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Througbout. I.bis pap(!!' h,t. C; (I') hn a subgrollp of 8" generated by a 
subset l' which may I)(! asslllllPd t() 1)() 'Slltal1' (Hay, of Hi~() < n2 ; d. Theorem 
2.4iv). Tlw )1;o,tl will h(' to (·OIll[Jlll.() ]H·o])(!!'l.i(!s of c: '(1fliciellLly'. The notion of 
efficiellcy IIspd l}(!['(' will 1)(! 1,1[(, ('xist.(!IH'P of a ]>Olyuolllial-Lillw algorithm. This 
is certainly IlOt. 1.1)(' ollly POHHihl(' s1[('h Jlotiou: froJll a JllOn~ pragmatic point of 
view it wOlild 1)(! ]l1'('f(!1':l1 Ii(' to ['(!qllin' that. al)1;oritlims have bmm programmed 
nuel l'\lll wdl ill pradi('(' I'm slIil.ahl(' vahwH of'll aIHI for groUpH of greatest interest 
in groll]l-tlwordk ['(!:OH!(lJ'dl as is Uw caSt!, for nxample, in the gronp theory 
systmllH CAYLEY [7] alld (:J\l) [:l.lj. 011 I.lw otlwr halld, the present polynomial­
tillle CHllphasis o('('asiollally Im<is t.o IWW llld.hods that hav() lllore than just 
theorotical applicahility. MornoVPl', illsisI.PllC() 011 polYllolllial time leads to a 
better lllld(!rst.nlldiu)1; of why C(lrt.aill prohl(!lllH (:mell as intersecting subgroups) 
arr, hard and snnlll I.() wqlliJ'n I )Hckt.l'ack or ot.lwr Pxltallstive search techniques 
(d, 83). 

Aftcr illtiicn.tiIl)1; SOll)(! of t.ho pro]wrt.iPs of n that CHn bn ohtainerl in polynomial 
time by llsill)1; ~illlS' rnsuiLs OJ' rdnt.nd algorithm:; (§2), I will turn to the more 
recent rosult:; dup (.0 Luks, l{llllyai OJ' lllysplf [:n, :3[i, :3G, 19, 20, 2:3] (§4). The 
remaill<ior of till' papnt' (,()llsistH or it HIlJ'Wy of rosllltR. In all caRes the details get 
fairly llwSHy. 'I'll<! pa.pm· COUcilld('s with some n\lllal'ks cOllcerning similar types 
of quesLiollH ai>out Ualois )1;1'011pS Oi7). Thl'onghout the paper, relatively little 
will Iw j)l'OV()<i, lmt oasy proofs awl I'lOllH1 hints of lllcthoclR will be provided. 

Tlw diIIicllltioH a.lI( I illt(H'()HLiug aH]>octs of this sllbjec:t call be illustrated by a 
standard rpsult: Caudly's Tlwormll t;itat. It finite grollp of order divisible by a 
prime Ji has all dmlJ(mt of Ol'dnr]l. '1'11(\ stnn(lnrcl proofs of Cauchy's Theorem are 
essentially llotl(:OIlHt.rlH:t.iV(~ awl arc) in uo HeuSt; efiident; for example, they are 
obtainecl by viewillg 0 as a(:Lillg dtlwr on itself or Oil 11 set of'size > IGI. Hence, 
an entirely dUTermlt aPlll'(>adl was lWluired [17], III practice, CAYLEY obtains 
an elewellt of ol'tipr 1) by randomly dlOosiug elements of G until one is found of 
oreler divisihle hy I), 'rltis approach has recently been studied somewhat from 
the point of vi()w of tlw prol>abiliLy of itH Huc:cess after relatively few random 
choices [Hi]; HH with lllany of' the l'e(:enL work on algorithms for permutation 
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groups. 
groups, that investigation restH heavily lljHlll Hw classification of finite simple I' 

For the most part, this paper is cOIJ(:enwd wit.h it bl'id' :mlllplillg of polynomial- I', 
time algorithms. However, at variollf> points J will point out, those algorithms, 
or variations on them, that are or <1PP(,fll' to he practical and have been 
or probably will be added to a grOllp theory sysl,PIll. This is Olle of the most 
interesting and most recent dfwnloplIwuts ill this Hl'('<t. 

2. FUNDAMENTAL ALGORITHMS 

Since recursion 01' iteration will be us(~d for subgroups of ,'in, t.he following 
trivial result is very helpful. 

Namely, by Lagrange's Theorem 2i ::; Illil :S n! 1'01' (!(tch i. As might be 
expected, a more detailed investigation produces a lllIH:h bd,tm- hound: m < 2n 
[2,8]. 

Let G = (r) ::; Sn = Sym(X), whurc X = {1, 2, ... ,n}. I begill with two 
simple results that give an indication of tlw IlwCLning of 'POIYllOluial time'. Note 
that in each situation an algorithm if> nooded which, for any G, produces the 
desired information, It must be emphasiJlod thaI, all Sllbgl'OllPH of 81/ mentioned 
throughout this paper are assumcd to hc sp(',eified by llWiUlH of gCllorating sets 
of permutations. 

Recall that the orbits of G on X arc the sets {x:!I lyE O} for a: EX. (Here, xfl 

denotes the image of x under g.) These partition X. In particnlar, G is transitive 
on X if and only if there is just Olle orbit. Form the graph with vertex set X 
and edges {x, xg

} for .0 E r and Xii =f ;r: EX. This graph can be determined 
in time O(nlrJ). Since its connoc:ted components are jnst [;he orbits of G, this 
yields 

PROPOSITION 2.2. In polynomial time all or'bits of G can Iw found. 

A block for the action of a transitive group G is a nonempty snbset Y of X such 
that Ynyg = 0 whenever g EGis such that yo =f Y. (Then L;: = {Y!l 1.0 E G}, 
the block system determined by Y, is a G-invariant partition of X, and henco 
produces a new permutation group GE that is a homomorphic image of G.) Each 
block containing the point x has the form XIi for a uniquely determined subgroup 
H of G containing t.he stabilizer Gx : = {g E G I x!l = x}; and, conversely, if 
Gx ::; H :S G then xIi is a block. The trivial blocks containing x are the sets {x} 
and X, corresponding to the choices H = Gx and G, respectively. If the only 
blocks are trivial then G is called primit'ive (this is the case if and only if G x is 
a maximal subgroup of G). 

PROPOSITION 2.3 [1]. Assume that G is transitive on X. 

(i) In polynomial time one can determine all blocks of size> 1 that are minimal 

94 

\ 
\ 
1 
I 

'\ 
\ 

~ 
\ 

\ 



with T'cspect to indlLsioT/. (s'lLlijcct to having 8izc > 1), 
(ii) In polynomial lime IL block system I; of size> 1 can be fonnd 8nch that G'B 

is p'I'irn:iUvc, 

PROOF, (i) Find tlw orbits of a ill its natural action on the cartesian product 
X 2 of X with itself (namely, y: (:I:,y) I-> (:r,fJ,yIJ)), Each orbit other than the 
diagonal {(;r" :r) I ;1' EX} clpterlllines it gmph with vertex set X and edges {x, y} 
for (x, y) or (y, ;1:) in the orbit. '1'he set of cOlllwc:ted components of such a graph 
is a block system ~, and nach lllinimal hlock system arises in this manner. 

(ii) Itcmte (i), replacing X by ~ awl a by G'B if II;I < n, (The number of 
iterations is at most log 71,) 0 

Note that it is not llossib]p (in polynomial time!) to find all block systems 
(consider the regular 1HH'lll11tatioll reprm,cutaLion of an elementary abelian 2-
group), 

Write OI2",i = {y E a I gHx(~s 1, 2", " and i}, The most important algorithm 
for this survey iH 8ims' nlgol'ithrn, which produces the following: 

THEOREM 2.4 [:)7, 11]. In polynomial time thc following can all be determined: 
(i) For any given f E 8,,, 'Whether 01' not f E G; 
(ii) 101; 
(iii) For i = 1, . , . , n, IL set 6.; 81tch that 012",; = (6.i1 and 16.; I < n; and 
(iv) A sci; 1" 81tch /:ha/: a = (1"1 and Ir'l < n2 , 

A rough idea of this is itA follows, Consider (i), First use (2.2) to find a word 
h in the generators r Imeh tim!; II. and [) agree on 1, so that hg- 1 E G I . This 
produceH a recursive procedure requiring generators for the subgroup fixing the 
first i of the permuted points for each i ;::: 1. Sims showed how to modify an 
arbitrary r so that it includes generators for these subgroups, thereby producing 
w hat he termed a 'strong generating set'; this is 1" in (iv), and each 6.; ~ r', 
Moreover, r' contains It set of coset representatives for O12."i+l in 0 12",; for 
each i; the product overi of the sil';es of these sets is 101. For Irl = O(n2

) 

the algorithm in [11] runs in time O(nG); a concise, self-contained and easily 
programmable 0(11,") variant on this was given in [26] (another 0(n5) algorithm 
is in [16]). Very recently, all O(n tJ 10gC n ) algorithm for finding IGI has been 
obtained ill [6], This should have the effect of speeding up all of the algorithms 
occurring in later sectiollS. Moreover, the algorithm in [26] has already been used 
in [10]; while that in [6] as well as related algorithms [4] are presently undergoing 
modifications and testing (in particular, for inclusion in GAP), 

There are many useful consequences of (2A), The simplest is 

PROPOSITION 2,5 [11], Given 6. c a, in polynomial time the smallest normal 
8nbgT'Onp (6. G) of a con/;ainin[} 6. can be f01md, 

There is a simple recursive procedure for this which the reader will have no 
difficulty devising (d. (2,1)). Here is an outline of an algorithm using a different 



approach, developed ill [0] [01' both (2':)) awl LlH' foUowillg r('slllt: 

PROPOSITION 2.0. Given C:, II :'; ,"ill 8111-1, fhll/, (: 1/(J/'II/IlIL:c8 J1, lhe intersection 
G n H can be found in ]lolYlwmial {i'll/t'. 

PROOF OF (2.5) AND (2.n). IA~t S', .Y 1,1 X', wltt'n' ,'\' is a ('opY of X disjoint 
from X. Let G and H ad Oll .X' t~xa('\,ly as 11w,V ad Oil ,'\: (,his produces actions 
of G x G and H x If Oil X'. 1,<'1, h': ({ (!I,!/) I !I ( U} U (J x. ll)). Tlwll it is 
not clifIicult to check that 

(HG ) n G is the pl'Ojec:!.iou into SYJll( X) oj' I.lH' poiutwiSt' Htal)iliznr of X' in 
K, and 

(HG) is the projnction into SYJll(S') ()j' illC' pointwise slalJiliz('l' of X ill ](, 
Pointwise stabilizers ean ho f()llllC\llHillg (2.,1). TIlliS, (,lib ('()Jll\lll(,('S (flU); while 
if G normalizes II it, ('.ompllt('.H [[ n 0. [J 

COROLLARY 2.7 [11]. The !lc7'i/led .~r:I·ir8 lI:nd (iesn:w1hl1l n'n/,ml 8tTie8 of G can 

( 

be found in polynomial time. (I1CTII:I', wl/Ill./rililll lIud nillltJ/t"W·t' m:1/, In: t(~8ted in \ 
polynomial time.) " 

In CAYLEY [7] all illterseetiolls (\,l'(' ltaJl(\l(~cl ill ('XHC'tly tll(' SallH\ IlHtllIWr, using 1 
a backtrack search: no (Ii~t.ill('t.ioll i~ Ill/Hk !}('(,W(!(\II (,ltp ('.<lS(,S ill which G does 
or does not normalize Fl. For fnrtlwr C()llII1WIli.H ('()JJ(·'('l'IliuJ.?; iu(,(,!'sc\d.iolls soe §3, 
For now it is worth noting oun flll'tlwr HiLuaLi()1I ill which ill(.CI!'sec!.iO]\H can be 
found in polynomial time: 

THEOREM 2,8 [30]. Given an intcrrT Ii, UU~'l't~ ,is a ]lol;tJ'lI,mnial-tiuw algorithm 
which, when given G, H :::; Sn 81wh /;hll/; all 'l/,tJ'll(~W:lit: co'ml'(lsUio7/. facim's of G 1 
have order:::; b, finds G n H. II 

The algorithm for (2.8) is based ill part 011 lJOllllClH ill [:~l for tlw order of \ 
primitive permutation groups all of wlJ()s(~ (~()Jllp()sil.i()1l factors (LW hounder! as 1 
in (2.8). It requires time O(nf(b)) with f(li) -7 00 as Ii -; 00. TIms, while 
polynomial-time, for large Ii it is pcrhapH 1I1ll'oasouahly impractic.al. Neverthe- r 
less, it is important to see some cOllseqU()Il(:es of (2.1:1):' I 
CO~OLLARY 2.9 [30]. Given an integer b, thm! arc ]lol]Jnomial-l:ime algorithms '\ 
whzch, when given G :::; Sn such that all nonqjdic composition far:to7'8 of G have 
order:::; b, finds 

(~! the setwise .stabilizer Gy == {g E G I y!I = Y} of any given Y ~ X, and '\" 
(n) the centralzzer Oa(t) of any given t E S'/\,. 

PROOF, Use (2,8) with II ::::: (Sn)y in (i) and If == Os" (t) ill (ii). 0 

Finally, note that it is not difficult to find the center Z (G) ill polynomial time. 
More generally if A <J G' . tl 0 (A " ."\ t' 
[. '- ,IS glVen Jell G ) ca.n be found III polynolIua line , 
32], for example, Ga(A) == G n Os" (A) can be fOlluclllsing (2.6). I 



r For an intricate description of many of the above results, see [14]. 
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3. GRAPH ISOMORPHISM 
There are probably severe restrictions OIl what can be accomplished in poly­

nomial time. Namely, consider the following four problems (where G :::; Sn as 
usual) : 

(1) Given H :::; Sn, find G n H. 
(2) Given a p-subgroup P of G (for a prime p), find its normalizer NG(P). 
(3) Given an involution t E G, find its centralizer CG(t). 
(4) Given Y eX, find its setwise stabilizer Gy. 

THEOREM 3.1. If any of the problems (1)-(4) can be solved in polynomial time, 
then so ean the GRAPH ISOMORPHISM problem. 

Here, GRAPH ISOMORPHISM is the following: Given two n-vertex graphs, 
decide whether or not they are isomorphic. The above somewhat surprising­
looking result is due to Luks [30, 32]. Parts of the theorem and other similar 
results of Luks are describecl in [14]. 

PROOF. Clearly, (3) is a special case of (2). Also, (4) is a special case of (1) 
since Gy = G n (Sn)Y and (8,,)y is easy to calculate. 

It is not difficult to provide a polynomial-time reduction of (4) to (3). Namely, 
let X' = {I', ... , n'} be a copy of X disjoint from X, and let G act on X' in the 
natural manner. Let E be the group ((1, I')) X ... X ((n, n')) ~ ~", Then G 
normalizes E, and EG is a group. Let t be the involution in E interchanging y 
and 1/' for]J E Y and fixing all other points in XUX'. Then EGy = CEG(t) and 
Gy is the group induced on X by CEG(t), so that a polynomial-time algorithm 
for (3) produces one for (1). 

It is also not hard to provide a polynomial-time reduction of GRAPH ISO­
MORPHISM to (1). This involves two stages: (i) a reduction from isomorphisms 
to automorphisms, and then (ii) a description of an automorphism group as an 
intersection. 

(i) It may be assumed that each of the given graphs (Vi, E i ), with vertex-set 
Vi and edge-set Ei (i = 1, 2), is connected (otherwise recursion could be used); 
it may also be assumed that V1 n V2 = 0. Construct a 2n-vertex graph (11, E) 
that is the union of the two graphs, so that (11, E) has exactly two connected 
components. If Aut(V, E) has an element interchanging these components then 
the two original graphs are isomorphic, while if each member of a generating set 
for Aut (V, E) sends each component to itself then the original graphs are not 
isomorphic. 

(ii) Now consider an n-vertex graph (11, E). Let V(2) denote the set of all 
pairs of vertices. Since Sn = Sym(V) permutes the subsets of V it has a natural 
embedding as a subgroup G of Sym(V(2)). Let H be the subgroup of Sym(V(2)) 
consisting of those permutations sending E to itself, so that H ::::: Sym(E) x 
Sym(V(2) - E). Then Aut(V, E) = GnH. Recall that each symmetric group Sk 
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has two easily found generators (a k-cycle and a transposition). Thus, Aut(V, E) 
is the intersection of groups having 2 and 4 gencrators, rcspectively. 0 

Note that an algorithm for intersections (1) was needed only in the very special 
case of two groups, one isomorphic to a symmetric group and the other to the 
direct product of two symmetric groups. Tlms, the structure of G and H do not 
help in general (but compare (2.8)). 

It is generally believed that there is no polynomial-time algorithtll for GRAP:H 
ISOMORPHISM. If that turns out to be the case thell nOlle of (1 )-( 4) can be 
accomplished in polynomial time. In any event, it should be evident that (1)­
(4) must be avoided in the context of the present sllbject---- except, of course, 
for the unlikely possibility that the study of polynomial-time group-theoretic 
algorithms might produce a solution to the GRAPH ISOMORPHISM problem. 

Finally, note that (2.8) provides polynomial-time algoritllllls for (1), (3) and 
(4) when G is bounded as in (2.8) (e.g., if G is solvable). Until very recently no 
polynomial-time algorithm was known for (2) when G is solvable; one has just 
been found by Luks. 

4. FURTHER ALGORITHMS 
There are a number of other elementary COllSO<jlWllces of the results in §2 (see 

[23] for a summary of many of them). How(wer, I WillllOW move to more recent 
and more complicated results [31,5,35, :36, 19, 20, 23]. 

Let G = (f) be as usual. Recall that a sequellce of subgrollps G = Go > 
. .. > G k = 1 of subgroups of G is calleel a composition 8cric8 if each term is 
normal in the preceding one and each quotient group GdGi -

1
- J is simple; while 

G = Go > ... > G k = 1 is called a chicf series if each term is normal ill G and 
there is no normal subgroup of G lying properly between two sllceessive terms. 

THEOREM 4.1 (Luks [31]). A composition series of G can be found in polynomial 
time. 

Note that it is not possible to find all composition series, as there may be too 
many of them (once again, consider the regular representation of an elementary 
abelian 2-group). Luks' algorithm is known to run in time O(nll), with the 
exponent due, to a large extent, to the O(n5 ) for (2.4) - and hence it can be 
made faster by using [6]. 

COROLLARY 4.2 [31]. 

(i) Simplicity of G can be tested in polynomial time. 
(ii) }~r each successive pair A:::1 B in a given composition ser'ies, in polynomial 

t2me a set of size :S n can be found on which B / A acts faithfully. 

PROOF. Since (i) is obviously taken care of by (4.1), consider (ii). WLOG 
G:=: B. Let Y be the set of orbits of A on X. Then G induces a groilp GY 

of permutations of Y. If GY =I 1 output Y. WLOG GY = 1. Since G acts 
nontrivially on some member of Y, WLOG A is transitive on X. Now G = AGx 
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,. for X EX, so that G / A ~ G"J A" and reclll'f,ion can be applied to the pair G x, I X - {:r}. (For a s(Hlwwlmt diffm·nllt. nrgmlwllt, see [:30], (3.2)J.) D 

THEOREM 4.3 (R611yai [:31), :W]). A chief 8crie8 of G can be found in polynomial 
time. 

OUTLINE. Using (4.1) it. is easy t.o find a normal s(!ries for G each of whose factors 
is either (1) elcllwnLary abplian, or (2) tlw direct product of nonabelian simple 
groupS pernl1lt(~d Ll'ltnsiLivdy by G. (Nallldy, cOllHicler the normal closures (2.5) 
of all the terlllH in (,1.1).) TIH'rdore, (4.:~) call ht~ viewed as a special case of the 
following siLuation. (iiv(~11 a sd, 6. of linoar transformations of a finite vector 
space, find it 6. irn~dudl)k sll!Jspacp. Hliuyai cOllsiders this latter problem in 
terms of tlw alW'bra of linl'ar LmllSfortuatiolls gmwrated by 6.. This is dealt with 
by an ing(~ni()llS mH' of ('lassical jrlPns ('.OlH',(',ruiug finite-dimensional algebras. D 

Simplicity is Olin of thp st.andard and most basic: questions concerning a finite 
group. Almost as basic am Callchy's aIHI Sylow's Theorerm,. All of the standard 
proofs for tlw laLLm- tJwon~lllS ni(,h(~r doarly do not produce polynomial-time 
algorithms Ol' wry Jilwly do llot.For ('xHlllpln, the proof of Cauchy's Theorem via 
the 'class (~qlln(.j()ll' is pllrply (IXiSt.(~llt.ial. Silllilarly, the most standard proofs of 
the cxiHtcU('e of Sylow suhgroups illvolv(~ iu additiou to Cauchy's Theorem -
the use of lj()rlllalill(~rS or cmlt.ralill(~l'S of 1lsubgro1lps of G, Hnd these 'must' be 
avoided by ii:L (Oil Llw ot.lwt' haud, tlw algorithm in CAYLEY builds up a Sylow 
subgroup hy Ilsiug cnnl.ralillms.) OUwr jlro()f:~ of' Cauchy's Theorem or Sylow's 
Theorem iuvolw Llw ('xauliuaCioll of pot<!lltially exponential-size subsets of G or 
an evon larger set.. Finally, Llw coujugacy part of Sylow's Theorem is standarclly 
proved by a pl1wly ('xisl,('ltLinl arglllllPllt (a couuting argument). Consequently, 
new tecllniqlH's w(~J'(' r('(/11irc~d in order to obtain polynomial-time algorithms. 
Cauchy's TIWOl'oltl was (lt~alL with ill [18]. Once again, the classification of finite 
simple groups was iuvolwd! II(}w(~Vf~r, ulllike the situation with (4.1), detailed 
information was lwndnd COllc(ll'1ling ~mdl groups (d. §6). III [25], polynomial­
time algorithllls w(!r(~ obtaill('d for special cases of Sylow's Theorem, such as 
for solvabl() groups and ill the solvable case Hall's Theorem was also dealt 
with. TllOS(~ solvable grollll algoritlullH were laLer greatly expanded in [19] and 
incorporated illLo llWtJW<iH that 1m! to the general case: 

TmmREM 4.4 [Hl, 20]. If ]I is It prime Own the following can be found in 
polynomial anu:: 

(i) Given a J! 8uh,IJl'()uJi of G (Jlo88ilily of orrier 1), a Sylow p-subgroup P of G 
con/;aining #;j 

(ii) Given two Sylow l)8'llligr'07Ljis of 0, an element 9 E G conjugating the first 
one /;0 the sCCOTulj and 

(iii) The noml,alizc'I' No (P) of a given Sylow p-sulig7'Oup P of G (in partiC'Ular, 
nil !J in (ii) can I)(: 'found': the coset Na(P)g is the set of all such conju­
gating r:lerrwnt;,q). 



At prOHcut tlwrc~ if; lIO Sylow lllgorit.lull t.hat. iH botl! polyuomial-time and 
practical. How(1vc!l', wl11'11 tlH' aigoril.lull ill [1 DJ iH spI'cializl'd t.o solvahlt~ groups it 
becomes prac:tica! awl dC'uHHJtary. /I. V!'J'siotJ of 1\1(' solvah!!' p;roUj) algorithm 
was stlldic~(l ill (12], all( 1 is now iJJI'oJ'j)( )ra!.c'cl i Ill.() (' /I. YLEY. ThiH may have 
been the first pllhlisilC'cl iIIHt.al[(,C! wIJC'rc' algnrithllls dc'vC'lo]lc'c1 for llolynomial­
time group theory w(~rc' fasic'!' Llmll ow's clc!V<'I()pc'd foJ' 11Ill'f'ly practical plIl'poses. 
The POlYllolllial-tilllC! lllC!I.1IOC\ol()p;y lllllS!. 1)(' di!rc']'('lll frolll standard approaches 
due to the fact that. c~nnl,ralizc'rs C·illlllOl. ill tJ,c'w'J'H1 bc' maId ill tlw polynomial­
time cOlltext; aut! this iu tlll'll lC'acls t() IIC'W idc'as S()lIl(' ()f which havn practical 
applieatiollH. It was lllC!lll.i()jJ('cl ('arlic'l' 11m! l.hC'I'C' arc' fasl,c'l' VC'l'siOllS of (2.4) 
obtained in [Gj Ilsinp; c~lltirC!ly cWI'C!l'nut IIIC'I.ltnc!s thall appl'OHdlC'S bas(!(\ Oil Sims' 
ideas, and that tlwsC\ havc' \.lI1'1wc\ Ollt. t.o havc! sip;uilic·allt. PI'Hc·l.ical valllc~. There 
is thus eviclenc~e that. a llllIU1H'l' or tli!' PoIYllOlllinl-t.illJ(' alp;oriLlllllH llwntioned in 
this paper are eallahlc~ of lnacliup; to praC'tical algoJ'it.hIllH. 

The methods used ill tlw pwof of (>1..J) (!VC'lll.llally c kPCHlcl Oil del.ailnd informa­
tion concerniug all fiuite' silllplc~ grollps IIo!', for C'X<lllJp!C', just, Oil t.he fiuiteness 
of the number of Hporaclic: simp]c' P;l'OUps. SOllH' of LltiH iH CIiSCllHHC,d ill ~i5. For 
now, I will givo a hillt of OW! IlHj)('C'\. of L\H' j>J'()of, involving all aip;()rit.hlllic version 
of t.he Frattini arfjurncni, [l:~, p. 12]. UHc' (-1.1) to !iuc! A/ <.J U with (; /fill Hill1ple. 
Use knowledge of simple grollps ill ol'clc'!.' t.o IillcI a Sylow l' Hlll>group H/M of 
G/M, and replace G hy H. This l'C!<lUCC!H (/l.'li) t.o t.lH! cas(! 10/MI = 11. Recur­
sively find a Sylow IJ-Imhgrollp P of 1\1. LC'I, rt (:: J', !I rJ AI. Tlwll, 1l88'llrnin(} that 
a polynomial-time algorithm fo!' t.ho C:OUjlltJ,iU'y part. (ii) of (4A) iH available (for 
M in place of G), find Tn E M such that ]JIIIII ;:::: 1). r r (Il) is a Sylow 11 subgroup 
of the cyclic group (gm), thell P(U') b a Sylow 11 suhgronp or U. Thin reduces 
the proof of (4.4i) to the proof of (4.4ii) t.ogdllC'l' wit.h it jJroof of t.lIe silllple group 
ease of (4.4i). Similar arguments l'o<lll(,c! 1111 of part.s of (ilA) \.0 cOllsi<ieratiollS 
of simple groups. The Frat.tini argulllC'llt is very powerful ill p;roup theory; it is 
also powerful in algorithmic contexts (see (G.l) for 1l110tlWl' nxamplc~ of this). 

COROLLARY 4.5. Given a .subgroup 0 of 871 llnd n p'l'imc: p, I;hr: lm:qc.>t normal 
p-snbgroup 0 1) (0) of G can be found in polynomial /;ime. 

PROOF. If P is an intersection of some Sylow psuhgl'otlllS of G tlWll sllccessively 
test the elements 9 E r to see whether p!I :::: P (uHing (2.4i)). If this fails for 
some 9 then find pnpg using (2.8), and reIllace P hy pnp.'I. Otherwise output 
P.O' 

Luks has devised a polynomial-time algorithm for Iillfling OJ (0) that does 
not use any information about simple groups [32]. This is an im~)ortant type of 
~evelopme~t. Once theorems are known to be true hy using the classification, it 
IS very deSIrable to see if alternative proofs might be discovered that do not use 
~he classification. In the context of algorithmic group theory, t.his is esp.ecially 
mlPo~tant, since algorithms obtained without the classification might be more 
practIcal than ones obtained using it. This is t.he case, for example, with (4.5). 
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5. PERMUTATION REPRESENTATIONS OF SIMPLE GROUPS 

Suppose that tlw group 0 :S Sym(X) is known to be simple (d. (4.1)). By 
the classification of fiuit,p sitllple f.!:l'01!]lS, 0 is known. Sporadic groups have order 
0(1), so that all qtwstious ('oucel'lliug them are 'easy' in the polynomial-time 
context. Silllilarly, if 101 < '/I

K theu lIloSt qucstio1ls call be answered by brute 
force. For exalllple, ~ylow subgj'()1!ps ('itll he h1!ilt np recursively by the method 
frequently taught ill basi<: ull(krgraritlHt(' COtll'fWH. 

Therc iH 110 ]lroblPlIl J'(~dtlcillg to the' CaH(~ in which G is primitive. Assume as 
well that IGI 2: nK

• Ld,;/' EX. It iH Hot hard to show that this implies that 
either 0 ~ A,. and Ci.r is th(' Htabilizer of a S1!bHet 01' a partition of the r-set 
into sui.JHets of (!(jtlal siz(!, OJ' (; iH classical and G;/' is the stabilizer of a subspace 
(cf. [17, Itl]). If 0 ~ A,. call til(! tlllderlying 'I'-set the natural permutation 
representatioll of G; whiln if 0 is c:lm;sical call the set of points of the underlying 
projective spacp t.h(' Hat.mai pm'llltltatiou repn~H(mtation of G. (Note that the 
assumption 101 2: 11K has (!liUlinat('d alllwnd to cOllsider the exceptional simple 
groups of Lie ty]l('!) 

TI-mOREM G.I (H.(~pjaC:(!lIl(!llt 'I'hnormll [ltl]). Given a simple subgroup G of 
Sn of 07'l1c7' :::: '/I'~, /;11,("1'(' is IL polllu,omial-/,ime algorithm that finds the natural 
pennutat'iou 'l'C[I7'e8cntntio'/l, of G (and that permutation r'epresentation has degree 
< 2n). 

This is prov(~d using thn g(!()lIwtry of the classical gronps. The bound can 
be improwtl, wit.h ,//,11 ill placo of nK

, using [29). A potentially more practical 
POlYllOlllial-UUH! algorit.lllll for (G.1) is being investigated [24). One goal of this 
is a lllOl'(~ practical Sylow nigoriLlull fol' all arbitrary G and 'large' n than is 
prescntly ill tlw litorattll'(!. 

Much lllOt'(~ can 1)(! ol>taill(!tl c011cm'uillg the llatural action when G is a classical 
group. Tlw followiug appeal' ill [lB, 10). 

Vcc/;or' 8]1ace: III polyuolll ialtillw tIl(! tlllclerlyillg vector space V can be found. 
This iuvolvus It V(!I'Y dassicalnwtilod for cOOl'dinatizing projective geometry [38J. 

Matrices: A group of lllatricoH iu<lncillg G can be found. Note that G itself 
may 110t act Oil tiw wd.ol' space: 0 ouly acts projectively. But of course, G 
is usually 'vi()w(~d' as a group of matrices 01' lineal' transformations, and this 
standard poiut. of vi(!w is l'(~adiiy adliovod using (5.1). 

Forms: III tho cas() of It symplndic, orthogonal or unitary group, a suitable 
form can he c()llsLl'lld;(~(1 011 V. 

Linear all/elmz: Tho proceclillg cOllstrnctions have the effect of replacing per­
mutation group cOllsidpratiol1s by 'ordinary' types of linear algebra. In view of 
this, it should (:OllW as 110 Hl11'priHc that the simple group case of (4.4) can be 
deduced from tlw H,pplac<Hnent Theorem (by means of some rather tedious work 
- mostly lineal' algdll'11 awkwardly phrased in terms of permutation groups). 
The much Illon~ int:nwKtillg par(; of the proof of (4.4) is the reduction to the case 
of sirnpl(~ grollpH. 



As noted above, I have avoided dealing with exceptional groups of Lie type by 
starting with a suitable inequality IGI 2:: 11,8. However, it would be interesting to 
have analogous algorithmic results for those groups as well, under the aSlmmption 
that the given permutation representation is sufficiently natural (e.g., on a class 
of maximal parabolic subgroups). 

6. QUOTIENT GROUPS 
There are polynomial-time algorithms for finding lllany other properties of 

G = (r) S Sn· Lists of these can be fonnd in [19, 2:J], and Willllot be included 
here. Instead, I will briefly discuss the question of COlllputations in quotient 
groups. 

Let G = (f) S Sn be as usual, and let J( :::! G be given. It is natural to ask 
for properties of the quotient group GII(. Unfortunately, GII( need not lie in 
Sr for any r of size polynomial inn, an the following exaltlple shows [3:1]. Let 
n = 4m, partition X into m sets of size 4, am! let G be the direct product of 
m dihedral groups of order 8, each of which actH faithfully OIl oue of the 4--sets 
and is the identity on the remainder of X. Let G I I( be the quotient group 
obtained by identifying the centers of the Tn dihedral groups. Then G I J( is an 
extraspecial group, and it is easy to use the colllplex representation theory or 
subgroup structure of this group in order to show that it does not have a faithful 
permutation representation on a set of polynomial si;"c. 

Thus, studying G I K is harder than studying G. Entirely Hew algoritlullfl are 
needed. For example, while it is easy to find the center Z (G), it seems to be 
very difficult to find Z(GIK). In fact, even for p-gronpR it is by no means 
obvious how to go about finding the ascending central series (the descending 
central series is, however, easy; d. (2.7)). In [23] the classification of finite 
simple groups was used to find Z(GIK) for general G. More generally, in [23] 
analogues were founel for G I J( of every known polynomial-time algorithm for 
computations in G. A fairly typical though simple example is as follows. 

PROPOSITION 6.1. Given solvable subgroups AI}{ and B I}{ oj G I J(, their 
intersection AI K n B I K = (A n B)I I( can be found in polynomial time. 

PROOF. If J( is solvable, use (2.8). So WLOG J( is not solvable, and hence 
in particular K is not nilpotent. Use (4.4) to find a Sylow Rubgroup Q of K 
that is not normal in K, and also to find NJ((Q), Nc(Q), NA(Q) and Nn(Q). 
Recursively find [NA(Q)IN]((Q)] n [Nn(Q)IN1dQ)] = NAnn (Q)IN1dQ)· By 
the Frattini argument, An B == K[N AnB (Q)] == K[N A (Q) n N B (Q)]. D 

One interesting consequence of the consideration of quotient groups is the fol­
)wing result, which does not appear to have anything at all to do with quotient 
roups: 

THEOREM .6.2 [~3]. Given H S G, the largest normal subgr07lp n{Ha I 9 E G} 
of G contamed m H can be found in polynomial time. 
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Note that the intersection in (6.2) may involve exponentially many subgroups 
of G. A special case of this situation is finding OJ)(G), but the algorithm indi­
cated in (4.5) is simpler --- and, as already mentioned, this case of (6.2) has a 
polynomial-time solution not requiring the classification of finite simple groups 
[32]. 

7. GALOIS GROUPS 

Some of the methods described here have limited applicability to a superficially 
similar but mnch harder subject: polynomial-time Galois theory. There, one is 
given a [-inite extellsion K of Q ane! a polynomial f E K[x], and the basic 
problem is to find properties of the Galois group of f. For simplicity, assume 
that f E Z[x] (although extemlions of Q must eventually be considered as well). 
Then the problem is to determine GaJ(f) in time that is polynomial in the 
number of (binary or decimal) digits required to write f. Analogues of (2.2) 
and (2.:1) exist: f can be factored into irreducibles [28]; an extension L = Q(a) 
of Q can be obtained with f((~) = 0 (described as a vector space over Q with 
a distinguished ImBis and a llluitiplication rule for that basis); and, when f is 
irreducible, subficlds of L can be specified ill polynomial time that correspond to 
the blocks involved in (2.:3) (specifincl as the sets of roots of explicitly constructed 
polynomials) [27]. Of COlll'se, it is then easy to test for 2-transitivity, or 5-
transitivity, mling factorizations (over number fields). 

This situation is lmrder than the one in this paper because (i) Galois groups 
are determined only up to conjugacy in sYlllmetric groups; (ii) hence, describing 
a nontrivial element of G = Gal(f) is difficult (except possibly for complex 
conjugatioll); and (iii) a splitting fielel of f generally has nOll-polynomial degree 
over Q, and hence canJlot lw written (as a vector space over Q) in polynomial 
time. In view of thes{~ difficulties, it is not surprising that no polynomial-time 
algorithm is known for determining IGI. 

Only the following have been proved: In polynomial time it can be decided 
whether or not G is solvable [27], in which case all prime factors of IGI can be 
found (but 110t the llluitiplicities to which they occur: it is an open problem to 
determine IGI in polynomial time, even when it is known that G is a 2--group). 
Very weak analognes of (4.1) and (L1.2) have been obtained [22, 21J when it is 
assulIled that G acts primitively on the set of roots of f (based on analogues of 
(5.1)). 
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