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Commutativity in Finite Planes of Type I-4 

By 

WmnI~I ltI. K_~NTOR *) and MXRK D. PANKIN 

A projective plane is of Lenz-Barlotti  t)~pe 1-4 if it is (A, BC)-, (B, CA)-, and 
(C, AB)-transit ive for three noneollinear points A, B, C, and is not (P, m)-transitive 
for any other point-line pair (P, m) (see [3, w 3.1]). The purpose of this paper is the 
proof of the following result. 

Theorem 1. In a finite projective plane o] type I-4, the group o/ (A, BC)-homologies 
is commutative. 

This generalizes a result of Hughes [4, 5], who proved Theorem 1 when the plane 
has order ~ 250. Our proof essentially amounts to formalizing Hughes'  approach, 
and then applying results on the structure of a finite ~ o u p  having a nontrivial normal 
parti t ion [1, 2, 7]. 

Coordinatizing a plane of type I-4 in the usual manner with U = A, V ---- B, and 
0 = C (see [3, w 3.1]), we obtain a linear planar ternary ring which has associative 
multiplication and satisfies both distributive laws. Such a ternary ring is called a 
planar division neo-ring (PDNR). The multiplicative group of a P D N R  is isomorphic 
to the group of all (A, B C)-homologies. Thus, Theorem 1 will follow from the following 
generalization of Wedderburn's  Theorem. 

Theorem 2. Finite PDN R's have commutative multiplication. 

I t  should be noted tha t  the only kno~-n finite P D N R ' s  are finite fields. That  is, no 
examples of finite planes of type I-4 are known to exist. The question of existence 
has not yet  been settled (see [4, 5, 6]). Infinite planes of t~q3e I-4 do exist. Some 
examples can be found in the Appendix of [5]. 

P r o o f  of  T h e o r e m  2. Assume the theorem is not true and let R be a P D N R  of 
smallest order n for which G -~ R* is not abelian. Set Z -~ Z(G) and ~ ~- G/Z. 
Bars will always denote images in G. 

Let  d be the set of all subgroups of G which are maximal with respect to being 

abelian. Let  ~ be its image in G. Clearly 0 ~ ~ and Z ~ d .  
We continue the proof with a series of lemmas. 

Lemma 1. Let X be any subgroup o/ G which is not contained in Z. 

(a) Ca (X) is abelian. 
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(b) I] X is abelian, Ca (X) ~ d .  

(c) I] X is non-abelian, Ca(X) ---- Z. 

P r o o f .  (a): Consider S = { r e R ]  rx  = x r  for all x e X } .  Since G = / ~ *  is a group 
and  bo th  distributive laws hold, S is closed under  multiplication and  addition, and 
hence is a s u b - P D N R  [5, Theorem 1.2]. Note  tha t  S = Ca (X) w {0}. Since X ~ Z, 
Ca(X) ~ G, and  the minimal i ty  of  I R[ implies t ha t  Ca(X) is abelian. 

(b): I f  X is abelian, X is contained in Ca (X), so tha t  any  member  of  d which 
contains Ca(X) must  also centralize X.  

(c): Since X <~ Ca(Ca(X)), if X is not  abelian then  Ca(Ca(X)) is no t  abelian. By  
(a), this is possible only if  Ca(X) <= Z. Clearly, Ca(X) >= Z also holds. 

Lemma 2. Distinct members o] d have intersection Z. I] A ~ d ,  then ]Z[ 4 < [A [2 < 

<161= -I. 
P r o o f .  Let  AI ,A2e~C,  AI-~=A2. T h e n C a ( A I ~ A 2 )  contains -41 and A2 and  

hence is no t  in d ,  so Z ~ A I  n A2 ~ Ca(C~(A1 (h A2)) = Z by  Lemma I (c). Next ,  
let A e d .  As in the proof  of  Lemma I (a), A L) {0} is a proper s u b - P D N R  of  R. 
B y  Bruck ' s  lemma on the order of  subplanes [3, 3.2.18], we have 

( [z  I l +1)2__<IG] + 1  
since Z u {O} is a proper  s u b - P D N R  of  A u (0}. The lemma now follows easily. 

I n  particular,  Lemma 2 implies tha t  ~ is a nontrivial normal Tartition of 0 :  each 

nontr ivial  e lement  of  G is in a unique element of  d ,  O ~ ~ ,  and conjugates of  mem- 

bers of  ~ are in ~ .  

Lemma 3. Z contains a Sylow 2-subgroup o/G. 

P r o o f .  Deny  this. Then  n is odd. Le t  g be a 2-element satisfying g t Z  bu t  gz e Z .  
Let  ~ be the inner au tomorphism determined by  9, extended to R by  0 ~ ---- 0. By  the 
dis t r ibut ivi ty  o f  R, ~ is an  au tomorph ism of R. Since g2 ~ Z, ~2 --- 1, and hence 
induces a Baer  involution of  the plane coordinatized by  R (see [3, 4.1.9]). Thus, 
] C a ( g ) [ = m - - 1  where n = m  2. 

Since (n - -  1)/(m - -  1) ---- m -k 1 is even, G has a non-abelian Sylow 2 - s u b , c u p .  
Because the multiplicative ~ o u p  of  a P D N R  has a t  most  one involution [5, Theorem 
II .3] ,  G contains a quaternion group of  order 8, say (g, h).  Let  fl be the inner auto- 
morphism determined by  h, again extended to /~. Then ~ and fl commute  since 
g2 - -  h 2 ___ (g h)2 e Z,so that /~ induces the ident i ty  or an  involution on S = Ca(g) w {0}. 
However,  h (~ Ca(g), so Ca(g) n Ca(h) =-Z (by Lemmas  1 (b) and  2) and/~ induces 
an involution on S. I t  foUows t h a t  m = s 2 where [Z l = s - -  1 and I Ca(g)[ = s 2 - -  1. 

Since 4 ~" s 2 q- 1, there exists an  element x in G having odd prime order dividing 

<n - - 1 )  _-- + _as Lemma 2, IV ( )l _ _ < l / ; , - : t - - s - ' - i  and 
s 2 = ( IZl  q- 1) 2 ~ ]Ca(x)] q- 1. Consequently,  I Ca(x)[ ---- s 2 - -  1, which is no t  divis- 
ible by  the order of x, a contradiction.  

Lemma 4. G is solvable. 
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P r o o f .  Suzuki ([7, Theorem 1]) has shovel tha t  a group of odd order having a 
nontrivial normal nilpotent partition is solvable. 

Lemma 5. Let P be a non-abelian p-subgroup o/G. Then there exists an element y in 
P --  Z (P)  such that Co(y) ~ PZ .  

P r o o f .  Deny this. Then C~(y) <-- P Z  for all y �9 P -- Z(P) .  Let X ~ Z(P)  be a 
normal subgroup of P such tha t  [ X : Z  (P)] = p. Then X is abelian and Cp (X) < P.  
Also, [P:  Cp (X)] =< [Z(P) I" To see this, take g �9 X --  Z (P). Then Cp(g) = Cp (X), 
and hence [P: Cp(X)] = [P:  Cp(g)] is the number of conjugates of g in P. Since 
X<~P,  these conjugates are in X,  so [P: Cp(X)] < IX] = p[Z(P)[ .  Both sides of 
this inequality are powers of p, so tha t  [P: Ci-(X)] =< [Z(P)[ .  

Let y �9 P --  Cp(X). By our assumption, Co(y) ----- C~(y) Z. Here Cp(y) ~ Z = 
= P 6~ Z = Z (P) by Lemma 1 (e). Consequently, using Lemma 2 we find 

IZl 2 < ]Ca(y) l = [Cp(y) I ] Z I / [ Z ( P ) [  , 

Iz(P)[2 <= Iz[ Iz(P)] < ICp(y)], 
and hence 

Iz(P)[ < ICp(y)] / Iz(P)[  = lOp(X)C~(y) l / [Cp(X)]  
= [P: cp(x)] = lz(P) l 

(since by  Lemma 1 (b), Cp(X) n Cp(y) = P n Z = Z(P)) .  This is impossible. 

Lemma 6. ] O I is not a prime power. 

P r o o f .  I f  it is, G is nilpotent and hence has a normal, non-abelian Sylow p-sub- 
group P.  By Lemma 1 (c), CG(P) = Z, and since P must  centralize all the other 
Sylow subgroups of G, we have G = PZ.  This is not possible by Lemma 5. 

Lemma 7. ~ is not a Erobenius partition. 

P r o o f .  Suppose tha t  ~ is a Frobenius partition. Then by definition (see [2, p. 333]), 

some 2{ e ~ is its own normalizer in G, and 0 is a Frobenius ~oup .  Thus, ~ has a 
Frobenius kernel /s By a result of Thompson [8], ~7 is nilpotent, and hence so is 
its preimage K. 

We next  show tha t  K is abelian. I f  not, K has a non-abelian Sylow p-subgToup P.  
By Lemma 1 (c), C~(P) = Z, and hence K = P Z  since K is nilpotent and contains Z. 
Since O is Frobenius, for any  element k + K --  Z we have tha t  C~ (fc) =< K, from 
which Co(k)<= K follows. Hence, for all y+ P -  Z(P) ,  C~(y) <= K = PZ.  By 
Lemma 5, however, this is impossible, so K is abelian. 

Since O-----K:4 where ~i is as in the first para~ 'aph,  we have G ----- K A .  Hence, 
I G[ =< [g ]  I A ]. Two applications of Lemma 2 now yield 

I l" -<-IKI IA[ 2 < IOI [G[, 

which is a contradiction. 

We can now complete the proof of our theorem. G is solvable, so its Fitt ing sub- 
group is nontrivial. Since G has odd order, a theorem of Baer [1, Satz A] implies tha t  
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is not  simple (see [2, p. 333] for the definition). Since ~ is not  a p-group and 
is not  a Frobenius parti t ion,  another  theorem of  Baer  [2, Satz 5.1] now implies t h a t  

some ~i ~ ~ is normal  and of  pr ime index p in ~, with p dividing I ~i]. We now have 
G = A (x )  with ] x] a power of  p. Since A contains Z, by  L e m m a  2 

IGl=l ll f=plA] =<lAI2<IGI. 
This contradict ion completes the  proof. 
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