Notes on polynomial-time group theory
William M. Kantor*

University of Oregon
1. Introduction

Throughout this paper let X = {1.2,... n} and let G =<'’ be a subgroup of the symmetric
group S, = Sym(X) generated by a subset [which may be assumed to be "small" (say, of size
< n2; cf. (2.4iv)). The goal will be to compute properties of G "efficiently". In this paper an
algorithm will be viewed as efficient if it runs in polynomial time for all inputs. This is certainly
not the only possible such notion: from a more pragmatic point of view it would be preferable to
require that algorithms have been programmed and found to run well in practice for suitable values
of n and for the groups of greatest interest in group-theoretic research —- as is the case, for
example, in the group theory systems CAYLEY [Cal 2] and GAP [NNS]. On the other hand, the
present polynomial-time emphasis occasionally leads to new methods that have more than just
theoretical applicability. Moreover, insistence on polynomial time leads to a better understanding
of why certain problems (such as intersecting subgroups) are hard and seem to require backtrack or
other exhaustive search technigues (cf. §3).

After indicating some of the properties of G that can be obtained in polynomial time by us-
ing Sims' results or related algorithms (82), I will survey some of the more recent results due to
Luks, Rényai or myself [Lu2; R612; Ka34; KL] (884-6). The paper concludes with some
remarks concerning similar types of questions about Galois groups (87). Throughout the paper,
relatively little will be proved, but easy proofs and some hints of methods will be provided.

The difficulties and interesting aspects of this subject can be illustrated by a standard result:
Cauchy's Theorem that a finite group of order divisible by a prime p has an element of order p. In
the situation considered here, G=(I'> < S_. The standard proofs of Cauchy's Theorem are essen-
tially nonconstructive and are in no sense efficient; for example, they are obtained by viewing G as
acting either on itself or on a set of size > |G|. Hence, an entirely different approach was required
[Kal]. In practice, CAYLEY obtains an element of order p by randomly choosing elements of G
until one is found of order divisible by p. This approach has recently been studied somewhat from
the point of view of the probability of its success after relatively few random choices [IKS]; as
with much of the recent work on algorithms for permutation groups, that investigation rests heavily

upon the classification of finite simple groups.

*

Suppotedin partby NSFandNSA grants.

2
For the most part, this paper is concerned with a brief sampling of polynomial-time algo-
rithms. However, at various points I will point out those algorithms, or variations on them, that
are or appear to be practical -—— and have been or probably will be added to a group theory system.

This is one of the most interesting and most recent developments in this area.
2. Fundamental algorithms

Since recursion or iteration will be used for subgroups of S, , the following trivial result is

very helpful.
Lemma 2.1. If 1l <H;<H, << H_, =S, then m < nlog,n < n.

Namely, by Lagrange's Theorem 2! < [H| < n! for each i. As might be expected, a more
detailed investigation produces a much better bound: m < 2n [Ba; CST].

Let G=(I < S, =Sym(X), where X ={12,....n}. [begin with two simple results that
give an indication of the meaning of "polynomial time". Note that in each situation an algorithm is
needed which, for a7y G, produces the desired information. It must be emphasized that #7/ sub-
groups of 5, mentioned throughout this paper are assumed to be specified by means of generating
sets of permutations.

Recall that the orézsof G on X are the sets {x8 | geG} for xeX. (Here, x2 denotes the im-
age of X under g.) These partition X. In particular, G is transitive on X if and only if there is just
one orbit. Form the graph with vertex set X and edges {x, x2} for gell and x& = xeX. This
graph can be determined in time O(n|T'|). Since its connected components are just the orbits of G,

this yields
Proposition 2.2. In polynomial time all orbits of G can be found.

A Hlock for the action of a transitive group G is a nonempty subset Y of X such that
YNYe = @ whenever geG is such that Y2 = Y. (Then Z:={Y¢|geG}, the &fock sysrem deter-
mined by Y, is a G-invariant partition of X. It produces a permutation group that is a
homomorphic image of G, namely the group G2 of permutations induced by G on the set Z.) Each
block containing the point x has the form x" for a uniquely determined subgroup H of G
containing the stabrlizerGy:= {geG | x& = x}; and, conversely, if G, < H = G then xM is a block.
The &rvial blockscontaining x are the sets {x} and X, corresponding to the choices H = G, and G,
respectively. If the only blocks are trivial then G is called prrmsrve (this is the case if and only if

G, is a maximal subgroup of G).

Proposition 2.3 [At]. Assume that G is transitive on X.
(i) In polynomial time one can determine all blocks of size > 1 that are minimal with re-
spect to inclusion (subject to having size > 1).

(ii) In polynomial time a block system X of size > 1 can be found such that G2 is primitive.

Proof. (i) Find the orbits of G in its natural action on the cartesian product X2 of X with
itself (namely, g:(x,y) — (x2 ¥2)). Each orbit other than the diagonal { (x x) | x€X } determines a
graph with vertex set X and edges {x,y} for (x,y) or (¥ x) in the orbit. The set of connected com-
ponents of such a graph is a block system 2, and each minimal block system arises in this manner.

(i1) Iterate (i), replacing X by = and G by GZ if |Z| < n. (The number of iterations is at
most log n.) O

Note that it is not possible (in polynomial time!) to find #/ block systems (consider the
regular permutation representation of an elementary abelian 2-group).
Write Gy, ;=1{geG |gfixes 1,2, ..., and i}. The most important algorithm for this sur-

vey is Szars’ algorstzm, which produces the following:

Theorem 2.4 [Si; FHL]. In polynomial time the following can all be determined:
(i) For any given feS,, whether or not fEG;

(i) |Gl;

(iii) Fori=1,... n,asetA such that Gy, ;= (A7 and |A|< n2; and

(iv) A set I such that G = <I' and || < n2.

A rough idea of this is as follows. Consider (i). First use (2.2) to find a word h in the
generators I' such that h and g agree on 1, so that hg~'eG,. This produces a recursive procedure
requiring generators for the subgroup fixing the first i of the permuted points for eachi = 1. Sims
showed how to modify an arbitrary [' so that it includes generators for all of these subgroups,
thereby producing what he termed a "strong generating set"; this is T'' in (iv), and each A, C T
Moreover, using A, it is easy to find the index of G, .., in Gy, ; (this is the size of the orbit of
i+1 under the action of Gy,_,); the product over i of the sizes of these sets is |G|. For [T = O(n2)
the algorithm in [FHL] runs in time O(n®); a concise, self-contained and easily programmable
O(n%) variant on this was given in [Kn] (another O(n5) algorithm is in [Je]). Very recently, an
O(n#+€) algorithm for finding |G| has been obtained in [BLS]. This should have the effect of
speeding up all of the algorithms occurring in later sections; it is presently undergoing

modifications and testing [SW].

4
There are many useful consequences of (2.4). The simplest is

Proposition 2.5 [FHL]. Given ACG, in polynomial time the smallest normal subgroup
(AG} of G containing A can be found.

There is a simple recursive procedure for this which the reader will have no difficulty
devising (using (2.1) and (2.4ii)). Here is an outline of an algorithm using a different approach,
developed in [CFL] for both (2.5) and the following result:

Proposition 2.6. Given G, H = 5 such that G normalizes H, the intersection GH can

be found in polynomial time.

Proof of (2.5) and (2.6). Consider any G, H=< S, (in (2.5), H=(A)). Let X*
= XUX' where X'is a copy of X disjoint from X. Let G and H act on X' exactly as they act on
X: this produces actions of GxG and HxH on X*. Let K:= ({(g.g) | geG} U1 xH)) = {(g.gh) |
ge=G, heH}. Then it is not difficult to check that

(HY)NG is the projection into Sym(X) of the pointwise stabilizer of X'in K, and

(HCY} is the projection into Sym(X') of the pointwise stabilizer of X in K.

Pointwise stabilizers can be found using (2.4). Thus, this computes (HY; while if G normalizes
H it computes HNG. O

Corollary 2.7 [FHL]. The derived series and descending central series of G can be

found in polynomial time. (Hence, solvability and nilpotence can be tested in polynomial time.)

In CAYLEY [Cal] all intersections are handled in exactly the same manner, using a back-
track search: no distinction is made between the cases in which G does or does not normalize H.
For further comments concerning intersections see 83. For now it is worth noting one further sit-

uation in which intersections can be found in polynomial time:

Theorem 2.8 [Lul]. Given an integer b, there is a polynomial-time algorithm which,
when given G, H <5, such that all noncyclic composition factors of G have order =< b, finds
GMH.

The algorithm for (2.8) is based in part on bounds in [BCP] for the order of primitive per-
mutation groups all of whose composition factors are bounded as in (2.8). It requires time O(nf®))

with f(b) — oo as b — oo. Thus, while polynomial-time, for large b it is perhaps unreasonably

5
impractical. Nevertheless, it is important to see some consequences of (2.8):

Corollary 2.9 [Lul]. Given an integer b, there are polynomial-time algorithms which,
when given G = S, such that all noncyclic composition factors of G have order < b, finds

(1) the setwise stabilizer Gy = {geG | Y2 = Y} of any given Y € X, and

(ii) the centralizer C(t) of any given teS,,.

Proof. Use (2.8) with H=(S,)y in (i) and H = Csn(t) in (ii); here, (S,)y and Csn(t) are
easy to calculate. O

Finally, note that it is not difficult to find the center Z(G) of an arbitrary group G < S, in
polynomial time. More generally, if A 2 G is given then C(A) can be found in polynomial time
[Lu3]; for example, C5(A) = GﬁCSH(A) can be found using (2. 6).

For an intricate description of many of the above results, see [Ho].
3. GRAPH ISOMORPHISM

There are probably severe restrictions on what can be accomplished in polynomial time.

Namely, consider the following four problems (where G = S, 1s as usual):

(1) Given H < S, find GNH.

(2) Given a p-subgroup P of G, find N5(P).

(3) Given an involution teG, find Ci(t).

(4) Given Y C X find the sermrsestabilizer Gy of Y in G.

Theorem 3.1. If any of the problems (1)-(4) can be solved in polynomial time, then so
can the GRAPH ISOMORPHISM problem.

Here, GRAPH ISOMORPHISM is the following: Cives iwp g-Verdfey grapfls, decrde
whetier or got they are isomorphire. The above somewhat surprising-looking result is due to Luks

[Lul,3]. Parts of the theorem and other similar results of Luks are described in [Ho].

Proof. Clearly, (3) is a special case of (2). Also, (4) is a special case of (1) since
Gy = GN(S,)y and (S,)y is easy to calculate.

It is not difficult to provide a polynomial-time reduction of (4) to (3). Namely, let
X'={1'...n'} beacopyof X disjoint from X, and let G act on X' in the natural manner. Let E

6

be the group (1,1 x---x{{nn) = Z;" Then G normalizes E, and EG is a group. Let t be the
involution in E interchanging v and y' for vEY and fixing all other points in XUX'. Then
EGy = Cp(t) and Gy is the group induced on X by Cgs(t), so that a polynomial-time algorithm
for (3) produces one for (1).

It is also not hard to provide a polynomial-time reduction of GRAPH ISOMORPHISM to
(1). This involves two stages: (i) a reduction from isomorphisms to automorphisms, and then (ii)
a description of an automorphism group as an intersection.

(i) It may be assumed that each of the given graphs (V;, E.), with vertex-set V, and edge-set
E, (i=1, 2), is connected (otherwise recursion could be used); it may also be assumed that
ViMVy = @. Construct a new 2n-vertex graph (V, E) that is the union of the two graphs, so that
(V, E) has exactly two connected components. If Aut(V, E) has an element interchanging these
components then the two original graphs are isomorphic, while if each member of a generating set
for Aut (V, E) sends each component to itself then the original graphs are not isomorphic.

(ii) Now consider an n-vertex graph (V, E). Let V() denote the set of all pairs of vertices.
Since S, = Sym(V) permutes the subsets of V it has a natural embedding as a subgroup G of
Sym(V@). Let H be the subgroup of Sym(V2))} consisting of those permutations sending E to
itself, so that H = Sym(E)xSym(V2)-E). Then Aut(V, E)= GMH. Recall that each symmetric
group S, has two easily found generators (a k-cycle and a transposition). Thus, Aut(V, E) is the

intersection of groups having 2 and 4 generators, respectively. O

Note that an algorithm for intersections (1) was needed only in the very special case of two
groups, one isomorphic to a symmetric group and the other to the direct product of two symmetric
groups. Thus, the above problems remain open even when G and H appear to be "familiar"
groups.

It is generally believed that there is no polynomial-time algorithm for GRAPH ISOMOR-
PHISM. If that turns out to be the case then none of (1)-(4) can be accomplished in polynomial
time. In any event, it should be evident that (1)-(4) must be avoided in the context of the present
subject -- except, of course, for the unlikely possibility that the study of polynomial-time group-
theoretic algorithms might produce a solution to the GRAPH ISOMORPHISM problem.

Finally, note that (2.8) provides polynomial-time algorithms for (1), (3) and (4) when G is
bounded as in (2.8) (e.g., if G is solvable). Until very recently no polynomial-time algorithm was
known for (2) when G is solvable; one has just been found by E. M. Luks.

4. Further algorithms

There are a number of other elementary consequences of the results in 82 (see [KL] for a

7
summary of many of them). However, | will now move to more recent and more complicated
results [Lu2:BKL:R<=12:Ka3 4: KL].

Let G =(I') be as usual. Recall that a sequence of subgroups G =Gy > == > G, =1 of
subgroups of G is called a composdron serresif each term is normal in the preceding one and each
quotient group G/G,, | is simple; while G = Gy > =+ > G = 1 is called a clref serresif each term is
normal in G and there is no normal subgroup of G lying properly between any two successive

terms.
Theorem 4.1 (Luks [Lu2]). A composition series of G can be found in polynomial time.

Note that it is not possible to find #/composition series, as there may be too many of them
(once again, consider the regular representation of an elementary abelian 2-group). Luks' algo-
rithm runs in time O(n®), with the exponent due, to a large extent, to the O(n5) for (2.4). A variant
of it is now known to run in time O(n#*+€) [BLS]. The classification of finite simple groups is used
in (4.1), namely, the truth of Stfrevers consecrure ('The outer automorphism group of each finite

simple group is solvable").

Corollary 4.2 [Lu2]. (i) Simplicity of G can be tested in polynomial time.
(i) For each successive pair A < B in a composition series, in polynomial time a set of size

< n can be found on which B/A acts faithfully.

Proof. Since (i) is obviously taken care of by (4.1), consider (ii). WLOG G=B. Let Y
be the set of orbits of A on X. Then G induces a group GY of permutations of Y. If GY = 1 out-
put Y. WLOG GY=1. Since G acts nontrivially on some member of Y, WLOG A is transitive
on X. Now G = AG, for x€X, so that G/A = G, /A and recursion can be applied to the pair G,
X-{x}. (For a somewhat different argument, see [Lul, (3.2)].) O

Theorem 4.3 (R&nyai [R<12]). A chief series of G can be found in polynomial time.

Outline. Using (4.1) it is easy to find a series of normal subgroups of G such that the
guotient of each pair of successive terms of the series is either (1) the direct product of nonabelian
simple groups permuted transitively by G, or (2) elementary abelian. (Namely, consider the
normal closures (2.5) of all the terms in (4.1)).

This reduces (4.3) to considering (2) (cf. [BKL]), which can be viewed as a special case
of the following situation. Given a set A of linear transformations of a finite vector space, find a

A-irreducible subspace. R<onyai considers this latter problem in terms of the algebra of linear

8
transformations generated by A. This is dealt with by an ingenious use of classical ideas

concerning finite-dimensional algebras. O

Simplicity is one of the standard and most basic questions concerning a finite group.
Almost as basic are Cauchy's and Sylow's Theorems. All of the standard proofs for the latter theo-
rems either clearly do not produce polynomial-time algorithms or probably do not. For example,
the proof of Cauchy's Theorem via the "class equation” is purely existential. Similarly, the most
standard proofs of the existence of Sylow subgroups involve -——in addition to Cauchy's
Theorem - the use of normalizers or centralizers of p-subgroups of G, and these "must" be
avoided in view of $§3. (On the other hand, the algorithm in CAYLEY builds up a Sylow
subgroup by using centralizers.) Other proofs of Cauchy's Theorem or Sylow's Theorem involve
the examination of potentially exponential-size subsets of G. Finally, the conjugacy part of
Sylow's Theorem is standardly proved by a purely existential argument (namely, a counting
argument). Consequently, new technigues were required in order to obtain polynomial-time
algorithms. Cauchy's Theorem was dealt with in [Ka2]. Once again, the classification of finite
simple groups was involved. However, unlike the situation with (4.1), detailed information was
needed concerning such groups (cf. §5). In [KT], polynomial-time algorithms were obtained for
special cases of Sylow's Theorem, such as for solvable groups —— and in the solvable case Hall's
Theorem was also dealt with. These solvable group algorithms were later greatly expanded in

[Ka3] and incorporated into methods that led to the general case:

Theorem 4.4 [Ka34]. If pis a prime then the following can be found in polynomial

time:

(i) Given p-subgroup of G (possibly of order 1), a Sylow p-subgroup P of G containing
it

(ii) Given two Sylow p-subgroups of G, an element geG conjugating the first one to the
second; and

(iii) The normalizer N(P) of a given Sylow p-subgroup P of G (in particular, all g in (ii)

can be "found": the coset N(P)g is the set of all such conjugating elements).

At present there is no Sylow algorithm that is both polynomial-time and practical. How-
ever, when the algorithm in [Ka3] is specialized to solvable groups it becomes practical — and el-
ementary. A version of the solvable group algorithm was studied in [Gl], and is now incorporated
into CAYLEY. This may have been the first published instance where algorithms developed for
polynomial-time group theory were faster than ones developed for purely practical purposes.

The methods used in the proof of (4.4) eventually depend on detailed information

9
concerning all finite simple groups —— not, for example, just on the finiteness of the number of
sporadic simple groups. Some of this is discussed in 85. For now, [will give a hint of one aspect
of the proof, involving an algorithmic version of the Aratzar arewment [Go, p. 12]. Use (4.1) to
find M<G with G/M simple. Use knowledge of simple groups in order to find a Sylow p-
subgroup H/M of G/M, and replace G by H. This reduces (4.41) to the case |G/M| =p.
Recursively find a Sylow p-subgroup P of M. Let gel’, g#M. Then, assumzigothat a polynomial-
time algorithm for the conjugacy part (ii) of (4.4) is available (for M in place of G), find meM such
that Pem = P. If (g% is a Sylow p-subgroup of the cyclic group <gm), then P{g" is a Sylow p-
subgroup of G. This reduces the proof of (4.41) to the proof of (4.4ii) together with a proof of the
simple group case of (4.4i). Similar arguments reduce all of parts of (4.4) to considerations of
simple groups. The Frattini argument is very powerful in group theory; it is also powerful in

algorithmic contexts (see (6.1) for another example of this).

Corollary 4.5. Given a subgroup G of 5, and a prime p, the largest normal p-subgroup
OP(G) of G can be found in polynomial time.

Proof. If P is an intersection of some Sylow p-subgroups of G then successively test the
elements g=l" to see whether P2 =P (using (2.41)). If this fails for some g then find PrPe using
(2.8), and replace P by PMPe. Otherwise output P. O

Luks has devised a polynomial-time algorithm for finding O,(G) that does not use any in-
formation about simple groups [Lu3]. This is an important type of development. Once theorems
are known to be true by using the classification, it is very desirable to see if alternative proofs
might be discovered that do not use the classification. In the context of algorithmic group theory

this is especially important, since new methods might produce more practical algorithms.
5. Permutation representations of simple groups

Suppose that the group G = Sym(X) is known to be simple (cf. (4.1)). By the classifica-
tion of finite simple groups, G is known. Sporadic groups have order O(1), so that all questions
concerning them are "easy" in the polynomial-time context. Similarly, if |G| < n® then most ques-
tions can be answered by brute force. For example, Sylow subgroups can be built up recursively
by the method frequently taught in basic undergraduate courses.

There is no problem reducing to the case in which G is primitive. Assume as well that
|G| = n8. Let xeX. Itis not hard to show that this implies that either G = A, (for some r) and G, is

the stabilizer of a subset or a partition of the r-set into subsets of egual size, or G is a classical

10
group and G, is the stabilizer of a subspace (cf. [Kal, 2]). If G = A, call the underlying r-set the

aarural permutation representaizon of G; while if G is classical call the set of points of the
underlying projective space the matural permutacion represeatatiorof G. (Note that the assumption

|G| = n® has eliminated all need to consider the exceptional simple groups of Lie type!)

Theorem 5.1 (Replacement Theorem) [Ka2]. Given a simple subgroup G of S, of
order = n8, there is a polynomial-time algorithm that finds the natural permutation representation

of G (and that permutation representation has degree < 2n).

This is proved using the geometry of the classical groups. The bound can be improved,
with n* in place of n8, using [Li]. A potentially more practical polynomial-time algorithm for (5.1)
is being investigated [KP].

Much more can be obtained concerning the natural action when G is a classical group. The
following appear in [Ka2 3].

Vector space In polynomial time the underlying vector space V can be found. This in-
volves a very classical method for coordinatizing projective geometry [VY].

Matrices A group of matrices inducing G can be found. Note that G itself may not act on
the vector space: G only acts projectively. But of course, G is usually "viewed" as a group of
matrices or linear transformations, and this standard point of view is readily achieved using (5.1).

Formrs In the case of a symplectic, orthogonal or unitary group, a suitable form can be
constructed on V.

Ligear algebra The preceding constructions have the effect of replacing permutation group
considerations by "ordinary" types of linear algebra. In view of this, it should come as no surprise
that the simple group case of (4.4) can be deduced from the Replacement Theorem (by means of
same rather tedious work -—— mostly linear algebra awkwardly phrased in terms of permutation
groups). The much more interesting part of the proof of (4.4) is the reduction to the case of simple

groups.

As noted above, I have avoided dealing with exceptional groups of Lie type by starting
with a suitable inequality |G| = n8. However, it would be interesting to have analogous algorithmic
results for those groups as well, under the assumption that the given permutation representation is
sufficiently natural (e.g., on a class of maximal parabolic subgroups).

§6. Quotient groups.

There are polynomial-time algorithms for finding many other properties of G. Lists of

11
these can be found in [Ka3; KL], and will not be included here. Instead, I will briefly discuss the

gquestion of computations in quotient groups.

Let G=(I') < S, be as usual, and let K & G be given. It is natural to ask for properties of
the quotient group G/K. Unfortunately, G/K need not lie in S, for any r of size polynomial in n, as
the following example shows [Ne]. Let n =4m, partition X into m sets of size 4, and let G be the
direct product of m dihedral groups of order 8, each of which acts faithfully on one of the 4-sets
and is the identity on the remainder of X. Let G/K be the quotient group obtained by identifying
the centers of the m dihedral groups. Then G/K is an extraspecial group, and it is easy to use the
complex representation theory of this group in order to show that it does not have a faithful permu-
tation representation on a set of polynomial size.

Thus, studying G/K is harder than studying G. Entirely new algorithms are needed. For
example, while it is easy to find the center Z{G) (as noted following (2.9)) it seems to be very
difficult to find Z(G/K). In fact, even for p-groups it is by no means obvious how to go about
finding the ascending central series (the descending central series is, however, easy; ¢f. (2.7)). In
[KL] the classification of finite simple groups was used to find Z(G/K) for general G. More
generally, in [KL] analogues were found for G/K of every known polynomial-time algorithm for

computations in G. A fairly typical though simple example is as follows.

Proposition 6.1. Given solvable subgroups A/K and B/K of G/K, their intersection
A/K N B/K = (ANB)/K can be found in polynomial time.

Proof. If K is solvable, use (2.8). So WLOG K is not solvable, and hence in particular
K is not nilpotent. Use (4.4) to find a Sylow subgroup Q of K that is not normal in K, and also to
find N(Q) < G, Ng(Q), NA(Q) and Ng(Q). Recursively find [N, (Q)Ng (Q)ININR(Q)Nk(Q)] =
Ning(Q)NE(Q). By the Frattini argument, AMB = K[N,~5(Q)]. O

One interesting consequence of the consideration of quotient groups is the following result,

which does not appear to have anything at all to do with quotient groups:

Theorem 6.2 [KL]. Given H < G, the largest normal subgroup N{Hg | geG} of G con-

tained in H can be found in polynomial time.

Note that the intersection in (6.2) may involve exponentially many subgroups of G. A
special case of this situation is finding Op(G), but the algorithm indicated in (4.5) is simpler —
and, as already mentioned, this case of (6.2) has a polynomial-time solution not reguiring the

classification of finite simple groups [Lu3].

12

7. Galois groups

Some of the methods described here have limited applicability to a superficially similar but
much harder subject: polynomial-time Galois theory. There, one is given a finite extension K of Q
and a polynomial fEK[x], and the basic problem is to find properties of the Galois group of f. For
simplicity, assume that f€Z [x] (although extensions of) must eventually be considered as well).
Then the problem is to determine Gal(f) in time that is polynomial in the number of (binary or
decimal) digits required to write f. Analogues of (2.2) and (2.3) exist: f can be factored into
irreducibles [LLL]; an extension L = Q(x) of Q) can be obtained with f() = 0 (described as a vec-
tor space over () with a distinguished basis and a multiplication rule for that basis); and, when f is
irreducible, subfields of L can be specified in polynomial time that correspond to the blocks in-
volved in (2.3) (specified as the sets of roots of explicitly constructed polynomials) [LM]. Of
course, it is then easy to test for 2-transitivity, or 5-transitivity, using factorizations (over number
fields).

This situation is harder than the one in this paper because (i) Galois groups are determined
only up to conjugacy in symmetric groups; (ii) hence, describing a nontrivial element of G = Gal(f)
is difficult (except possibly for complex conjugation); and (iii) a splitting field of f generally has
non-polynomial degree over Q), and hence cannot be written (as a vector space over Q) in polyno-
mial time. In view of these difficulties, it is not surprising that no polynomial-time algorithm is
known for determining |G| (in fact, no polynomial-time algorithm is known for determining |Gl
even in case G is known to be a 2-group!).

Only the following have been proved. In polynomial time it can be decided whether or not
G is solvable [LM], in which case all prime factors of |G| can be found (but not the multiplicities to
which they occur). Very weak analogues of (4.1) and (4.2) have been obtained [KLa; Ka5] (based

on analogues of (5.1)) when it is assumed that G acts primitively on the set of roots of f.

REFERENCES

[At] M. D. Atkinson, An algorithm for finding the blocks of a permutation group. Math.
Comp. 29 (1975) 911-913.

[Ba] L. Babai, On the length of subgroup chains in the symmetric group. Comm. in Alg. 14
(1986) 1729-1736.

[BCP] L. Babai, P. J. Cameron and P. PUlfy, On the order of primitive groups with restricted
nonabelian composition factors. J. Algebra 79 (1982) 161-168.

[BKL] L. Babai, W. M. Kantor and E. M. Luks, Computational complexity and the
classification of finite simple groups, pp. 162-171 in FProc /EEE Symiposium on
Fourdations of Computer Scrence 1983.

[BLS] L. Babai, E. M. Luks and A. Seress, Managing permutation groups in O(n*logcn) time

13

{(in preparation).

[Cal] J. J. Cannon, An introduction to the group theory language Cayley, pp. 145-183 in
Computational Croup Theory (ed. M. D. Atkinson), Academic Press 1984.

[Ca2] J. J. Cannon, this CWI issue.

[CST] P.J. Cameron, R. Solomon and A. Turull,

[CFL] G. Cooperman, L. Finkelstein and E. Luks, Reduction of group constructions to point
stabilizers, Procesdings of the fnfernalional Symposiiam on Symboltc and Algebrarc
Computatron ([554C89), ACM Press, 351-356.

[FHL] M. Furst, J. Hopcroft and E. Luks, Polynomial-time algorithms for permutation groups.
FProc. 21t I EFEF Symp. Found. Comp. Scr (1980) 36-41.

[Gl] 5. D. Glasby, Constructing normalisers in finite soluble groups. J. Symbolic
Computation 5 (1988), 285--294.

[Go] D. Gorenstein, frmire Croups Harper and Row, New York 1968.

[Ho] C. M. Hoffmann, Group-74eoretrc Algorthims and Graplt lsomorphrsar. Springer Lect.
Notes in Comp. Sci. 136 (1982).

[IKS] I M. Isaacs, W. M. Kantor and N. Spaltenstein, On the probability that a group element
is p-singular (in preparation).

[Je] M. R. Jerrum, A compact representation for permutation groups. Froc 23nd [EER
Symp. Found. Comp. Scr (1982) 126-133.

[Kal] W. M. Kantor, Permutation representations of the finite classical groups of small degree
or rank. J. Algebra 60 (1979) 158-168.

[Ka2] W. M. Kantor, Polynomial-time algorithms for finding elements of prime order and
Sylow subgroups. J. Algorithms 6 (1985) 478-514.

[Ka3] W. M. Kantor, Sylow's theorem in polynomial time. J. Comp. Syst. Sci. 30 (1985) 359-
394.

[Ka4] W. M. Kantor, Finding Sylow normalizers in polynomial time. J. Algorithms 11 (1990)
523-563.

[Ka5] W. M. Kantor (unpublished).

[KLa] W. M. Kantor and E. Lander, Recognizing exponentially large Galois groups (unpub-
lished manuscript).

[KL] W. M. Kantor and E. M. Luks, Computing in quotient groups. Froc ZZpd ACAM
Svanposium on Theory of Computing (1990) 524-534 .

[KP] W. M. Kantor and T. Penttila (in preparation).

[KT] W. M. Kantor and D. E. Taylor, Polynomial-time versions of Sylow's theorem. J.

Algorithms 9 (1988) 1-17.

[Kn] D. E. Knuth, Efficient representation of perm groups. Combinatorica 11 (1991) 33-43.

[LM] >. Landau and G. L. Miller, Solvability by radicals is in polynomial time. J. Comp.
Syst. Sci. 30 (1985) 179-208.

[LLL] A. K. Lenstra, H. W. Lenstra and L. LovUsz, Factoring polynomials with rational coef-
ficients. Math. Ann. 261 (1982) 513-534.

[Li] M. W. Liebeck, On the orders of maximal subgroups of the finite classical groups.
Proc. LMS 50 (1985) 426-446.

[Lul] E. M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comp. Syst. Sci. 25 (1982) 42-65.

[Lu2] E. M. Luks, Computing the composition factors of a permutation group in polynomial
time, Combinatorica 7 (1987) 87-99.

[Lu3] E. M. Luks (unpublished).

P.

A

14
M. Neumann, Some algorithms for computing with finite permutation groups, pp. 39-
9 in Froceedings of Groups-St. Aodrews 1985 (Eds. E. F. Robertson and C. M.
Campbell), London Math. Soc. Lect. Note 121, Cambridge U. Press 1987.
. Niemeyer, W. Nickel and M. Sch@nert, GAP, Getting started and reference manual.
Aachen 1988.

L. Rényai, Zero divisors and invariant subspaces. Technical Report CIS-TR 85-12,

L.

A

C

O

Department of Computer and Information Science, University of Oregon 1985.
Roényai, Simple algebras are difficult. Aroc ACM Symposiwm on Theory of
Computing 1987, 398-408.

. Seress and [. Weisz, PERM: A program computing strong generating sets (in prepara-
tion).

. C. Sims, Computational methods in the study of permutation groups, pp. 169-183 in
Compurtatfonal Problems i Abstracr Aleebra (ed. J. Leech), Pergamon Press, NY
1970.

. Veblen and J. W. Young, Projective gepmetfry: (Ginn, Boston 1916.

