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Abstract

Let D be a symmetric design admitting a null polarity such that either all singular lines, or all
nonsingular lines, have size(v − λ)/(k − λ); assume that this number is greater thanλ in the case of
singular lines. ThenD is either a projective space or an orthogonal symmetric design.
© 2003 Elsevier Ltd. All rights reserved.

The Dembowski–Wagner Theorem [3] characterizes projective spaces as the only
symmetric designs such that all lines have size(v − λ)/(k − λ). This note contains two
analogous characterization results concerninga symmetric design admitting a null polarity.
Whereas the proof in [3] depends on classical axioms for projective spaces [8], the results
below follow very easily from far more difficult theorems due to Buekenhout and Shult [2]
and Hall [5] concerning polar spaces.

Recall that, for any symmetric designD, if x andy are distinct points then theirline xy
is defined to be the intersection of all blocks containingx andy. Two points are on exactly
one line, and aline of size(v −λ)/(k−λ) has nonempty intersection with every block [3].
Assume thatD is equipped with a null polarityx → x⊥ (thus,x ∈ x⊥ for all pointsx).
We call a linesingular if it contains distinct pointsx, y suchthaty ∈ x⊥, andnonsingular
otherwise. Ifx �= z ∈ xy ⊆ x⊥ thenx, z ⊆ z⊥ and hencey ∈ xy = xz ⊆ z⊥: a line
cannot be both singular and nonsingular.

In addition to the projective geometries PG(d, q) we will need to consider Higman’s
“orthogonal” symmetric designs [6], having the same parameters; its points are the singular
points x of a d-dimensional orthogonal GF(q)-space withq and d odd, and its blocks
correspond to the hyperplanesx⊥.

Theorem 1. Let D be a symmetric design admitting a null polarity such that all singular
lines have size(v − λ)/(k − λ) > λ. ThenD is either a projective space or an orthogonal
design.
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Proof. Consider the geometryG consisting of the points ofD and the singular lines. By
hypothesis, every blockz⊥ has nonempty intersection with every singular lineL; and if
z⊥ contains two points ofL then it containsL. This is just the Buekenhout–Shult property
for G. Clearly no point is perpendicular to all others; and the hypothesis(v−λ)/(k−λ) > λ

implies that there are three noncollinear pairwise perpendicular points. It follows from [2]
thatG arises from a polar space.

The polar space determines the blocks ofD sincex⊥ consists of the points collinear
with x (with respect to G); and henceG produces a symmetric design if and only if
|x⊥ ∩ y⊥| is the same wheneverx andy are distinct. It is easy to check all polar spaces in
order to see that only symplectic and odd-dimensional orthogonal ones produce symmetric
designs. The designs in the symplectic case are projective spaces.�

Theorem 2. Let D be a symmetric design admitting a null polarity such that all
nonsingular lines have size(v − λ)/(k − λ). ThenD is a projective space.

Proof. This time consider the geometryG′ consisting of the points ofD and the
nonsingular lines. Every blockz⊥ has nonempty intersection with each nonsingular lineL.
This time, ifz⊥ ⊇ L then no linezu, u ∈ L, is inG′, while if z⊥ ∩ L is apointw thenzu is a
line ofG′ for eachu ∈ L −{w}. Thus,G′ is a “copolar space” and is “indecomposable” and
“reduced” in the sense of [5]. All possibilities forG′ were determined in [5, Theorem 2].

Each possibleG′ determines the blocks ofD sincex⊥ consists ofx and the points not
collinear withx (with respect toG′); and, as above,G′ produces a symmetric design if and
only if |x⊥ ∩ y⊥| is the same same wheneverx and y are distinct. It is straightforward
to check the geometries listed in [5, Theorem 2] in order to see that the only ones arising
from symmetric designs are the geometries of points and nonsingular lines of symplectic
geometries. Once again the corresponding designs are projective spaces.�

Remark 1. It is natural to wonder about theorems of the following sort:if a symmetric
design has sufficiently many lines of size(v − λ)/(k − λ) then it must be a projective
space.How many is “sufficiently many” ? One might conjecture that it is enough to have
more than half the numberL(d, q) = (qd+1 − 1)(qd − 1)/(q2 − 1)(q − 1) of such lines
that PG(d, q) has. However, elementary examples obtained using the method in [7] show
that there are symmetric designswith the same parameters as PG(d, q), d ≥ 3, other than
PG(d, q), having at least(qd−1 − qd−2)qd−1 = L(d, q)(1 − o(1/q)) lines of sizeq + 1.

Remark 2. These theorems were motivated by anapplication to a family of symmetric
designs related to the groupsG2(q) [4].

In memory. The involvement of Jaap Seidel in [2] was described at length in [1], including
the following: “Seidel laid much pressure on me with his unique insight and skill to coach.
He insisted that I got in touch with Shult and I did so. Eventually the story led to the
Buekenhout–Shult 1974 theory. Theteam was built by Seidel”.These skills are familiar to
all who knew Jaap.
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