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This short paper surveys some recent results made 
possible by the classification of finite simple groups. 

1. 2-transitive designs 

During the period 1960-1975 there was a great deal of 
research activity concerning designs £J whose automorphism 
group G = Aut ~ is 2-transitive on points. The results 
obtained are surveyed in detail in [15]. One of the leaders 
in this area was Noboru Ito, whose beautiful results [6-11] 
greatly influenced my research. 

During that period it had been hoped that the study of 
designs might lead to a classification of 2-transitive 
groups - or, at least, of multiply transitive ones. 
However, the relatively I ittle work in this direction after 
1975 reflected the difficulty of this prolem. Finally, it 
became apparent that 2-transitive groups would be classified 
only when al I finite simple groups were. 

There is now a list of (finite!) 2-transitive groups 
(e.g., in [16], based on results of Maillet, Curtis-Kantor-
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Seitz, Huppert, Hering, and folklore in the case of the 
sporadic simple groups). One very easy consequence of this 
I ist is the folowing 

Theorem 1 ([17]). If c@ is a symmetric design with 
a 2-transitive automorphism group, then <B or its comple­
mentary design is a projective space, the 11-point Hadamard 
design, the 176-point design for the Higman-Sims group, or 
the 22n_point design whose (1, -1) incidence matrix is the 
2n-fold tensor power of (=i -0, n ~ 2. 

This theorem and the next one completely settle 
problems studied at length by Ito and myself: 

Theorem 2 ([16]). If ~ is a design with A = 1 and 
k > 2 whose automorphism group is 2-transitive on points, 
then o@ is one of the following: an affine or projective 
space; the unital (v = Q3 +1, k =Q+1) associated with 
PSU(3,Q) or 2G2(Q); an affine plane with 34 or 36 points; 
or one of two designs having v = 36 and k = 32 . 

The two designs with 36 points were discovered by 
Hering (unpublished). Recent special cases of Theorem 2 are 
found in [2,4,19]. The proof of Theorem 2 is very easy 
when G has no regular normal subgroup. In fact, the only 
del icate part of the proof occurs when G is assumed to be 
solvable. 

There is an analogue of Theorem 2 for t-designs with 
A = 1 having a t-transitive group. In a somewhat similar 
direction, Theorem 2 immediately produces a classification 
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of all designs with A = 1 and k>2 whose automorphism 
group G is transitive on ordered triangles of points. 
Recently, Li [20] extended this to deal with tansitivity 
on unordered triangles. 

Hore generally, consider a geometric lattice L. In 
[16]. it was noted that Theorem 2 produces a classification 
of al I such L for which Aut L is transitive on ordered 
bases. Whi Ie the corresponding problem for unordered bases 
remains open, involved arguments in Li [20] settle the cases 
of dimension 2 or 3. 

On the other hand, it is very easy to deduce from 
Theorem 2 the classification of all t-designs with A = 1 
whose automorphism group is t-homogeneous on points (see 
[3] for the case t = 2). 

Another open problem (somewhat related to Theorem 1) 
is a classification of al I Hadamard matrices whose auto­
morphism group is 2-transitive on rows. This is another 
important problem studied by Ito [12-14]. 

2. Projective planes 

The first, best and most important result concerning 
2-transitive designs was the Ostrom-Wagner Theorem [22], 
which dealt with the case of projective planes. The proof 
given 25 years ago is elegant, and led to many other 
significant results. In particular, Theorem 2 in no way 
influences the beauty or strength of that fundamental 
resu It. 

Attempts to generalize the Ostrom-Wagner Theorem began, 
almost immediately after its publ ication. Whi Ie there were 



several directions in which general izations were studied, 

the one that concerns us here involves transitivity on flags 

(incident point-I ine pairs). 

Conjecture A. If 7[ is a finite projective plane 

such that G = Aut 7[ is flag-transitive, then 17[ is 

desargues ian. 

According to a result of Higman-McLaughlin [5]. if rB 
is a design with A '= 1 and G :$. Aut S is flag­

transitive, then G is primitive on the points of~: 

Therefore, Conjecture A would fol I~w from 

Conjecture B. If 7[ is a finite projective plane 

such that G = Aut 7[ is primitive on points, then 7[ is 

desargues ian. 

These conjectures remain open. The following results 

handle the group theoretic cases of the conjecture. 

Theorem 3 ([18]). Let 7[ be a finite projective plane 

such that G = Aut 7[ is primitive on points (or, less 

generally, is transitive on flags). If the stabilizer of 

some flag is not 1, then 7[ is desarguesian. 

When the stabilizer of each flag is just 1, 7[ is a 

difference set plane. If 7[ has order n then the 

number n2 +n+1 of points is a prime, either IG/ = 

n 2 +n+1 or G is a Frobenius group, and Conjectures A and 

B reduce to Questions about lp' Thus, the open cases of 
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the conjectures are very much not group theoretic. 
The proof of Theorem 3 begins with three observations: 

G is primitive on points, the number n2 +n+1 of points is 
odd, and G can be assumed to have a simple normal 
subgroup. All primitive permutation groups of odd degree 
having a nonsporadic simple normal subgroup were determined 
in [18]. (Independently, the same result was obtained in 
[21]. Also independently, the sporadic case was completely 
handled in [1].) The I ist of such primitive groups is very 
long. It contains all maximal parabol ic permutat ion 
representations of characteristic 2 groups of Lie type, 
alternating or symmetric groups acting on subsets of a 
fixed size or on partitions into blocks of equal size, 
classical groups on orbits of subspaces or on suitable 
direct sum decompositions of the vector space into subspaces 
of equal dimension, and so on. 

The proof of Theorem 3 then degenerates into a long 
and tedious case by case elimination o.f the possibilities in 
this long I ist. The main tools involve subplanes. In 
particular, one can assume that n is a square, n = m2 , 
and,that al I involutions in G fix exactly m2 +m+1 
points. Unfortunately, I was not able'to find a uniform 
approach, and many separate tricks were used. 
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3. Open problems 

The proof of Theorem 3 suggests further problems,such 
as the following two. 

(a) Determine all flag-transitive designs rB with 
A = 1 and v odd but not a prime power. This is related 
to both sections 1 and 2. By [5], G is primitive on 
points. One can assume that G = Aut «9 has a simple normal 
subgroup. Then the results in [1,18,21] provide a very long 
I ist of possible permutation groups to be checked. Unl ike 
the,case in Theorem 3, there is no reason to expect 
involutions to be wei I-behaved. Nevertheless, the Question 
seems feasible. Its solution may even produce a better 
approach to Theorem 3. 

(b) Show that if 7C is finite affine plane and 
G = Aut 7C is point-primitive then 7C must be a translation 
plane. If the plane has order n then there are n2 points. 
A standard argument of Ostrom and Wagner [22] settles the 
case of even n. When n is odd, it is easy to reduce to the 
situation in which G has a simple normal subgroup. 
Once again, the results in [1,18,21] produce a long list 
of primitive groups to check. One can assume that each 
involution fixes exactly n points. Nevertheless, I have 
not been able to check the list. The difference between this 
situation and that of Theorem 3 concerns the action on 
lines: G was I ine-transit~e in Theorem 3 whereas here G 
can have many I ine-orbits of various sizes. 

-177-



References 

1. H. Aschbacher, Overgroups of Sylow subgroups in sporadic 
groups (to appear). 

2. G. Cherlin, L. Harrington and A. Lachlan,ko-categorical 
~-stable structure (to appear). 

3. A. Delantsheer and J. Doyen (to appear). 

4. H.Hal I,Jr., Steiner triple systems with a doubly 
transitive automorphism group (to appear). 

5. D. G. Higman and J. E. HcLaughl in, Geometric ABA-groups, 
III. J. Hath. 5 (1961) 382-397. 

6. N. Ito, Uber die Gruppen PSLn(Q), dieeine Untergruppe 
von Primzahlindexerhalten, Acta Sci. Hath. (Szeged) 21 
(1961) 206-217. 

7. N. Ito, On a class of doubly, but not triply transitive 
permutation groups, Arch. Hath. 18 (1967) 564-570. 

8. N. Ito, On permutatiori groups of prime degree p which 
.' contain (at least) two classes of conjugate subgroups of 

index p, Rend. Sem. Hat. Padova 38 (1967) 287- 292. 

-178-



9. N. Ito, On permutation groups of prime degree p which 

contain at least two classes of conjugate subgroups of 

index p, II, Nagoya Math. J. 37 (1970) 201-208. 

10. N. Ito, A theorem on Jordan groups, in 'Theory of finite 

groups", Benjamin, New York 1969, pp.47-48. 

11. N. Ito, On Wielandt number of transitive permutation 

groups of prime degree, Acta Math. Acad. Sci. Hungar. 26 

(1975) 267-274. v 

12. "N. Ito, Hadamard matrices with "doubly transitive" auto­

morphism groups, Arch. Math. 35 (1980) 100-111. 

13. N. Ito and J. S. Leon, An Hadamard matrix of order 36, 

JCT(A) 34 (1983) 244-247. 

14. N. Ito and H. Kimura, Studies on Hadamard matrices with 

"2-transitive" autmorphism groups, J. Math. Soc. Japan 

36(1984) 63-73. 

15. W. M. Kantor, 2-transitive designs, in "Proc. Comb. 

Conf. ", Reidel, Dordrecht 1975, pp 44-97. 

16. W. M. Kantor, Homogeneous designs and geometric lattices 

(to appear in JCT(A». 

17. W. M. Kantor, Classlfication of 2-transitive symmetric 

designs (to appear in Graphs and Comb.: An Asian 

Journal). " 

-179-



18. W. H. Kantor; Primitive permutationgroups,M odd 
degree, and an appL.icatton to finite projective planes 
(submitted). 

19. J. D~ Key and E. E~ Shult, Steiner triple systems with 
doubly transitive automorphism.groups :. A corollary to 
the classificaiton theorem for finite simple group, 
JCT(A) 36 (1984) 105-110. 

20. Hui-Ling Li (to appear). 

21. H. Liebeck and J. Saxl, The primitive prmutation groups 
of odd degree (to appear). 

22. T. G. Ostrom and A .. Wagner, On projective and affine 
planes with transitive coil ineation groups, Hath. Z. 71 
(1959) 186-199. 

-180-




