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Abstract

Let D be a symmetric design admittjra null polarity such that eitbr all singular lines, or all
nonsingular lines, have size — A)/(k — 1); assume that this number is greater thain the case of
singular lines. The is either a projective space or an orthogonal symmetric design.
© 2003 Elsevier Ltd. All rights reserved.

The Dembowski-Wagner Theorer] [characterizes projective spaces as the only
symmetric designs suchahall lines have sizév — 1)/(k — 1). This note contains two
analogous characterization results conceraiggnmetric design admitting a null polarity.
Whereas the proof in3] depends on classical axioms for projective spagkslie results
below follow very easily from far more difficult theorems due to Buekenhout and Stjult [
and Hall B] concerning polar spaces.

Recall that, for any symmetric desidh if x andy are distinct points then thdine xy
is defined to be the intersien of all blodks containingk andy. Two points are on exactly
one line, and &ine of size(v — 1) /(k — 1) has nonempty intersection with every blo&k [
Assume thaD is equipped with a null polaritk — x* (thus,x € x* for all pointsx).

We call a linesingular if it contains distinct pointx, y suchthaty e x*, andnonsingular
otherwise. Ifx # z € xy € x* thenx,z € z! and hencey € xy = xz C z-: aline
cannot be both singular and nonsingular.

In addition to the projective geometries RI3q) we will need to consider Higman'’s
“orthogonal” symmetric design$], having the same parameters; its points are the singular
points x of a d-dimensional orthogonal G§)-space withg andd odd, and its blocks
correspond to the hyperplanes.

Theorem 1. LetD be a symmetric design admitting a hpblarity such hat all singular
lines have sizév — A)/(k — 1) > A. ThenD is either a projective space or an orthogonal
design.

E-mail addresskantor@math.uoregon.edu (W.M. Kantor).

0195-6698/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0195-6698(03)00109-4


http://www.elsevier.com/locate/ejc

240 WM. Kantor / European Journal of Combinatorics 25 (2004) 239-241

Proof. Consider the geometry consisting of the points dD and the singular lines. By
hypothesis, every block™ has nonempty intersection with every singular lingand if
z* contains two points of then it containd.. This is just the Buekenhout—Shult property
for G. Clearly no pointis perpendicular to all others; and the hypotfiesis.) /(k—1) > A
implies that there are three noncollinear pase perpendicular points. It follows fror2]
thatG arises from a polar space.

The polar space determines the blockDosincex* consists of the points collinear
with x (with respect to G); and hencej produces a symmetric design if and only if
Ix+ N yt|is the same whenevarandy are distinct. It is easy to check all polar spaces in
order to see that only symplectic and oddadnsional orthogonal ones produce symmetric
designs. The designs in the symplectic case are projective spddes.

Theorem 2. Let D be a symmetric design admitting a null polarity such that all
nonsingular lines have size — A)/(k — A). ThenD is a projective space.

Proof. This time consider the geomet§y’ consisting of the points oD and the
nonsingular lines. Every block- has nonempty intersection with each nonsingularline
Thistime, ifz- 2 L thennolinezu,u € L, isinG’, while if z- N L is apointw thenzuis a
line of G’ for eachu € L — {w}. Thus,G’ is a “copolar space” and is “indecomposable” and
“reduced” in the sense 05]. All possibilities forG’ were determined ing, Theorem 2].

Each possiblg’ deternines the blocks ob sincex' consists ofx and the points not
collinear withx (with respect toG’); and, as above;’ produces a symmetric design if and
only if [xt N yt| is the same saemwheeverx andy are distinct. It is straightforward
to check the geometries listed i, [Theorem 2] in order to see that the only ones arising
from symmetric designs are the geometries of points and nonsingular lines of symplectic
geometries. Once again the copending designs are projective spacet]

Remark 1. It is natural to wonder about theorems of the following sdret symmetric
design has sufficiently many lines of size— 1)/(k — 1) then it must be a projective
space.How many is “sufficiently many” ? One might conjecture that it is enough to have
more than half the numbeér(d, q) = (%1 — 1)(q¥ — 1)/(q2 — 1)(q — 1) of such lines
that PGd, g) has. However, elementary examples obtained using the meth@fshdw
that there are symmetric designith the same parameters as @Gq), d > 3, other than
PG(d, q), having aleast(q®~1 — q9-2)q9-1 = L(d, q)(1 — o(1/q)) lines of sizeq + 1.

Remark 2. These theorems were motivated by application to a family of symmetric
designs related to the grous(q) [4].

In memory. The involvement of Jaap Seidel if]jwas desdbed at length in]], including

the following: “Sedel laid much pressure on me with his unique insight and skill to coach.
He insisted that | got in touch with Shult and | did so. Eventually the story led to the
Buekenhout—Shult 1974 theory. Theam was built by SeidelThese skills are familiar to

all who knew Jaap.
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