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On a Class of Jordan Groups 

WILLIAM M. KANTOR* 

To Helmut Wielandt, on his sixtieth birthday, 19 December, 1970 

The purpose of this note is to prove the following two results. 

Theorem 1. Let F be a finite group 2-transitive on a set S of v points. Let 
B c S ,  where I B l = k < v - 1  and F is not k-transitive. Suppose that the global 
stabilizer F B of B has a normal subgroup fixing B pointwise and sharply transitive 
on S - B .  7hen F acts on S as one of the following groups: 

(i) A subgroup of PFL(d, q) containing PSL(d, q), in its usual 2-transitive 
representation; 

(ii) A collineation group of AG(d, q), containing the group ASL(d, q) of 
collineations generated by elations, in its usual 2-transitive representation on 
AG(d, q); 

(iii) A 7 in its 2-transitive representation of degree 15; 

(iv) There is a regular normal subgroup, and if x~S  then F x acts on S - { x }  
as the group mentioned in (iii); or 

(V) M22 , Aut M22 , M23 or M24 in its usual permutation representation. 

Theorem 2. Let F, S and B satisfy the hypotheses of the first two sentences 
of Theorem i. Suppose that F B has a normal nilpotent subgroup fixing B pointwise 
and transitive on S - B .  Then either conclusion (i) or (v) of Theorem t holds or 
conclusion (ii) holds and q = 2. 

We remark that the converses of these theorems hold except that we must 
have d > 3 in (i), while in (ii) d > 2 if q > 2 and d > 3 if q = 2. 

Theorem 1 extends results of Ito [6] and the author [7, 8] concerning 
Jordan groups. The particular case in which the given normal subgroup of F n 
is abelian was treated in [-8] and will be used here. 

In [7] a discussion of Jordan groups and some techniques for handling 
them can be found. Only a few simple facts will be assumed from [7] in the 
present paper. 

The proof of Theorem 1 leans heavily on recent results of Shult [- 11, 12] and 
Hering, Kantor  and Seitz [-3] concerning 2-transitive groups. Moreover, many 
of the ideas in our proof are easily traced to [3]. We refer the reader to [11] and 
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[3] for those properties of PSL(2, q), Sz(q), PSU(3, q) and groups of Ree type 
which will be needed here. 

Theorem 2 is a simple consequence of Theorem 1. Although a proof  can 
be given using a result of Kantor  and Seitz [10], we have chosen a more direct 
geometric proof. 

Suppose that S, B and F satisfy the hypotheses of Theorem 1 or 2. Let 
I I < F  and T ~ S. Then II(T) will denote the pointwise stabilizer of T , / / r  the 
global stabilizer of T, and Hr  r the group induced on Tby  H r. 

A subset of S of the form B ~, eeF,  will be called a block. The points of S, 
together with these blocks, form a design @. For  purposes of induction, it will 
be convenient to prove slightly stronger forms of Theorems 1 and 2 concerning 
(non-degenerate) designs. 

Theorem 1'. Let F be an automorphism group of a design ~ 2-transitive on 
points and transitive on blocks. Let B be a block, and suppose that F~ has a normal 
subgroup II <=F(B) sharply transitive on the set S - B  of points not in B. Then 
one of the following holds: 

(i) ~ consists of the points and hyperplanes of PG (d, q) and F > PS L(d + 1, q); 

(ii) ~ consists of the points and hyperplanes of A G(d, q) and F >_ ASL(d, q); 

(iii) ~ consists of the points and lines of PG(3, 2), and F is A7, 
(iv) ~ consists of the points and planes of AG(4, 2), F contains the translation 

group, and if x s S  then F x is A7; or 

(v) ~ is the design associated with M~, v=22,  23, or 24, and F is M22 , 

Aut M22 , M23 or M24. 

Proof Let ~ and F yield a counterexample with v minimal. Then F is not 
3-transitive ([5]; [7], p. 481). 

We shall use the following additional notation. If 7 s F we wr i t e / / (B  ~) = H ~. 
Lines and planes are defined in [2], pp. 65-66 and [7], pp. 472-473. I f x e S  then 
F(x) denotes the linewise stabilizer of x, and ~ denotes the permutation group 
induced by F~ on the lines on x. If �9 _ F, then F (~) is the set of fixed points of 4~. 

Fix points x e B  and yCB. 

Lemma 1. Let X :t= B be a block on y such that ]B ~ XI is as large as possible. 
Then H (X)B is sharply transitive on B - B  r~ X, and Fy~ is 2-transitive on B. 

Proof Let x l , x z e B - B r ~ X .  Then Xz=X[, ?~eFI(B), and Br~B ~ contains 
B r~ X and x 2. Thus, B = B y, proving the first statement. For  the second, see 
[17], p. 36, or [7], (3.4). 

Lemma 2. Let q~cF, and suppose that q~ fixes B and F(q~)~B. Then Cu(~b ) 
is transitive on F(~b) - B r~ F(q)). 

Proof Let xl,  x z e F ( ~ ) - B n F ( ~ b  ). Then x 2 =x~, 7e l l .  If (p e ~, then H ~  
and ~,'e~- " ~ -  , ~ ' P -  -~i - ~, , so that rp y (p-x y-leHx~ = 1. Thus, 7 e Cn((b ). 

We next note that, since F is not 3-transitive and F is transitive on ordered 
triples of non-collinear points, lines have more than 2 points ([7], (3.6)). 
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Lemma 3. The points and lines of ~ do not form PG(d, q) or AG(d, q). 

Proof. Otherwise, B is a subspace. Set e = dim B. If e = 1 then F is transitive 
on /-spaces for i<2.  If e > l ,  by Lemma 1 and the minimality of v, either 

contains PSL(e+I,q) or ASL(e,q), or we have PG(d, 2), e=3 ,  and 
~ i s  A 7. 

(i) Suppose that Fy~ is not A 7 . Then F is transitive on/-spaces for i<e+ 1 
([7], (3.10)). Here we allow e = 1. Clearly, e < d -  1. Let q=pa with p prime. 

First suppose that we have PG(d, q) and p4:2. Let a~Fy be an involution. 
Then a fixes pointwise two subspaces T 1 and T 2 which span PG(d, q). Let 
dim T,=j and dim T 2 = d - 1 - j .  If  j or d - 1 - j  is 0, then F>PSL(d+ 1, q) 
(Higman [4]; Wagner [15]), so that since d > e + l > 2  we can find another 
involution in F which is not a perspectivity. So suppose that j4= 0 ~ d - 1 - j .  
Since e < d - 2  and F is transitive on e-spaces, there is a block X such that 
X ;~ T1, X ;~ T 2 , and X c~ T 1 and Xc~ T 2 span X. Then a fixes X. By Lemma 2, 
Cmx~(a ) has an element fixing Xc~ T~ and Xc~T 2 and moving a point of 
Tt--X c~ 7"1 to a point of T 2 - X c~ T 2 . This is impossible. 

Thus, ]II[=(qd+l-qe+l)/(q-1) or qd_qe is even. Each involution in / /  
fixes each (e+ 1)-space R ~B.  Thus, the subgroup of H generated by the in- 
volutions i n / / f i x e s  R, is faithful on R, and induces a group of perspectivities 
on R with axis B. Since//R is transitive on R -  B, H has a normal  elementary 
abelian Sylow p-subgroup K of order qe+l o r  qe. K fixes each subspace con- 
taining B. 

Let 1 # a e K .  Then B is the set of fixed points of~. Let F be an ( e -  1)-space 
in B. The e-spaces containing F form a PG(d-e,  q). ~ induces an elation of 
PG (d-  e, q) with center B. In view of the action of K on R, we may assume that 
c~ moves some e-space in R containing F. Also, F (F) is 2-transitive on PG(d- e, q). 
Thus, F(F) induces a collineation group containing PSL(d-e + l, q) (Higman 
[4], Wagner [15]). 

Let M ~_ F be an m-space, where 0 _  m -  e -  1. By induction, except possibly 
when q =  2 and d - m - 1  = 3, F(M) induces a group on P G ( d - m - 1 ,  q) con- 
taining PSL(d-m, q) (Higman [4], Wagner [15]). Since F is not 3-transitive, 
either F is A 7 acting on PG(3, 2), which is not the case, or F contains PSL(d + 1, q) 
or ASL(d, q)([7], w 5). 

Suppose that F contains PSL(d+ 1, q), q >  2. Consider the collineation 7 
represented by the diagonal matrix with i entries f, i entries f -  1 and 0 or 1 
entry I, where O, 1 4:fe GF(q) and i = [l(d + 1)] > 2. Precisely as for PSL(d + 1, q), 
q odd, we obtain a contradiction. 

I f F  contains ASL(d, q), q > 2, let a be an elation whose axis H is a hyperplane 
of AG(d, q) parallel to but not containing B. By Lemma 2, Cn(a ) is transitive 
on H, whereas qe-l~/[II]. 

Suppose that F is PSL(d + 1, 2). Let S be the translation group ofAG(d + 1, 2). 
The group FY,=ASL(d+I, 2) then satisfies the conditions of Theorem 1', 
with B now an affine (e+ 1)-space, not a hyperplane. We now obtain the same 
contradiction as in the preceding paragraph. 
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(ii) As in the preceding paragraph, we now need only consider the following 
situation: F is a collineation group of AG(d, 2), containing the translation 
group, 3-transitive on points, satisfying the hypotheses of Theorem 1' with 
B a 4-space, and such that F~.~ is A 7. Clearly, each 4-space riB is a block. F 
is transitive on planes. 

(2 d - 22 ) (2 e - 2) (2 d - 1) 
Two blocks meet in at most 4 points. Thus, there are 

(2 a _ 2)(2 d _ 22) (24 - 22)(24 - 2)(24 - 1) 
blocks on x, of which (24_2)(24_22) are on x and y and (2d -- 22)/(24 -- 22) 

contain a given plane. Since J//] =2d--24 iS even, we have d=<2e=8. It is now 
easy to see that d = 8. 

As in (i), the group K generated by the involutions in F/ is elementary 
abelian of order 2 4 and fixes each 5-space R D B. In view of its action on R,K 
fixes each 4-space liB. 

We claim that F ( T ) =  1 for each proper subspace T~B.  For  let F(T)+ 1, 
where dim T is chosen maximal. Let B* be a block lib such that B* c~ T=~J. 
The Sylow 2-subgroup K* o f / / (B*)  fixes each block liB* contained in T, and 
hence fixes T. As K* is elementary abelian of order > 2 and normalizes F(T), 
K* F(T) is not a Frobenius group with complement K*. Then some element 
?=~ 1 of F(T) centralizes an element q= 1 of K*, and hence fixes B*. Clearly 
F(y)_~ T, and F(y) is a subspace. By Lemma 2, Cn(B,)(y ) is transitive on F(?), 
whereas IF(7)] ,( il/I. 

Thus, [F~I= (28 - 1)(28 -2)(28 -22 )  (28 -24).  Let X be a Sylow 127-subgroup 
of F~. Then 2; fixes a unique point + x, say y. N(2;) faithfully induces a group 
on PG(6, 2). Thus, IN(2;)l = 127c, c = 1 or 7 (Dembowski [2], p. 35). It follows 
that 

]F~:N(I2)x ] - ( 2 -  1 ) 2 ( 2 - 4 ) ( 2 -  16)/c ~ 1 (rood 127), 

contradicting Sylow's theorem. 

Lemma 4. (i) Blocks are lines. 

(ii) There are r = ( v -  1)/(k- 1) lines on x and r> k + 2. 

Proof (i) Otherwise, let E be a plane meeting B in a line. Then H E is sharply 
transitive on E -  B c~ E. It follows that F~ E satisfies the hypotheses of Theorem 1'. 
Thus, any 3 non-collinear points are contained in a unique PG(2, q) or AG(2, q). 
By [7], Theorem 6.5, or the Veblen and Young axioms [14] and results of 
Bruck ([2], pp. 100-101) and Buekenhout [1], the points and lines of ~ form 
PG(d, q) or AG(d, q), contradicting Lemma 3. 

(ii) This is immediate by (i). 

We note that Lemmas 1 and 4 imply that Fy~ satisfies the hypotheses of 
results of Shult [12] and Hering, Kantor  and Seitz [3]. 

Lemma 5. (i) 11r~ F(x )  = 1. 

(ii) H is nonabelian. 

(iii) F(x) acts regularly on S -  {x}. 
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Proof. (i), (ii). [8], Theorem 1 and Corollary 1. 

(iii) By (i), [H, F(x)] < H  c~ F(x)= 1. Since ( H ( X ) I x e X )  is transitive on 
S -  {x}, (iii) follows. 

We define a quadrangle to be a set of 4 points, no 3 collinear. As usual, x y 
denotes the line joining x and y. 

Lemma 6. Let r  F f ix  a quadrangle pointwise. Set Co(r (Cmx~(4~)[~ 
fixes at least 2 points of X ) .  Then either 

(i) There are 3 collinear points fixed by ~, and Co (~b) v(~) satisfies the hypo- 
theses of Theorem 1'; or 

(ii) No 3 fixed points of (b are collinear, and C o (~b) F(~) is 3-transitive. 

Proof. Let x, y, z be non-collinear points in F(~). By hypothesis, we can 
find weF(eb) such that y, z 6 x w .  By Lemma2,  Cnlxw~(~ ) has an element 
moving y to z. Thus, C o (~0) v(*) is 2-transitive. Lemma 2 now implies that (i) 
or (ii) holds. 

Lemma 7. Suppose that �9 ~ F fixes a quadrangle pointwise. Let ~, ~'; ~ Fxy ~, 
where x, y, z are non-collinear. Then cb and 4b ~ are conjugate in Fxy~. 

Proof. As x, y, z, x y, y~, z ~ ~F(q~), by Lemma 6 we can find be Coffb ~) such 
that x ~ = x ,  y ~ = y ,  z ~ = z .  Then ~'~ = ~b ~ and 7 6 ~ F ~ .  

Lemma 8. Suppose that F(B)y 4: 1. Then 

(i) F(B) s-  B is a Frobenius group; and 

(ii) /7 is nilpotent. 

Proof. (i) If 14 = 7 ~ F(B)y fixes a point 4= y of S -  B, then, as k = IB1 > 2, y fixes 
a quadrangle pointwise. By Lemma 6(i) and the minimality of v, Co(~/) ~(~) is a 
known group: PSL(3, q), ASL(2, q) or A 7 . Note that BcF(y) .  As F is transitive 
on ordered triples of non-collinear points each such triple belongs to a unique 
PG(2, q) or AG(2, q), where k = q +  1 or q, respectively. By the Veblen and 
Youngaxioms [14~ and results of Bruck ([2], pp. 100-101)and Buekenhout [1~, 
@ consists of the points and lines of a projective or affine space. This contradicts 
Lemma 3. 

(ii) This follows from (i) and a result of Thompson [13]. 

Lemma 9. v - k  is even. 

Proof Suppose that v -  k is odd. By Lemma 4(ii), k is even and v is odd. By 
Lemmas 80) and 5(ii), F(B)~ has odd order. By L e m m a l  and [3], there is a 
Klein group (a,  # )  in Fy B such that or, a' and cry' are conjugate in Fy B. 

By Lemmas 8(i) and 5(ii), if ~ fixes a line B o and a point $B o, then ~ fixes 
additional points not in B o . In particular, a fixes a point yl$B, y~ 4= y. As v - k  
is odd, ~r fixes a point Y2$YY~, and then a fixes at least 3 points 6YYt and at 
least 3 points ~y Y2. Thus, ~ fixes a quadrangle pointwise. Also, 4 < fF(o-)t = 1 
(rood2), and ]F(~)-B~F(a)[=]Cn(~)I  is odd (Lemma2). We can apply 
Lemma 6 to ~r. 
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Suppose that F(a) contains 3 non-collinear points. By the minimality of 
v, F(a) and the lines meeting it in at least 2 points form a projective plane 
PG (2, q) with q odd, and C O (a) p (~) is PSL(3, q). In particular, C n (o-) is elementary 
abelian of order qa, and C(a)yn acts irreducibly on Cu(o- ). By the Brauer- 
Wielandt Theorem [16], 1/71 divides I C.(~)llCo(~')llCn(G ~')l. Thus, O is nil- 
potent. One of a, #,  o- a', say G, centralizes an element + 1 of Z(/7). As C(~)y~ 
acts irreducibly on C u (~), Cu(a ) < Z (H). However, ~r, ~r' and ~ a' are conjugate 
in Fy~, so that also Cu(a' ) and Cu(a ~') are inside Z(/7). Then 

n = c. (o-)  c.(o- ' )  cn(o- 0-9 

is abelian, contradicting Lemma 5 (ii). 

Thus, no 3 points of F(o-) are collinear. We next note that [f(~)c~ F(#)[--  l. 
For  otherwise, as If(cr)l is odd and o-' acts on F(~r), we can find 3 points y, Yl, Y2 
in F(~r)mF(a'). Set Y=YlY2. Then @,~r')<Fyylx 2 and each element +1  of 
(o-, o-') inverts II(y Yl)r (see Lemma 1), which is impossible. 

By Le mma2  and the Brauer-Wielandt Theorem [16], I/~l=c 3 where 
c = l C n ( G ) l  is odd. Suppose that cr fixes a line B' not meeting F(a). Then by 
Lemma 2, c + 2 = IF(a)[ divides I/7(B')I = c 3, a contradiction. 

Thus, a fixes just �89 1) lines of @. However, if zCF(a) then a 
fixes z : .  Thus, (cr) has precisely ( v -  (c + 2))/2 = �89 + 2)(c + 1). (k - 2)/2 non- 
trivial orbits. Also, ( k -  1)l(v- k) = c 3 (Lemma 4(ii)). Then 2 (1 - (c + 2 ) ) -  
( c+2) (c+  1 ) ( - 1 ) ( m o d  k - l ) ,  so that 2 ( - c - 1 ) - - ( c + 2 ) ( c +  1), or c(c+ 1)--- 
0 - -c  3 (mod k -  1). Thus, c > k -  1. However, k+c3-c-2=�89  1)(k-  2) 
implies that k = 2(c z + c + 2)/(c + 3) > c + 1, a contradiction. 

Lemma 10. k is odd. 

Proof ([9]). Suppose that k is even. An involution ~ ~/7 moves all points q~ B 
(Lemma 8), and thus fixes no line =t= B meeting B. a fixes B* = y y~ and fixes no 
point of B*. By Lemma 1 and [3], either F~,~ has a normal subgroup PSL(2, q), 
q > 3, acting on B in its usual representation, or Fyg is solvable. 

In either case, the conjugates of o- under F~B. generate a group K transitive 
on B*, and we can find 7~F~B, such that (e,  a ~) acts on B* as a Klein group. By 
Lemmas 8(i) and 5(ii), Ir(B*)A is odd, so that @, o -~) is itself a Klein group. 
There is an involution ve/7(B*) centralized by (~, ~ ) .  Then z fixes both B and 
BL Since r~/7(B*) and x e B ~ B  ~, we must have B=BL It follows that 

~ B*  ~ B* K<IT(B)B,. However, 1 4 : ~  -----GB* and K s* is either a sharply transitive 
group or a Frobenius group (Lemma 8). Consequently, K ~* is sharply transitive 
and Fy~ is solvable. Also, K=/7(B)B, is faithful on B*. In particular, K is 
elementary abelian of order k. Interchanging the roles of ~ and z we find that 
II(B*)n is faithful and sharply transitive on B. 

Let m be the number of involutions in F(B). Count in 2 ways the number of 
ordered triples (x, x', z) with z an involution fixing some fine pointwise and 
X =[= X '  = X': : v(v-  1) v - k  

m ( v - k ) = v ( v -  1 ) . - - .  1. 
k(k-  l) k 
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Thus, m = k - 1  and K contains all involut ions of  F(B). In part icular ,  
K~_ F(B). I t  follows that  F x has a no rma l  subgroup  A > F(x)K such that  A/F(x) 
acts on the lines on x as PSL(2, 2e), S z(2 e) or  PSU(3, 2 e) in its usual 2-transit ive 
representa t ion (Shult [11]). 

Consequent ly ,  r -  1 is a power  of  2. Since [F(x)I is odd  ( L e m m a  5(iii)), a 
Sylow 2-subgroup Z of  F(B) is faithful and  sharply  transit ive on the lines # B 
on x. In  view of the act ion of/~x, we must  have s  Then  K = Z ( E )  has 
order  2 e = k. 

N o w  F(B)= r/. For  IF(B)y[[k-2 by L e m m a  8(i). Also, K___F B implies that  
F(B)~, fixes yK=B*. Then  F(B)y fixes > 2  points  of  B* and hence is trivial by 
L e m m a  8 (i). 

Let  x e X # B .  Then  [F(X)B, F(B)x]<=F(X)c~F(B)=I, and (Fx)~x contains 
the direct p roduc t  of  two no rma l  subgroups  of order  2 ~ -  1 which are conjugate  
in F~. This is possible only if F(x) # 1. 

Let l # c ~ F ( x ) ,  and let e ' = e ~ '  with z' an involut ion in F(B*)B. Then  
c~-1 a' = fl acts on B as an involut ion wi thout  fixed points,  so that  fi z~F(B) for 
some involut ion r ~ F(B*)B. 

By L e m m a  5 (i), IF(B), e l  = IF(B), ct'] = 1, so tha t  1 = [F(B), fi] = [fl 3, fl] = 
[z, fl] and fi fixes B*. Then  flo-' fixes y for some a'eK. Since Z < F / c e n t r a l i z e s  
bo th  fl and  ~', fl a' fixes at  least [Z[ = r -  1 points,  including all of  B*. However ,  
r - 1  > k by  L e m m a  4, so that  A/F(x) is no t  PSL(2, k). Then  r - 1  > k 2 >  k + 1, 
contradic t ing L e m m a  8. 

L e m m a  11. (i) H is not nilpotent. 
(ii) II=F(B). 

(iii) Each element of Fys of prime order fixes at least 2 points of S -  B. 

Proof. (i) Suppose  that  F / i s  nilpotent,  and let a be an involut ion in Z(FI). 
By L e m m a  5(i), (r fixes no line # B  on x. Since r~ fixes YS,  it follows that  k is 
even, contradic t ing L e m m a  10. 

(ii) L e m m a  8 (ii) and  (i). 

(iii) Otherwise,  such an element  would be fixed-point-free on F/, cont ra-  
dicting (i) and  a result of  T h o m p s o n  [13]. 

L e m m a  12. Fy~ has no normal subgroup sharply 2-transitive on B. 

Proof ([9]). Otherwise F(x y)~ has a unique involution. As k is odd, each 
involut ion r7 in F (B) fixes (v-k)/(k-  1)= r -  1 lines 4= B, each of which meets  B. 
If  F(B) has m involut ions then, as in L e m m a  10, 

v(v-1) v-k  
k(k- 1~ m(v-k)=v(v- 1)"TZT" I, 

or m=k. 
IF(x)[ is odd. For ,  let ~ be an involut ion in F(x). Then  e=o-  on each fixed 

line # B of rr on x, so that  r fixes at mos t  k lines # B, contradict ing L e m m a  4 (ii). 
We  m a y  assume that  r~ fixes xy=X.  Then  F(X)B centralizes the unique 

involut ion cr of  F(B) x. In  part icular ,  C(o-)x is transit ive on B -  {x}. As some 
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fixed line of a is not on x (Lemma 5(i)), C(o-) is transitive on B. Thus, o fixes 
I +(r -  1)/k lines on x. 

F(B)x x F(X)B has just 3 involutions: o-, z and o'z, where zeF(X)8. An 
involution 4= a, z in F~x fixing a line pointwise must  agree with o-~ on B and 
X, hence is a z  (Lemma 11). There are thus j = 2  or 3 involutions in FBy fixing 
lines pointwise. Count in 2 ways the number  of ordered triples (X1, X2, p) with 
321, 4= X 2 lines on x and p an involution fixing X1 and X 2 which fixes some line 

pointwise: r ( r -  1). j = r m. (1 + ( r -  1)/k). (r-  1)/k. 

Thus, j -  1 = ( r -  1)/k. By Lemma 4, j =  3 and r -  1 =2k .  
Define a Steiner triple system 5: as follows: points are the lines on x; triples 

consist of 3 distinct lines X1, X2, X 3 on x such that the involution in F(XOx 2 
fixes X 3. Since l + ( r - 1 ) / k = 3 ,  X 1 and X 2 determine X 3 uniquely, and it is 
easy to see that X a and X 3 or X 2 and X 3 determine X 2 or X,,  respectively, 
in the same manner.  

Clearly, ~ is 2-transitive, and 1 + (r-  1)/k = 3 implies that there is a Klein 
group fixing a triple elementwise in which no involution fixes more than 
3 points of ~ By a result of Hall  ([2], p. 100) any 3 points of 5:, not in a triple, 
generate a subsystem PG(2, 2) of 5:. Thus, 5 Q consists of the points and lines 
of PG(d, 2) for some d > 2  (Veblen and Young [14]), and it is easy to see that 
d < 3. Now F ~ AT, contradicting the minimality of v. 

We can now complete the proof  of Theorem 1'. Recall that Fy B is faithful on B. 
By Lemmas 1, 10, and 12 and a result of Shult [-12], Fy B has a normal  subgroup 

A acting (faithfully) on B as PSL(2, 2a), Sz(2") or PSU(3, 2") in its usual 2-transi- 
tive representation. Here 2a>2. Let x 'eB-{x} .  

We claim that [Fyxx, I is even. For  otherwise, let 7eAxx, have prime order. 
By Lemma 11 (iii), 7 fixes a point + y  not in xx'. Similarly, ? fixes a point q=x' 
not in x y. Thus, 7 fixes a quadrangle pointwise. Also, from the structure of A 
we find that 7 is inverted by an element of A. Then ~ is also inverted by some 
element of Fyxx, (Lemma 7). Since we are assuming that fyxx'] is odd, this is 
impossible. 

Since Fyxx, has even order, A is not Sz(2~). Let ~ be an involution in Fy~x,. 
Then e fixes 2 ~ + 1 points of B, where e--  a/2 if A is PSL(2, 2 ") and e = a if A is 
PSU(3,2~). Moreover,  Ca(e ) is PSL(2, 2~), and acts on F(c~)c~B in its usual 
2-transitive representation. 

Since v -  k is even, ~ fixes a point ofB - {y}. Thus, F (c 0 contains a quadrangle. 
Also, JF(e)-F(~)~ BJ is even, so that IF(e)l is odd. We can apply Lemma 6(i) 
to C 0(~)v(~). The points of F(c 0, together with the lines meeting F(~) at least 
twice, form one of the following geometries: (i) PG(2, 2~), (ii) AG(2, 3), or (iii) 
the points and lines of PG(3, 2). Moreover,  if (ii) or (iii) holds then 2e+ 1 = 3, 
SO that since a > 2 and e = a or a/2 we must have a = 2 and k = 2 2 + 1 = 5. 

(i) Here each fixed line X ofc~ meets F(c0 in 2 e + 1 points. For, I X -  X ~ F(c~)[ 
is even. If  [Xc~F(c0[4=2~+l then IXc~F(e) ]=I .  By Lemma2,  Cn(x)(~ ) is 
transitive on I F ( ~ ) - X  ~ F(~)t, and hence contains an involution fixing a single 
point of F(e), which is impossible. 
5 Math. Z, Bd. i18 
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Thus,  (c~} has 

( v -  (2 ze + 2 e + 1))/2 = (22e + 2 e + 1 ) ( k -  (2 e + 1))/2 

non-tr ivial  orbits.  If  A is PSL(2, 22 e) then k = 2 z e + 1, so that  v - k = 2 ~ e, whereas  
/ / i s  no t  nilpotent.  Thus,  zl is PSU(3, 2 ~) and  k = 2 3 ~ +  1. Then  

r ( k -  1 ) < v = ( 2 2 ~ + 2 ~ +  1 ) ( k -  2~)<23e(k - 1) < k ( k -  1), 

contradict ing L e m m a  4 (ii). 

(ii) This t ime each fixed line of  c~ meets  F(c~) in 1 or  3 points.  Suppose  that  z. 
f ixes j  lines meet ing F(c~) only in x. Then  (c~} has 

(v - 9)/2 = 12 (5 - 3)/2 + 9j (5 - 1)/2 

non-tr ivial  orbits. Thus,  v = 0 ( m o d 3 ) .  However ,  [ C n ( c 0 [ = 9 - 3  implies that  
v --- k = 5 (rood 3), a contradict ion.  

(iii) As above,  each fixed line of  c~ meets  F(c 0 in 3 points,  and ( v -  15)/2 = 
35 (5 - 3)/2. Then  v -  k = 80, whereas  t Cr,(cr = 12 divides v -  k. 

This  contradic t ion completes  the proofs  of  Theo rems  1' and 1. 
Precisely as T h e o r e m  1 was a consequence of  Theo rem 1', Theo rem 2 

follows f rom the next result. 

Theorem 2'. Let F be an automorphism group of a design ~ 2-transitive on 
points and transitive on blocks. Let B be a block and suppose that F B has a normal 
nilpotent subgroup II <=F(B) transitive on the set of points not on B. Then one 
of the following holds: 

(i) N consists of the points and hyperplanes of PG (d, q) and F > PSL(d + 1, q); 

(ii) ~ consists of the points and hyperpIanes ql~ AG(d, 2) and F= ASL(d, 2); or 

(iii) ~ is the design associated with M~, v = 22, 23 or 24, and F is M22, Aut  

M22 , M23 o r  M24. 

Proof. Let  ~ and F yield a counte rexample  with v minimal .  Once again F 
is not  3-transitive. Our  no ta t ion  is the same as before. Lines have at least 
3 points. 

By T h e o r e m  1', Hy q= 1. 

L e m m a  13. The points and lines of ~ do not form PG(d, q). 

Proof. Otherwise,  B is an e-subspace for some  e, 1 < e < d -  1. Then  v -  k = 
(qa+l_q~+l)/(q_ 1) is divisible by p, where p is the pr ime dividing q. Let  c~ 
be an element  of  order  p in Z(II). Then  ~ fixes no point  not  in B and fixes some 
(e + 1)-space containing B. Since H is transit ive on the (e + 1)-spaces containing 
B, c~ fixes each such ( e +  1)-space a n d / / i s  transit ive on the hyperplanes  con- 
taining B. 

On the other  hand,  as in L e m m a  3 we m a y  assume t h a t / 7  induces a col- 
l ineation g roup  of PG(d-e,  q) in which c~ is a non-tr ivial  elation. Thus,  /7 
fixes a hyperp lane  containing B, namely,  the axis of  c~. This is a contradict ion.  
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Lemma 14. Blocks are lines. 

Proof. This is proved precisely as in Lemma 4. 

Lemma 15. Let 1 +~.~Z(II). Then o: fixes no line meeting B. 

Proof. Suppose that ~ fixes a line meeting B at x. The transitivity of H implies 
that c~F(x).  Thus, Z(H)~F~ ,  Z(H)c~F(x)#: l  and Z(II)  acts regularly on 
S - B .  In view of Lemma 13, this contradicts [8]. 

Lemma 16. Let y r B and let 7 ~ FIy have prime order p. I f x 1 and Y l are distinct 
points of F(7) then the line x 1 yl joining them is contained in F(7 ). 

Proof. Since 7 normalizes H(x I Yl) it centralizes an element e s Z ( I I ( x l y l )  ) 
of order p. By Lemma 15, e fixes no line :l:xly ~ on x 1. By Gleason's Lemma 
([2], p. 191), C(7)xl is transitive on the lines through x~ containing at least 
2 fixed points of 7- 

First, take x l = x  in order to find that the lemma holds for each line xy~ 
meeting F(7) at least twice. Then take Xl~:X, so that xxt_~F(7) and hence, 
by the preceding paragraph, xl Yl -- F(y). 

We can now complete the proof of Theorem 2'. Let ~*  be a set of points 
and lines of N minimal with respect to the properties: (i) ~*  contains 3 non- 
collinear points, (ii) if x~ and ya are distinct points of @* then x t Yt is in ~*,  and 
(iii) if a line is in @* so are all of its points. By Lemma 16, N* is not all of N. 

We may assume that B and y are in @*. Clearly, ~*  contains a quadrangle. 

Let y + y ' ~ B ,  where y ' e ~ * .  Then y '=y~ for some ] ~ H .  It follows that 
~ *  c ~  *p contains B and y'. Then ~ *  c~N*P satisfies (i), (ii), and (iii), so that 
~ * ~ = ~ * .  

Thus, N* and (F~.) ~" satisfy the hypotheses of Theorem 2'. Consequently, 
~ *  is a projective plane. Since F is transitive on triples of non-collinear points, 
@ is a projective space (Veblen and Young [14]). This contradicts Lemma 13, 
and completes the proof  of Theorems 2' and 2. 
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