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Permutation Group Algorithms

WILLIAM M. KANTOR

I

Quite a few papers in these Proceedings concern goal-oriented Computational
Group Theory, aimed at producing software and leading to important applica-
tions. There are also a number of papers concerned with algorithms and their
inherent limitations, from a somewhat more theoretical point of view; their goal
is new data structures and new mathematical approaches more than the immedi-
ate production of software. The present note is partly in the latter direction, but
also partly points elsewhere: the production of new, purely mathematical theo-
rems and directions, having algorithmic applications but capable of standing by
themselves without any algorithmic components. It is my contention that such
theorems can not only be of value within algorithmic contexts, but also within
other areas of mathematics.

Let me start with some examples of theorems I have in mind.

e Orders of primitive subgroups G of S,,: |G| < n“!98™ for some constant C
unless n = (7,?)[ and G is a subgroup of SywreathS; containing (Am)¢ for
some m,k,l, where Sy, acts on the k—sets of an m—set and the wreathed
product has the product action. This result is due to Cameron [Cam], based
on work on permutation representations of classical groups [Kal] as well as
the classification of finite simple groups. (In [Li] it is shown that one can use
C =9 here; in fact, C = 5 will do.) The theorem, and refinements of it, have
been of great importance to some of the work described in other papers in these
Proceedings (by Babai-Luks—Seress, Seress—Weisz and Sarawagi—~Cooperman—
Finkelstein), and would have been discovered due to their need. However, the
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results in [Cam] and [Kal] arose in the context of very classical questions
concerning primitive groups.

e Orders of primitive solvable subgroups G of S,,: |G| < n®?® (Pélfy [P4], Wolf
[Wo)). While Pélfy was motivated by possible algorithmic applications, Wolf
was not. For him this was a natural question in the context of properties of
solvable groups he was studying.

e Orders of primitive subgroups G of S,,: If every noncyclic composition factor
of G has order bounded by some constant b, then |G| = O(n°®) for some
constant c¢(b) (Babai-Cameron-Pélfy [BCP]). While this theorem certainly
stands by itself, it was motivated by algorithmic applications.

e The classification of subgroups of GL(n,q) containing an irreducible element
subject to suitable additional assumptions. Results of this type are discussed
in the paper by Praeger in these Proceedings. Other results of the same
sort were obtained by Hering, initially for applications to projective planes,
and later in order to study 2-transitive permutation groups (cf. [Ka3] for
a discussion of those and more recent theorems). Penttila and Praeger are
working on extensions of research that was initiated by Neumann and Praeger
for algorithmic purposes; and these extensions will very likely lead to other
purely geometric applications as well.

There are other examples. An additional one will be discussed later. For
now, the preceding examples should suffice to make the point concerning “stand
alone” theorems that have algorithmic implications. The direction of all of the
above results is, to some extent, towards Asymptotic Group Theory; compare
Pyber’s contribution to these Proceedings (and also [Kad4]).

II

If G < S, what can be said about a random element of G? What can be said
about a random subgroup G of S,,7 What can be said about a random transitive
subgroup G of S,?

Answers to questions like these could be of great value to Computational
Group Theory. However, it may well be that random subgroups of S,, have an
uninteresting structure. Namely, whether “random” refers to averaging over all
subgroups of S,,, or only up to conjugacy in S, it seems likely that

e Prob(G < S, is nilpotent) — 1 as n — 0.

Worse than this, it may even be true that the word “nilpotent” can be replaced
here by “abelian”. However, it seems as if this is not the correct type of question:
it appears to take one outside the realm of those permutation groups studied the
most often. A result with a similar flavor was conjectured at the Workshop: a
random subgroup G of S, has exponential order. This was proved soon after
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the Workshop by Pyber (see his paper in these Proceedings for a more precise
statement, as well as for numerous other related results), but it also may not be
sufficiently useful in computational contexts. This discussion leads to the

e Metaquestion: What are the correct questions to ask about the average behav-
ior of permutation groups?

In particular, this question needs to be addressed by those interested in using
permutation group algorithms. What are the types of groups to which algorithms
are most often applied? They are certainly not just the simple groups. They
usually are transitive, or even primitive. However, in the course of recursion
many other groups, in particular p—groups, may occur. While these do not seem
interesting in the context of permutation groups, they appear to be unavoidable
and can produce algorithmic difficulties. A significant instance of this is provided
by a result of Blaha: the Greedy Algorithm cannot be expected to yield a near—
optimal base for a permutation group, for example if that group is the direct
product of isomorphic groups, such as cyclic groups of prime order or alternating
groups of degree 5 (cf. [BIl]). If such “boring” groups could usually be avoided
then algorithms could be developed in that direction. If such simple-minded
groups are inherently unavoidable and occur fairly often — in particular, if a
random subgroup of S, happens to be “boring” — then the average behavior of
algorithms might be of less significance than worst—case behavior.

One further remark is needed concerning the notion of “random” subgroups
of S,. A lovely and well-known theorem of Dixon [Dix] states that a random
pair of elements of S, generates S, or A, with probability - 1 as n — oc.
There are analogous results for most (and probably all) finite simple groups
[KL]. Therefore, it is not at all clear how one would even go about choosing a
random subgroup of any such group.

111

A standard question in Computational Group Theory is that of finding an el-
ement of order p, where p is a prime dividing the order of G. Such elements are
needed, for example, as starting points towards Sylow subgroups. The only prov-
ably “efficient” algorithm for finding such an element seems impractical [Ka2].
The usual approach is to pick an element of G randomly a few times, and hope
that an element of order divisible by p is obtained. Choosing an element at
random is quite easy, assuming that a base B is available. For example, if
B = {1,2,...,b}, if G(;) is the stabilizer of the points 1,2,...,i (so Gy = G
and Gy = 1), and if T} is a set of coset representatives of G(; 1) in G(;), simply
choose a random element t; € T; for each 4; then g = t3_1 ---t1tg is a random
element of G.

J. Cannon observed that, when randomly picking an element of the subgroup
PSL(2, p) of Sp4+1, Cayley often takes a long time to produce an element of order
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p. He hoped something could be done to handle this difficulty. First, observe
that p,(PSL(2,p)) = 2/p = 2/(n — 1), where for any group G let u,(G) denote
the probability that an element of G has order divisible by p (i.e., p,(G) is the
proportion of such elements of G). Note that the stabilizer G1 of a point in
PSL(2,p) is a Frobenius group of order p- £(p—1), and p,(G1) = 2/p. However,
it is certainly easy to use a commutator or two of any given generators of G; in
order to obtain an element of order p.

Clearly PSL(2,p) is a standard type of group occurring in group—theoretic
computations. There are many examples of permutation groups exhibiting bad
behavior from the present point of view. Some further examples are as follows:

G =PSL(2,p) < S(p;—l), where p,(G) ~ 1/2/n;

G = PSL(2,2°%) < Syeq1, where pp(G) = 1/(n —1);

G = S,, p=n, where ;,(G) =1/p=1/n; and

G is sharply 2—transitive and n is a power of p, where p,(G) = 1/n.
These should be compared with the following

THEOREM [IKS]. If G < S, and p is a prime dividing |G|, then pu,(G) >
1/n. Equality holds only in the last two examples given above.

Clearly, this is another example of a “stand alone” theorem. From a compu-
tational point of view, there are two ways to view this theorem: (i) the optimistic
view: no more than n random choices should be needed in order to obtain an
element of order divisible by p; and (ii) the pessimistic view: there can be some
situations where random selection will work too poorly to be of value. As noted
above, there are many other “bad” situations for the random method — perhaps
not as bad as in the theorem, but bad enough. Of course, there are other ways of
dealing with some of them — the case G = S, p = n being especially easy (just
add a subroutine to write a cycle). However, all of this points towards a need to
develop algorithms that will try random selection, but will then do something
else if not successful after a few tries.

It should be possible to go somewhat further than the Theorem. There is no
doubt that all permutation groups of degree n such that u,(G) < 2/n can be
classified. It may be possible to give a reasonable description of those groups G
for which p,(G) < ¢/n for some constant ¢. For purposes of applications it would
be ideal to be able to show that p,(G) < 1/logn for “most” groups, whatever
that means; but this seems extremely difficult to state, much less prove.

Nevertheless, it would be interesting to know from a user’s point of view what
types of theorems in this direction might be desirable.

The proof of the above theorem uses the classification of finite simple groups.
First there is a reduction to the primitive case, then to the (almost) simple case,
and finally to simple groups of Lie type in characteristic # p. These reductions
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are relatively straightforward, and not especially enlightening. The remainder of
the proof is more interesting, leading to the following

THEOREM [IKS]. IfG is a simple group of Lie type of characteristic # p, then
pp(G) > 1/p* — independent of the group G — and also p,(G) > (1 —1/p)/2h.

(Here, h is the Coxeter number of the corresponding group over an alge-
braically closed field; for example, h = n when G = PSL(n,q).) This requires
a counting argument involving groups of Lie type, fairly general considerations
using partitions in the case of classical groups, and a case by case calculation
with Weyl groups and cyclotomic polynomials for the exceptional groups of Lie
type. (Cyclotomic polynomials arise as follows: p divides the order of G, which
is essentially a product of cyclotomic polynomials evaluated at a prime power
q- The proof then considers which of these polynomials a given prime p might
divide.)

The following amusing result is easily deduced from the preceding theorem:

CoRrOLLARY [IKS]. If G is any group having a simple homomorphic image
that is neither cyclic nor Lie type of characteristic 2, then u2(G) > 1/4.

Thus, for such a group G it is “easy” to find involutions.

All of this leaves open a much more important question: is there any way
to choose random subgroups in order to obtain nice ones — such as Sylow sub-
groups? Once again, [Dix] as well as related results [KL] present obstacles to
the most obvious notions of randomness.
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