the case of Sylow
subgroups of prime order.)

In Dixon}s situation,

Pr( x, ¥ do not generate A, or S, )
< Pr( x, y generate a primitive group = A, S, ) + 2|L[2/|G|?

summed over all subgroups L of 5, maximal with respect to being intransitive or
imprimitive. (This is a very crude estimate: equality would require that the various
subgroups be pairwise disjoint sets!) By 1, if x and y are randomly chosen in S,
then each of them probably has a power that is a p-cycle for some prime p < n - 3,
and then 2 implies that Pr( x, v generate a primitive group = A,, S, ) is negligible.
The terms in 2[L|2/|G2 involve the orders of obvious subgroups S, xS,y and
S wreadr Soof S, Estimating this sum is made slightly simpler by noting that an
upper bound is Z(IL|2/|G2)-(|GIIN5(L)) = Z(L2AG2)»(IGI/L]D = ZILI|G| where L
ranges over one representative Sy xS, or 5, wreasSofrom each conjugacy class
of such subgroups. Thus, it was only necessary for Dixon to check that this latter
sum — 0 as n — co.

Almost 20 years after Dixon}s paper, Babai [Ba] showed that
Pr( x, v do not generate A, or S, ) = I/'n + O(1/n2),

where the leading term 1/n corresponds to the fact that 2 elements not generating
A, or 5, almost certainly have a common fixed point! However, in this case the
proof no longer used 1 and 2 above: Babai used the classification of finite simple
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groups. For, |L|/|G|, summed over one representative Sy xS,y or Sy wreathSe
from each conjugacy class, was shown in [Di] to be 1/n + O(1/n2). Consequently,
it was only necessary to obtain a bound on Pr( x, y generate a primitive group
= A, S, )that is better than Dixon}s. (Better bounds had been known [By;
ByW], obtained using number theory and generating functions; but they are not
quite good enough to produce the desired result.)

Babails argument runs as follows. It is only necessary to estimate 2|L|/|G
summed over one representative of each subgroup L = A, S, of 5, maximal with
respect to being primitive. The possibility 1.5(1) occurs with miniscule probability
and hence can be ignored. Then |L| £ m:= n{l+o(llogn by 1.5. Let K be a mini-
mal normal subgroup of L, so that L = Ni(K). By the classification, there are at
most m characteristically simple groups of order m. Any such group K has at
most mlog m subgroups (since any group of order at most m is generated by at most
log m elements, by Lagrange}s Theorem), and hence has at most mlog ™ transitive
permutation representations. Consequently, there are at most m-mlogm transitive
characteristically simple subgroups K of S,,, and hence the desired sum 2|L|/|G| is
at most m+m-mlog m/n! = O(1/n2) (the upper bound nv1/n! is obtained in [Ba]).

At the same time that Babai was making Dixon}s theorem more precise, a result
for classical groups corresponding to Dixon}s was being proved:

3.2 Theorem [Kalu] Zer Gy denote a fuute sumple classical grodp, amd fef
Gy = G = AwGy). & P(G) 15 the prodability that two randomly chosen elements
of G do mot generate a group containing Gy, theaP(G) — 0 as|G| — oo

The methods used in the proof were similar to those of Dixon and Babai. A theo-
rem of Aschbacher [As] asserts that each maximal subgroup L of G falls into one
of nine families of subgroups of G. Eight of the families are defined very explic-
itly (the stabilizer of a subspace; the stabilizer of a direct sum or a tensor decom-
position; the stabilizer of a field extension or the centralizer of a field automor-
phism; a classical group embedded as usual; the normalizer of a symplectic-type r-
group for a prime r = p). In the ninth family, L = N5(S) with S a nonabelian sim-
ple subgroup of PSL(V) such that S = L = Aut(S), and the projective representa-
tion of S on V is absolutely irreducible and is defined over no proper subfield of
F,-
The number of conjugacy classes within each of the eight explicit families is dis-
cussed in [As] (and in greater detail in [K1Li]), which makes it easy to obtain a
suitable upper bound on 2|L|/|G| restricted to each such family. By [Lil, |L| < g3
for L in the ninth family, so that it is only necessary to show that there are not too
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many summands |L|/|G| arising from this family —- exactly the same sort of ques-
tion we saw Babai had to deal with. For this purpose, once again we will see that
ridiculously crude estimates suffice.

Namely, as above, there are < g°" simple groups of order < g3 Fix such a simple
group S. The number of (equivalence classes of) absolutely irreducible projective
representations of S in characteristic p is at most the order of the universal cover S
of 5. For each such representation, maximality forces L to be the normalizer of
(the image of) S; and L is isomorphic to a subgroup of Aut(S) containing S, so that
IL| < |Sllog|S|. These crude estimates are enough to vield a proof of 3.2 when
n=21. Slightly more care is needed for the remaining small values of n.

An examination of the argument in [KaLu] gives slightly more information than in
3.2. For purposes of the next result we assume, temporarily, that PSp(2.2, 2¢),
PO(3,q), POT(6,q) and PSU(4, q) are replaced by the respective isomorphic
groups PO(2%+1,2¢), PSL(2, q), PSL(4,q) and PQ7(6,q). As above let V be
the underlying vector space, but this time let Fy denote the undetlying field (so in
the unitary case we are considering G, = PSU(n1, /).

3.3 Theorem. [z the siwation of 3.2, P(G) = Z|GyM['L + O(q 70-16) ppere
M ragges over 4 represeatative of each Gy compugacy ofass of maximal subgroups
of G, of each of the following types.

(1) The stabilizer of a poiat or fyperplane of NV,

(i) 7he image of a group (1) ander a tiality awtomorphism of Gy=
POT(8,q);

(iii) 7#e seabilizer of a totally rsotropic 2-space when Gy=PSp(4,q) or
PSU(5, q).

For example, if G =PSL(n,q) then, in the unlikely event that (g, h) does not
contain Gy, then (g, h) (probably{ fixes a point or hyperplane. It should be noted
that, in 3.3, the constant 7/6 best possible, as is seen when G, =PQ(7,q) and M
is either the stabilizer of a totally singular line or Gs(g) (but for no other pairs
Gy, M).

There 15 no doubt that, for any simple group Gy and any group G such that
Gy=Gz= Aut(GO), the probability that two randomly chosen elements of G do not
generate a group containing G, approaches 0 as |G| — co. There is sufficient pub-
lished information to prove this conjecture for various choices of G (2B,(q),
2G,(q), G,(q), 3D4(g) or E.(q))- Recent work [LS] reported in Seitz}s lectures at
this Symposium probably handles all the exceptional groups G, for characteristic p
not too small (namely, p > 113).
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4. WORD LENGTH.

While the preceding results say something about how offer two elements generate
a given group, they say nothing about #om this generation takes place. In order to
explain the difference, consider the following standard

Example. S,=<(1,...n), (12)). Write S={(1,...n), (12)}. Then every
element S, has length < n2 in SUS™1; but some elements have length = n2/6 (e.g.,
the involution z —n + 1 - z). (N.B. -- The length of each element of S, does not
seem to be known —— which is rather surprising in view of the standard nature of
this pair S of generators.)

This leads to the consideration of the dizmerer of a group G with respect to a set S
of generators of G. Temporarily write T = SUS™1, and enumerate the elements of
G as follows:

T IT| elements
TT < |T|? elements (actually, < [T|{(|T| - 1) elements = 1)
TT---T < [T|4 elements.

If these sets cover G thieélg'é(ﬁ_l? 1+ Eld ITli (or, more precisely, |Gl=< 1+ Z‘f
[TI(|T| - 1)), so that d = Tlog2S - The diameter is the smallest such d. It is the
same as the diameter of the (undirected) Cayley graph determined by the pair G, T;
and the preceding inequality is essentially the (Moore bound{ for this graph.

logn!-1

For example, when G = S, and |S| =2 we have d = , Which suggests that
one might be able to do better than in the above Example. That this is, indeed, the
case, 15 seen both in the next result and in 4.4.

4.1 Theorem [BKL]. Z G 15 2 nonabelian fimte simple group thea there 15 4 set
S of at most T gegerators of G such that the corresponding drameter 75 O(log|Gl)
(better: the diameter is = 101%o0g|G]).

Note that this result is false for cyclic groups. Namely, if G is cyclic and G = S
then the diameter is easily seen to be greater than 1(a!"Sl - 1) — in fact, this holds
for any abelian group. Thus, this is a particularly useless way to distinguish be-
tween nonabelian and abelian simple groups.

The theorem is constructive: a set S is more or less explicitly constructed;, and,
implicit in the proof, there is an a/gorsrfm which, given g=G, will compute an ex-
pression for g as a word in S using O(log|G|) group operations. However, this is
not the same qguestion as determining an expression for g of shortest length in the
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generators (the S-/amged of g) — nor even the exact length of g as a word in the
generators.

Two generators. Of course, in 4.1 one naturally expects that there is a set S of
2 generators producing diameter O(log|Gl). This has been verified in {most] cases
(a few of these are discussed are in [Ka2]):

4.2 Theorem. (i) /£ G 1§ an altergatiog group, or a group of Lie type and rank
= 1, thes there f5 a set S of 2 gegerators of G such that the correspoadirg drame-
ter 15 O(log|Gl).

(1) & G 15 an altermating group, or a group of Lie type and ramk = 20, theo
there 15 @ serS of 2 gensrators of G, ppe faving order 2, such har the corre-
spoadine diameter 75 O(log|Gl).

In (ii), the corresponding undirected graph is &yvafest The rank assumption is
unfortunate, and in many instances the arguments sketched below can be modified
so as to work in somewhat lower ranks (much lower when the characteristic is 2);
see [Ka2] for examples of this. However, despite the more tractable appearance of
the smaller rank cases, the general version of (ii) remains open and seems to re-
quire a less naive approach than will be presented below. In both (i) and (ii) there
is an associated algorithm in the sense indicated previously.

Question 1: Clearly (i) is aimed at extending Steinberg s result [St1] that groups
of Lie type have 2-element generating sets. Do Steinberg |s 2 generators produce
diameter O(log|G|)? The proof in [St1] uses roughly ?=rank G commutations,
therefore producing words of length > 2%, which is too large. Note, however, that
if Lis doundedand > 1, then Steinberg |'s proof shows that his generators do, in-
deed, produce diameter O(log|Gl).

Question 2: Is 4.2(ii) true for all £ =27 Presumably it is in all such cases, and
also when 2= 1. However, the latter is open even for 4.2(i) even in the most
familiar rank 1 instance:

Question 3: If G=PSL(2,q) with q #ora prime, find a set S of 2 generators
producing diameter O(log q). (For aset S of 3 generators producing this diameter
see 4.3.)

Question 4: Give a cogsiractve proof that, when p is prime, PSL(2, p) has di-

11 0 -1
ameter O(log p) with respect to { Bo . B , 51 0 B . The fact that the

di-
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ameter is O(log p) — in fact, < 500log p — is due to Lubotzky and Sarnak (see
[BKL, 8.1]). However, their proof is nonconstructive, using [We]. In order to
see the difficulty inherent in this question, consider the much more restricted -- but

also open —— question:
1 3(p-1)

Write Do qasa word of length O(log p) in the above generators.

1

Question 5 Prove that {most{ S produce small diameter. For example, prove

X V,ZES,, (X y¥) =5,

that Pr - o
z has length O(log n!) in {xyxly

On the other hand, all S ought to come close to working. For example, there is the

following conjecture: if S, = (x,¥7, then the corresponding diameter is O(n2).

n )—>1asn—>c>o.

Sketch of the parts of the proof of 4.2.

See 4.4 for the case of alternating groups. When G is classical we will replace it
by the corresponding linear group, which will then also be called G. We will
generally assume that g is odd, the even case being similar but simpler.

Framplel. G=SLQ2,q), q od
1t

-1
U
Write x(t):= E - B for telF, hib):= %

b D0—1D

o Q4 . .
- Efm*t:uE]Fq,a.ndr.—D1 o O
Then

x(t + w) = x(Ox(v) and x()") = x(tb2) for all b = 0, t, uek,.

4.3 Proposition: (i) Fq 15 a0 odd prime then G fas drameter Ollog |Gl) waih
respect toS:= {x(1), '}, wderer' = h(3)r.

(ii) Zq 15 odd, and if O generates ¥y | then G has diameter Olog |Gl)
wrth respect t0S:= {x(1), ', h(0)}.

Proof. If ad - bc =1 then a straightforward calculation yields that, for ¢ = 0,
g2%Q0
2=, ¢ g= Xt +achx(-o)x(-cl + del).

In case ¢ =0 use rg instead of g. This reduces the proof to showing that the
S-length of each x(a), aclFy, is O(log q) with respect to the given set S.

If g =p is an odd prime write 0 =2; if g >p let 8 be as in (ii). In either case,
F,=TF,(02). Every element telF, can be written in the form
t= 20 2= (a2 + a1 )02 + =)02) + ag

where either
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g=p, m+ 1= ilogq, and a,={0,12 3} (base 4 representation of t), or
q>p,m+1<logpq, and a=lF,.

Suppose thatq = p. Each x(t) is a word x(t) = (- (x(a, )"@x(ay,_ NIy (ay)
inm+ 1 elements x(a), and 2m elements h(0)*1. Here, each x(a) = x(1)% has
length = 3, while (by matrix multiplication) h(2)_1 = x(1)2(x(1)2)r'x(1){x(1)4)
has length =< 13. Thus, x(t) has length O(log p), as required.

Suppose that > p- As above, x(t) = (- (x(agy W Ox(a, 1 )O)--31Ox(a,), where
we just saw that each x(a), aclF,, has S-length O(log p). Thus, each x(t) has
length m-O(log p) = Olog q). O

Remark By crudely counting the lengths in the above arguments, it i5 easy to
check that the diameters are < 45log|G| in (i) and = 135log|G| in (ii). Namita
Sarawagi has observed that h(2) = x(1)r'x(1)#'x(1)r"! has length = 9, thereby im-
proving these estimates.

Framplella. SL(n, q), q odd

Let si=r,-1--'ry, so sH is an n-cycle within W. Let d denote an involutory diago-
nal automorphism of G centralizing a hyperplane, normalizing L, | and inverting
Xq,; write di ;= d.

Ifg:=r1dy-hg,(2)r3d3-ho (20)rsds d 7% (1)dg tfeuS:= {s, g} behares as required
(cf. [Ka2]). The point here, and in the other examples of 4.2(ii) sketched below,
is that g is chosen so that its eigenspaces and those of suitable shifts (conjugates by
powers of s) will have very well-behaved overlaps: if g'=gg¥ then
[g47, g 4] = x,(a) with aff, . Then XQS(a) has length O(1), while X%(a)glz
Xa3(4a). As in 4.3 we can use conjugation by g'in order to see first that all ele-
ments of x,,(IFp) have length O(log p) and then that all elements of Xy, have
length O(log ¢); then so do all elements of X, and X = (X )® Asin 4.3 it
follows that all elements of L, have length O(log q), and then so do z:=sry and all
elements of Hy,- Note that U C YYseYs" where Y:= X%Xé;--}{é?’z, and there
are cancellations occurring in these products since sk(sk+1)-1 = g1 and zk(zk+1)1 =
z'l. It follows that each element of Y has length O(n-log q), so that each element
of U has length O(nrnlog q)- Each element of H = Hy Hy) ---H%Zz also has length
O(nlog q). On the other hand, each element of W = N/H has {r,, s}-length O(n2).
Then each element of N has S-length O(n?log q) = O(log|Gl), and hence so does
each element of G = TUUNILI.

The proof is always easier when ¢ is even because root elements have order p =2
and hence are more readily accessible:
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Framplellb. SL(n, q), q erenx

This time let g:=ry-hg,(O)r4xq (1) and S:={s, g}; again write g"=ggs. Then
(g'6)sfe = Xaz(l), so that gX%(l) = rl-hoc4(8)r4 has length O(1), as does u:=
gxa7(1)(gxa7(1))53 =r1"hg,(0)hy Q)7 Since xq(b)0=xy,(002) for all b, as
above we find that all elements of X, and X, = (X, )® have length O(log g)-
Now proceed as before.

Fxampiellc. Sp(29, q), q odd

This time s:= r¢=+-r; induces a 28-cycle. The support Vo, of Lq, is a nonsingular
4-space of V. Let dy, denote an involution in G that normalizes L, , induces the
identity on Vg, and inverts X, write di =d . I o= then
Qg = (0 + ®g)S. Recall that ¢ = 16 and write G:= 05" and B:= % define dy, and
dp:= dgf in the obvious manner. Note that Vo = Vo -

Ifg:=ridy"he,(2)r3ds-he (20)rsds doXo (dgrody tenS:= {s, g} behaves as re-
gurred. Once again g'= gg*° satisfies [g"%7, g'4]578' = x (a) with adF, . As be-
fore we can use conjugation by s and g’ in order to see that all elements of X, and
X, have length O(log q); and then (as in in 4.3) so do z:= sry and all elements of
He,.. Moreover, so do all elements of (Xoclz)gflzs'12 = X, and (Xq, 4)g1”145'14 = Xa,
and then so do ro and all elements of Hy . After suitably ordering the positive
roots we find that U C YY Y™ X, Xoe- X5, with Yi= X X - XE
Also, H and N/H are easily handled exactly as in the previous Examples.

Fxamplelld. Q2%+ 2,q), q odd

Define s and Vg as in Example ITc. Let Vy be the anisotropic 2-space (Vg | O is
long)*, and let j denote an involution in G that interchanges Vi with a subspace of
Vo, While inducing the identity on (Vo, V3 ) note that |jj¥Y =3. Let de, be an
involution in G that normalizes L, induces the identity on VO,%1 and inverts X -
Define o, &, B, d;, d,, and dp as before; once again V, = Vy,. Since =20, w
and [} are perpendicular to &y and Wg_q.

Ifg:=r1dy-hg,(2)r3ds-ho O)rsds d7xg (dorodyj henS:= {s, g} behares as re-
gurred. This time g'= gg* satisfies [g'657, g'6] = X,4,(36), s0 if p =3 then we
can proceed as in 4.3 in order to see that all elements of X, and X have length
Oflog q). Then so do all elements of (X )2 and (X J¢. Conjugating by s7! we
find that, if Y = (+(8, q) denotes the orthogonal group on Vg, 1 Vy,, then all the
root groups X lying in Y have length O(log q). Using the usual method we see
that all elements of Y have length O{log q); the same is then true for the orthogonal
group Y5* on Vi, .1V, . However, Y58 = Y5 contains Ly,! Then ro and all
elements of Hg, and Xq, have length O(log q), and hence we can proceed exactly



16
as before (cf. [BKL]).

If p=3<q write w=g2" and wv:i=[g2 u]= Xq(-02+ 1), note that vv=
)11059((—82 + 1)02), and obtain all of Xqo, as in 4.3. If g =3 then [g4, g'3?] =
Xq,(1)- Now proceed as before. [

We conclude with a purely combinatorial argument.

4.4 Proposition. 7here are trvalent Cavley graphs for A, and S, Aaving oi-
ameter O(nlog n).

The following proof is motivated by an idea due to Quisquater (cf. [BHKLS]).
My original approach was slightly more complicated, very similar in spirit to the
partitioning method of [BKL] but using [Ka2]. The two generators constructed
below have the added property that their orders are bounded — 2 and 15 —
whereas one of those obtained as in [BKL] has order Clog n.

Proof. Let m =4, and consider the m-set X ={012,...m - 1}; expressions
such as x, 2x+1, etc., are always assumed to refer to elements of X. Write

bo:=  [1x2x2x+1) and b= [](x2x2x+1) if m is even,
2y < 2it! 2i<x < 2it1
jeven jodd

b= [1&x-12x-12x) and b= [](x-12x-12x) if mis odd.

2§« x < 20t 23« x < 2it!

j> 0even jodd
Note that each product consists of pairwise commuting 3-cycles. In each case,
(bg, by fixes 0 and b, fixes 1. If x€X and x > 1 then biil moves X to a smaller
member of X (in fact, to a member < ix) for some i. Thus, 1 = x¥* for a word w
in {bg, by} of length < log m. It follows that {(0,1), by, by} generates S, with di-
ameter O(mlog m). Namely, each transposition (0x) = (0. D% ! has length
= 2log m + 1; and it is easy to see that each element of S, has length = m in these
m - 1 transpositions.

Now consider an n-set, n=11, which we may assume has the form
{oo, oo, pHUXUX' where X' = {x' | xX}, cc and o' are new symbols, and so is p
ifn=2m +3is odd whilep=0"if n=2m + 2 is even. Let

t:= (xx) or (copo)(xx')  depending on the parity desired, and
X X

g:: (oolspsoososll)bobll;
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where, for example, b'y = b denotes the permutation of X' behaving as by does
on X. (In particular, by fixes 0 while b'; fixes 0' and 1.) We will show that
S:=1{t, g} gegerates S, with drameter O(nlog n).

Clearly g3 = (o000 ,0,p,17), g5 =bgbjand (g2t =bg by. As seen above, for each
x=X-{0} there is a word w of length < log m in {g2, (g2)} fixing co, o', 0, p and
sending 1' to x Thus, (oo 0px') has S-length O(log n). Since
(0000, 0,p,1)2(00,00' 0, p X Moo 0 p 1) = (000’ x) for x =1, it follows that
(00,00 1) has length O(log n) for each us{0,p} J(X'-10'}). Now conjugate by t in
order to see that (coco'u) also has length O(log n) for each ue{0'}U(X-{0}).
Each element of A, has length < 2n in these 3-cycles, while parity can be adjusted
if needed by using t. O
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Strateoy Y First we will have to choose S so that all elements of

LOt1 = <Xa1, X .7 =8SL(2,q) have length O(log q), and hence in particulgr r an_(il

all elements of EI;L clox.2 Then 59 does z:=srq. MNote that U=YYsYs - ys”

where Yi= Xq, Xoy Xof | Xof ;o and there are cancellations occurring in these

products since sk(sk+1)1 = 571 and zk(zk+1)-1 = z-1. [t follows that each element of

Y has length O(%log q), 50 that each element of U has length O(%-%0g q). Each

element of H=H, H; Hi also has length O(%logq). Moreover,

N=(H,r;| 1<i<?), and we will choose S so that each element of N/H has

{rH | 1<i<®}-length O(2) and each element rH has S-length O(log q). Then

each element of N will have S-length O(%log q) = O(log|G|), and hence so will

each element of G = UNU.

Thus, we must choose S so that the assertions in the preceding paragraph are valid:
[. Each element of LG1:= { Xal, X_Otl » = SL(2,q) or PSL(2, q) has length
O(log q),
II. Each element r;H has S-length O(leg @), and
I1I. Each element of N/H has { rH | 1 < i< ¢ }-length O(?).pastass
In addition, S will satisfy the additional condition
IV. S={s, g} withg?2=1.
Of course, [V will always be easy to check, [ implies II for the case i =1, and the
general case of I mgmallilsy follows from this one by conjugating by s. Finally,
III is very easy to check by induction on 2, and hence can be ignored from now
on.
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€1 & and eg; = e;for j=i,1+1, and

s: e1 ey e ey — (CDvle
Then 1 4 rl (where gh: —h 1gh in any group) If tElF write h,(t):= d1ag(—
1,1 ) b (t):=h (l:)S and H;: <h(t)|tElF > for 1<1<11 so that H:=[],H; is
the group of all d1agona1 matrices in SL(n,q). Also let d:=diag(-1,1,... 1) and
d. cl1 ; note that det d; = -1 and d2 = 1.

Calculating with 2 x2 matrices, we find that (for any t=0 and &)

%5, @MY =%, 02), b= @™ 1" =" and =1,

Let 8 denote a generator of F,

Write g:=h1(8)1‘1dl-h3(28)r3d3-d5-}{7g(1)(:17 -

i1~

We will show that 5:={s,g} behaves as required.

Clearly, det g=1 and g2=1. In particular, |SUS1|=3.

Claim 1. All elements of x54(IF,) have length O(log p). For,
ggs =h 1{0)rd-h3(2)-h5(20)rs1-x78(1)-Xg 10(1)dg

f: = [(ggs 15 =h{(2)*x54(4)

v. =1 5= h5(16)}{9’10(4)

7= hy(16)x55(4-162)

fvf—l = X56(4'162—4) .
Thus, X54(4-162-4) has length O(1), where 4-162-4=0 for p=3, 5, 17. If p=3, 5
or 17 then (f¥)4=x454(4-162)4=x54(1).

It follows that Xsg(a) has length O(1) for some a,ElF;< . Note that
xs6(a)V=xs5¢{a-162). Now, as in the case PSL(2 g), express an arbitrary t&lF, in
the form

t=a(t/a) = EO ab;16% = (-(ab 162+ab | )162+--)162+ab,
where m<log p and the b; are 1ntegers sat1sfy1ng O<b;<162. Then

x56(0)=C((x56(@)"™) Xss(a) m-1)"ee) x56(a) 0
has length O(log p), as claimed.

Claim 2. All elements of X,=x15(IF,) have length O(log q). For, all ele-
ments of x(Fp)= 1{56(]Fp)5 have length Of(log p). If aclF, then
x15(a)® = x51(a—2). By writing an arbitrary element of IF, in the form t= 20
a; 0% where m < logyq and a,&lF,, we can proceed as above to see that all elements
of x1(IFy) look like

X21(t) = (=X palam)*x 2(am-1))* - )*x12(ag)
and hence have length O(log q). Now conjugate by g in order to obtain the claim.
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Generators and relations for some central extension I' of a simple group G of Lie
type. (NOTE: T may not be the universal cover of G.)

The untwisted case is easy, and standard. So throughout, G will be
twisted

Refs.:

Griess, TAMS 183 (1973) 355

Steinberg, J. Algebra 71 (1981) 527.

G=2Dn(q) with root system By_1,
or 2Eﬁ(q) with root system Fq,
or 2An(q), n=2m+1=5 odd.
generators: Xg,(t), where either & long, teGF(g), or & short, tEGF(qZ).
The involutory field automorphism of GF(g2)ist—t .
relations: (all t,u)
x(Oxg(W)=xp,(t+u) all &

[xee(0), XB(U)]Z 1 if o+P=root
X BlEqptw) &, B0t long
XOCJFB(SO!BI:U) o, B short,
+PBlong
Xo BEqptu + ) o, B o+
long

or &, [ long, ce+3 short
X+ BRI X2 (€ g tun) o, a-+23
long, B, a+p short
where each €=+1, independent of t and u.
NOTE: The conditions on &, & G+[3 are not satisfied for each G.

G:3D4(q) with root system Gy.
generators: Xo,(t), where either & long, teGF(g), or & short, teGF(g3).
The field automorphism of GF(q3) of order 3 is t —t@, with inverse ab-
breviated
t —t0*. Also, Tr(t):=t+ tO+ t0*.
relations: {(all tu)
Xy (OxXg(W=xg,(t+u) all &

[x(0), xp(w)]= 1 if G+B=root
XOCJFB(SOCBtu) o, 3.+ long
X(x+B(€(xBTr(tu)) o, [.short,
o+ long

XCEJFB(SC,‘B(I;OIJO*+t0*u0):c2a+[3(E'GBTr(ttOuG*))XQ+QB(€"QBTr(tu0uO*))
o, 3, o+ short,
& 2043 ,a+2[3 long
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X+ B EURIX o4 B (€ Bt OtT WX 34 BE B0 W) X3O€+2[3(2€”'C,£Btt0t0*u2)
o, G+, 20+, ae+23 short
& 3, 3o+, 3a+2p long
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GzzAn(q), n=2mz=4.
Here the "root system" is best viewed as BCy,, namely, the union of a By, and a
C system. However, following Griess well just use a Cyy, system.
generators: Xq,(t), where & is short, teGF(q),
and xp,(t,u) with & long, t u=GF(g2), and u+u=Eqtt, where again
the involutory field automorphism of GF(g2) is t —t.

relations:
Xy (OxX g (W=xg,(t+u) if ¢ is short
[xe(t, ), x0 (v, w)]= x5, (0, e ltv-tv)) o long
in fact xa(t,u)xa(v ,W):XOC(L+V,U+W—€O€_[V)
[x(0), xp(w)]= 1 @, B short,
o+P=root
Xo+-BEaptW) a, B, a+f
short
XOH_B(O, Eaﬁ(tu—tu)) o, [ short,
o+ long
[xg(tw), xp(v,w)l=1 o, P long,
3(ce+B)=root
[xgu(tw), xRV, w)=X1 (s B EPLY) «, P long,

3(+B) short
[xqe(tu), XB(V)]Zl @ long, 3 short, G+[=root
[xq(tu), XB(V)]ZXOC_,_B(EQBUV)XOC+ZB(€'O¢BIZV, 8"O¢BUVV) for o, a+2 long,
B, &+f3 short

NOTES: The relations defining a long root group (of order q3) are as
follows.
The elements xq,(O,u) form a group isomorphic to the additive group of GF(g).
Modulo this group, the root group is isomorphic to the additive group of GF(qz).
In fact, if we have xg(tu) and xq(t,u) in the root group, then Xq(tu) =
Xt u)xg(0u-u'). Moreover, the commutator relations are completely deter-
mined by the GF(q)-bilinear map tv-tv, and hence can be obtained via a basis of
GF(g2) over GF(q).

G=2F4(q)

Here the root system has 16 roots, corresponding to the 16 vertices
1,...,16 of aregular 16-gon. These alternate long and short around the 16-gon,
with odd indices short and even ones long. q=223+1, and 0 is the field automor-
phism with 262=1 (i.e., exponentiation by 2€).
generators: Xq,(t) for each &, where, teGF(q)
relations:

[Xgy(D), Xg(w)]=1 if @ is short,
i.e. odd
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while for & long, i.e. even,

[Xqy(t), Xg(w)]= XQ(V)Z where
V28+ 1=tu29+t29u

[xg(t), Xg(W)2]= 1
Xa(t)zxa(u)zzxa(wu)z

In fact xp,(hx{0)=x, (t+u)xo€(v)2 where v29+1-20.

NOTE: The preceding relations for the group {xg()teGF(q)? define a
Sylow 2-subgroup, of order q2, of a Suzuki group Sz(g). Its center consists of
the elements Xa(t)z, and is isomorphic to the additive group of GF(q), as is the
central quotient group. Only a basis of the field over GF(2) is needed for a pre-
sentation of this 2-group.

The remaining commutators are all trivial, except for the following and
those obtained from them by applying a transformation @@ —Q+23 to subscripts
mod 16.

[x1(0), x3(w)]= x)(tu)

[x1(t), xq(w)]= x3(v)2 where v20+1-ty

[x1(t), xg(w)]= X3(V)2 X4(t29u)x5(v')2 ) where v20+120+1y
2041120

[x1(t), x7(w)]= % (19 Lu)x3(200) x5(tu20)3x 4(tu20+1)

[x1(t) ,XS(U)]:XZ(,;ZB +211)X3(t29+ lu)2x 4(140+2y20+ 1)y 5(,;2|E)+11129)3X 6(t29+2u29+ 1y
x7(tu)

[x2(t), x5(w)]= x3(v)2 where v20+1-ty

[x7(t), x7(u)]= X3(V)2X4(tu29)x5(v') where v20+1=¢20y +20+1= (120+1
[x7(t), xg(w)]= x4(t2%0 )x (tu29)

[x3(t), x5(u)]= x4(tu)

[x3(), xg(w)]= x5(v)2 where v20+ 1=y

[x3(t), xg(uw)]= X5(V)2X6(t29u):{7(v')2 ) where v20+1=20+1y +20+1-,20
[x4(t), x7(w)]= x5(v)2 where v20+1-ty

[x5(t), x7(w)]= xgltu)

[x5(), xg(w)]= x7(v)2

BOW TO DRCREASE NUMBER OF RBEBLS BY
CONJUGATING BY h
N TEIS cage Suz Levl factor??Y

Ceperators: 4,6 X, r=0....e- [ .-YQY%XG
Relatrions:
=1 2= =41
x0=x [ip x5/ =[x x5/ =1 xf =xf =1
r=xpdxp b lr=xpm Ay,

as required above. Length Ofog g/
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For g even, use: xj, =5/, [xp x/=1, 7=l r=xprdap
PSU3.qg) g=r°, A‘—(g+[%’g+[.3) Assume that 3ig+ 1, the fard case.
Ceperators: 4, r, Xy, 1=0,....2e-1 55, vy ¥ 1=1,....e-1
Relatrons:
=1, “ =1, #=t1
ipr 3= g xil=57. s, 5= 1. 2 5=
[xg 5=y, 3if=[52 yil=1
lxp vif=lxy vi=1x0 vi/=!
lxg 7= lxp v o =l
Y F=xP=x=1 yP=yP=v =1
r=xpigap b lr=xm Ay, B = xSy, 27
and vy, vy ¥y = specific powers of yy.

/ Baven t checked the exvact refations here.  The problem 1s the Fasr relfatrons,
wihich seem to need Ole-elog pl

d,:=diag(-1,1,...,1) and d;, = (:11Sl ; note that det d; = -1 and d2 = 1.
Calculating with 2 x2 matrices, we find that (fé)r any t=0 and @)
Xi)i+1(@)hi(t) = Xi)i+1(C'CE2), hi(t)riz hi(t)_l, r, ' = t‘-_l and t‘i4=1-

1

% %% % % %

[x,(0%), XB(Bk')] =1 o, P short, @ + B=root
XOHB(E gkak) o, B, @+ [ short
Xooi (0, g, (Bkek 9 kgk’y o, b short, @ + 3 long

[x,(BK, BK), x (Bm Bm)] =1 o, B long, 3(a + Bed

[x,(0k, OK), x (9‘“ om)] =
[x,, (Bk Bk) x (Bm BmY] = Xi(q, B)(BO) Cap «, P long, 3( + [3) short
[x,(Bk, OK), x (Bm)] =1 a long, P short, o+ Ped
[x,(BK, BK), XQ(Bm)] =x,(€, BBKB Wy 2p € pOKOM €4, pBKOME m)
o, o + 2 long,
B, o+ B short

The wvarious relations have total length O({ 22elog p + 22e2} + Le-log p +
{22 + Lelog p} + 222 + 2e2-elogp + Le2-elog p + { Le2 + Me-elog p} + L2 +
2(e? + elog p) + e2 + Leelogp + ....) = O((log|G|)2). The number of genera-
tors is considerably less than this.

%R "B % %% %% % %% %
First we need to show that these two permutations carn, indeed, be constructed. In
order to see that N - {UX JULUX] } has size n - [E| with [E| > 2, note that
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62% < 32:2°-2602%-1) = n - 26(2%1) = 2+5 < 2562" - 26(2%-1) =230-2% + 26.

In particular, g can be constructed. (Since x — ax fixes 0, g behaves as follows:
x; — (ax).; for x =0, and x{ — (ax + a- 1) ,{, with subscripts read mod 13.)
In order to meet the conditions on the e, note that the number of (g)-orbits on
E-{ocoe='} is g +r, where q +r= |E|/11 since |E|=2+ 13g+r=2 + s = 628
Also, [EIf11 < 23024+ 26)/11 < 23(2%- 1) < |Y| - 2. Thus, t can be constructed.
(N.B. — It is this last inequality that motivated the use of 13-cycles from Ein g.)



