Notes on Polynomial-time Group Theory

William M. Kantor*
Mathematics Department, University of Oregon
Eugene, OR. 97403, USA
e-mail: kantor@math.uoregon.edu

1. INTRODUCTION

subset I' which may De assumed to be ‘small’ (say, of size < n?; ¢f. Theorem
2.4iv). The goal will be to compute propertios of G elliciently’. The notion of
efficiency used here will be the existence of a polynomial-time algorithin. This
is certainly not. the only possible such notion: from a more pragmatic point of
view it would be preferable to require that algorithms have been programmed
and run well in practice [or suitable values of wand for groups of greatest interest
in group-theoretic rescarch as is the case, lor example, in the group theory
systems CAYLEY [7] and GAP [34]. On the other hand, the present polynomial-
time emplhasis oceasionally leads to new methods that have more than just
theoretical applicability. Moreover, insistence on polynomial time leads to a
better understanding of why certain problems (such as intersecting subgroups)
are hard and secin to require hacktrack or other exhaustive search techniques
(cf. §3).

After indicating some of the properties of ¢ that can be obtained in polynomial
time by using Sims vesults or related algorithms (§2), I will turn to the more
recent results due to Luks, Ronyai or wyself [31, 35, 36, 19, 20, 23] (84). The
remainder of the paper cousists of a survey of results. In all cases the details get
fairly messy. The paper concludes with somme remarks concerning similar types
of questions about Galois groups (§7). Throughout the paper, relatively little
will he proved, hut casy proofs and some hints of methods will be provided.

The difficultios and interesting aspects of this subject can be illustrated by a
standard vesult: Canchy’s Theorem that a finite group of order divisible by a
prime p has an elemont of order p. The standard proofs of Cauchy’s Theorem are
essentially nonconstructive and are in no sense efficient; for example, they are
obtained by viewing (7 as acting either on itself or on a set of size > |G]. Hence,
an entirely different approach was required [17). In practice, CAYLEY obtains
an element of order p by randomly choosing elements of G until one is found of
order divisible by p. This approach has recently been studied somewhat from
the point of view of the probability of its success after relatively few random
choices [15]; as with many of the recent work on algorithms for permutation

*Supported in part by NSF and NSA grants,

groups, that investigation rests heavily upon the classification of finite simple
groups.

For the most part, this paper is concerned with a brief sampling of polynomial-
time algorithms. However, at various points I will point. out those algorithms,
or variations on them, that are or appear to he practical — and have been
or probably will be added to a group theory system. This is one of the most
interesting and most recent developments in this arca.

2. FUNDAMENTAL ALGORITHMS

Since recursion or iteration will be used for subgroups of S, the following
trivial result is very helpful.

LEMMA 2.1. If1 < Hy < Hy < v+ < Hyy <8, then m < nlogyn < n?.

Namely, by Lagrange’s Theorem 2! < |H;| < n! for cach 4. As might be
expected, a more detailed investigation prodnces a much better bound: m < 2n
2, 8].

Let G = (I') £ 8, = Sym(X), where X = {1,2,...,n}. I begin with two
simple results that give an indication of the meaning of ‘polynomial time’. Note
that in each situation an algorithm is needed which, for any ¢, produces the
desired information, It must be emphasized that ell subgroups of S, mentioned
throughout this paper are assumed to be specified by means of generating sets
of permutations.

Recall that the orbits of G on X are the sets {x¥ | g € G} for @ € X. (Here, 27
denotes the image of 2 under g.) These partition X. In particular, G is transitive
on X if and only if there is just one orbit. Form the graph with vertex set X
and edges {z,2%} for g € I and 2 # = € X. This graph can be determined

in time O(n|T'|). Since its connected components are just the orbits of G, this
yields

PROPOSITION 2.2. In polynomial time all orbits of G can be found.

A block for the action of a transitive group @ is a nonempty subset ¥ of X such
that ¥ NY? = § whenever g € G is such that Y9 £ Y, (Then ;= {Y?¥ | g € G},
the block system determined by Y, is a G-invariant partition of X, and hence
produces a new permutation group GF that is a homomorphic image of G.) Each
block containing the point z has the form ¥ for a uniquely determined subgroup
H of G containing the stabilizer G,:= {g € G | ¢ = x}; and, conversely, if
Ge < H < G then o is a block. The trivial blocks containing z are the sets {z}
and X, corresponding to the choices H = G, and G, respectively. If the only

blocks.are trivial then @ is called primitive (this is the case if and only if Gy i8
a maximal subgroup of).

PROPOSITION 2.3 [1]. Assume that G is transitive on X.

(1) In polynomial time one can determine all blocks of size > 1 that are minimal

94

JR U P "

with respect to inclusion (subject to having size > 1).
(ii) In polynomial time a block system ¥ of size > 1 can be found such that GF
is primitive.

Proor. (i) Find the orbits of G in its natural action on the cartesian product
X2 of X with itself (namely, g: (x,y) — (2%,59)). Each orbit other than the
diagonal {(z,x) | # € X} determines a graph with vertex set X and edges {z,y}
for (z,y) or (y,x) in the orbit. The set of connected components of such a graph
is a block system ¥, and each minimal block system arises in this manner,

(i) Iterate (i), replacing X by £ and G by G® if |Z| < n. (The number of
iterations is at most log n.) O

Note that it is not possible (in polynomial time!) to find all block systems
(consider the regular permutation representation of an elementary abelian 2-
group).

Write Ga...i = {g € G | gfixes1,2,..., and i}. The most important algorithm
for this survey is Sims’ algorithm, which produces the following:

THEOREM 2.4 [37, L1]. In polynomial time the following can all be determined:
(i) For any given [€ 5, whether or not f € Gy
(i) 1G;
(ili) Fori=1,...,n, a set &; such that Gya..; = (A;) and || < n; and
(iv) A set TV such that G = I) and |T’| < n.

A rough idea of this ig as follows. Consider (i). First use (2.2) to find a word
h in the generators T such that i and ¢ agree on 1, so that hg~! € G;. This
produces a recursive procedure requiring generators for the subgroup fixing the
first 7 of the permuted points for each ¢ > 1. Sims showed how to modify an
arbitrary I so that it includes generators for these subgroups, thereby producing
what he termed a ‘strong generating set’; this is I' in (iv), and each A; C IV,
Moreover, I contains a set of coset representatives for Gha, 41 in Gia,.q for
each i; the product over i of the sizes of these sets is |G|. For || = O(n?)
the algorithm in [11] runs in time O(n®); a concise, self-contained and easily
programmable O(n®) variant on this was given in [26] (another O(n®) algorithm
is in [16]). Very recently, an O(n?log’n) algorithm for finding |G| has been
obtained in [6]. This should have the effect of speeding up all of the algorithms
occwrring in later sections. Moreover, the algorithin in [26] has already been used
in [10]; while that in [6] as well as related algorithms [4] are presently undergoing
modifications and testing (in particular, for inclusion in GAP).

There are many useful consequences of (2.4). The simplest is

PROPOSITION 2.5 [11]. Given A C G, in polynomial time the smallest normal
subgroup (ACY of G containing A can be found.

There is a simple recursive procedure for this which the reader will have no
difficulty devising (cf. (2.1)). Here is an outline of an algorithm using a different

0y
A4

.

B

approach, developed in [9] {or both (2.5) and the following result:

PROPOSITION 2.6. Given (I, 1T <2 Ny, such that (G normalizes H, the intersection

G N H can be found in polynomial lime.

PROOF OF (2.5) AND (2.6). Let X* = XY UX', where X' is a copy of X disjoint
from X. Let G and H act on X' exactly as they act on X this produces actions
of GxGand Hx Hon X*. Let Ke= ({(gvg) | g ¢ (YU x I)). Then it is
not difficult to check that

(H% N @G is the projection into Sym{X') of the pointwise stabilizer of X in
K, and

(HY) is the projection into Sym(.X’) of the pointwise stabilizer of X in K.
Pointwise stabilizers can be found using (2.4). Thus, this computes (HY); while
if G normalizes H it computes H N (7.

CoROLLARY 2.7 [11]. The derived serics and descending central sevies of G can
be found in polynomial time, (Henee, soloability and nilpolence can be tested in
polynomial time.)

In CAYLEY [7] all intersections are handled in exactly the saine manner, using
a backtrack search: no distinction is made between the cases in which G does
or does not normalize A, For further connments concerning intersections see §3.

For now it is worth noting one further situation in which intersections can be
found in polynomial time:

THEOREM 2.8 [30]. Given an integer b, there is a polynomial-time algorithm

which, when given G, H < S, such that all noneyelic composition factors of G
have order < b, finds GN H.

The algorithm for (2.8) is based in part on bounds in [3] for the order of
primitive permutation groups all of whose composition factors are bounded as
in (2.8). 1t requires time O(n/ @ with f(h) ~ 00 as b — oo. Thus, while
p01y1?01‘nial-time, for large b it is perhaps unreasonably impractical. Neverthe-
less, it is important to see some consequences of (2.8):

C}(:'ROLLARY 2.9 (30]. Given an integer b, there are polynomial-time algorithms
which, when given G' < S, such that all noncyclic composition factors of G have
order < b, finds

(i) the setwise stabilizer Gy =

i {9€eGYY =YY} of any given Y C X, and
(ii) the centralizer Cal(t) I }of any g

of any given t € S,,.
PROOF. Use (2.8) with H = (Sp)y in (i) and H = Cg, (1) in (ii). O

Finally, note that it is not difficult to find the center Z
More generally, if A G is

(@) in polynomial time.
[32]; for example, iy (4)

given then Ce:(A) can be found in polynomial time
=GNCs,(A) can be found using (2.6).

.

e e e i T
o, § T e 3

For an intricate description of many of the above results, see [14].

3. GRAPH ISOMORPHISM
There are probably severe restrictions on what can be accomplished in poly-
nomial time. Namely, consider the following four problems (where G < 8, as

usual):

(1) Given H £ Sy, find GN H.

(2) Given a p-subgroup P of G (for a prime p), find its normalizer Ng(P).

(3) Given an involution ¢t € G, find its centralizer Ce(t).

(4) Given Y C X, find its setwise stabilizer Gy .

THEOREM 3.1, If any of the problems (1)—~(4) can be solved in polynomial time,
then so can the GRAPH ISOMORPHISM problem.

Here, GRAPH ISOMORPHISM is the following: Given two n—vertex graphs,
decide whether or not they are isomorphic. The above somewhat surprising-
looking result is due to Luks [30, 32]. Parts of the theorem and other similar
results of Luks are described in [14].

Proor. Clearly, (3) is a special case of (2). Also, (4) is a special case of (1)
since Gy = GN(S,)y and (9,)y is easy to calculate.

It is not difficult to provide a polynomial-time reduction of (4) to (3). Namely,
let X' = {1’,...,n'} be a copy of X disjoint from X, and let G act on X' in the
natural manner. Let E be the group ((1,1')) X +«+ x ((n,n')) = Zg». Then G
normalizes E, and EG is a group. Let ¢ be the involution in £ interchanging y
and ' for y € Y and fixing all other points in X UX’. Then EGy = Crg(t) and
Gy is the group induced on X by Crg(t), so that a polynomial-time algorithm
for (3) produces one for (1).

It is also not hard to provide a polynomial-time reduction of GRAPH ISO-
MORPHISM to (1). This involves two stages: (i) a reduction from isomorphisms
to automorphisms, and then (ii) a description of an automorphisim group as an
intersection.

(i) It may be assumed that each of the given graphs (V;, E;), with vertex-set
V; and edge-set B; (i = 1,2), is connected (otherwise recursion could be used);
it may also be assumed that V; NV, = . Construct a 2n-vertex graph (V, E)
that is the union of the two graphs, so that (V, E) has exactly two connected
components. If Aut(V, E) has an element interchanging these components then
the two original graphs are isomorphic, while if each member of a generating set
for Aut(V, E) sends each component to itself then the original graphs are not
isomorphic.

(i) Now consider an n-vertex graph (V,E). Let V(?) denote the set of all
pairs of vertices. Since S, = Sym(V) permutes the subsets of V' it has a natural
embedding as a subgroup G of Sym(V(?)). Let H be the subgroup of Sym(V2)
consisting of those permutations sending E to itself, so that H < Sym(E) x
Sym(V®) — E). Then Aut(V, E) = GNH. Recall that each symmetric group S

97

has two easily found generators (a k-cycle and a transposition). Thus, Aut(V, E)
is the intersection of groups having 2 and 4 generators, respectively. O

Note that an algorithm for intersections (1) was needed only in the very special
case of two groups, one isomorphic to a symmetric group and the other to the
direct product of two symmetric groups. Thus, the structure of G and H do not,
help in general (but compare (2.8)).

It is generally believed that there is no polynomial-time algorithm for GRAPH
ISOMORPHISM. If that turns out to be the case then none of (1)-(4) can be
accomplished in polynomial time. In any event, it should be evident that (1)~
(4) must be avoided in the context of the present subject — except, of course,
for the unlikely possibility that the study of polynomial-time group-theoretic
algorithms might produce a solution to the GRAPH ISOMORPHISM problem.

Finally, note that (2.8) provides polynomial-time algorithms for (1), (3) and
(4) when G is bounded as in (2.8) (e.g., if G is solvable). Until very recently no
polynomial-time algorithm was known for (2) when G is solvable; one has just
been found by Luks.

4. 'URTHER ALGORITHMS

There are a number of other elementary consequences of the results in §2 (see
[23] for a summary of many of them). However, I will now move to more recent
and more complicated results [31, 5, 35, 36, 19, 20, 23].

Let G = (I') be as usual. Recall that a sequence of subgroups G = Gy >
<+ > Gy =1 of subgroups of G is called a composition series if each term is
normal in the preceding one and each quotient group G;/G;..1 is simple; while
G=Gy>>G=1Iis called a chief series if each term is normal in G and
there is no normal subgroup of & lying properly between two successive terms.

THEOREM 4.1 (Luks [31]). A composition series of G can be found in polynomial
time.

Note that it is not possible to find all composition series, as there may be too
many of them (once again, consider the regular representation of an elementary
abelian 2-group). Luks’ algorithm is known to run in time O(n?®), with the

exponent due, to a large extent, to the O(n®) for (2.4) — and hence it can be
made faster by using [6].

CoROLLARY 4.2 [31].

(1) Simplicity of G can be tested in polynomial time,
(ii) ﬁqr each successive pair A< B in a given composition series, in polynomial
time o set of size < n can be found on which B/A acts faithfully.

PROOF. Since (i) is obviously taken care of by (4.1), consider (ii). WLOG
G = B. Let Y be the set of orbits of 4 on X. Then G induces a groip G¥
of permutations of ¥. If G¥ # 1 output Y. WLOG GY = 1. Since G acts
nontrivially on some member of ¥, WLOG 4 is transitive on X. Now G = AG,.

98

for z € X, so that G/A = G, /A, and recursion can be applied to the pair G,
X - {z}. (For a somewhat different argument, see [30], (3.2)].) O

THEOREM 4.3 (Rényai [35, 36]). A chicf series of G can be found in polynomial
time.

QUTLINE. Using (4.1) it is casy to find a normal series for G each of whose factors
is either (1) elementary abelian, or (2) the direct product of nonabelian simple
groups permuted transitively by G. (Namely, consider the normal closures (2.5)
of all the terms in (4.1).) Therefore, (4.3) can be viewed as a special case of the
following sitnation. Given a set A of linear transformations of a finite vector
space, find a A irreducible subspace. Rényai considers this latter problem in
terms of the algehra of lincar transformations gencrated by A. This is dealt with
by an ingenions use of classical ideas concerning finite-dimensional algebras, O

Simplicity is one of the standard and most basic questions concerning a finite
group. Almost as basic are Canchy’s and Sylow’s Theorems. All of the standard
proofs for the latter theorems cither clearly do not produce polynomial-time
algorithns or very likely do not. For example, the proof of Cauchy’s Theorem via
the ‘class equation’ is purely existential. Similarly, the most standard proofs of
the existence of Sylow subgroups involve - in addition to Cauchy’s Theorem —
the use of normalizers or contralizers of p-subgroups of G, and these ‘must’ be
avoided by §3. (On the other hand, the algorithmn in CAYLEY builds up a Sylow
subgroup by using centralizers.) Other proofs of Cauchy’s Theorem or Sylow’s
Theorem involve the examination of potentially exponential-size subsets of G or
an even larger set. Finally, the coujugacy part of Sylow’s Theorem is standardly
proved by a purely existential argument (a counting argument). Consequently,
new techniques were vequired in order to obtain polynomial-time algorithms.
Cauchy’s Theorem was dealt with in [18]. Once again, the classification of finite
simple groups was involved! Iowever, unlike the situation with (4.1), detailed
information was needed concerning such groups (cf. §6). In [25], polynomial-
time algorithms were obtained for special cases of Sylow’s Theorem, such as
for solvable groups — and in the solvable case Hall's Theorem was also dealt
with. These solvable group algoritlims were later greatly expanded in [19] and
incorporated into wethods that led to the general case:

THROREM 4.4 [19, 20). If p is a prime then the following can be found in
polynomial time:

(i) Given a p subgroup of G (possibly of order 1), a Sylow p-subgroup P of G
containing i

(ii) Given two Sylow p-subgroups of G, an element g € G conjugating the first
one to the second, and

(ii) The normalizer Nei(P) of a given Sylow p-subgroup P of G (in particular,
all g in (1) can be ‘found’ the coset Na(P)g is the set of all such conju-
gating elements).

At present there is no Sylow algorithun that is both polynomial-time angd
practical. However, when the algorithon in {19] is specialized to solvable groups it
becomes practical - and elementary, A version of the solvable group algorithm
was studied in {12}, and is now incorporated into CAYLEY. This may have
been the first published instance where algovithims developed for polynomial-
time group theory were faster than oues developed for parely practical purposes,
The polynomial-time methodology must be different. from standard approaches
due to the fact that centralizers cannot in general be used i the polynomial-
time context; and this in turn leads to new ideas some of which have practical
applications. It was mentioned carlior that there are faster versions of (2.4)
obtained in [6] using entirely different methods than approaches based on Sims’
ideas, and that these have turned out to have significant practical value. There
is thus evidence that o nuber of the polynomial-time algorithins mentioned in
thig paper are capable of leading to practical algorithns,

The methods used in the proof of (4.4) eventually depend on detailed informa-
tion concerning all finite simple groups - not, lor example, just on the finiteness
of the number of sporadic simple groups. Some of this is discussed in §5. For
now, Lwill give a hint of one aspeet of the proof, involving an algorithmic version
of the Frattini argument [13, p. 12]. Use (4.1) to tind M <« (¢ with /M simple.
Use knowledge of simple groups in order to lind a Sylow p subgroup H/M of
G/M, and replace G by H. This reduces (4.41) to the case |G/M] = p. Recur-
sively find a Sylow p-subgroup P of M. Let g € 1", g ¢ M. Theu, assuming that
a polynomial-time algorithm for the conjugacy part (i) of (4.4) is available (for
M in place of G), find m € M such that 4" = I, If (¢} is a Sylow p-subgroup
of the cyclic group (gmy), then Ply') is a Sylow p subgroup of &. This reduces
the proof of (4.4i) to the proof of (4.4i1) together with a proof of the simple group
case of (4.41). Similar arguments reduce all of parts of (4.4) to considerations
of simple groups. The Frattini argumnent is very powerful in group theory; it is
also powerful in algorithmic contexts (see (6.1) for another example of this).

COROLLARY 4.5. Given a subgroup G of Sy and a prime p, the largest normal
p-subgroup Op(G) of G can be found in polynomial time.

ProoP. If P is an intersection of some Sylow p-subgroups of G then successively
test the elements g € T to see whether P¥ = P (using (2.41)). If this fails for
S;)me g then find PV P9 using (2.8), and replace P by P PY. Otherwise output

. Q ‘

Luks has devised a polynomial-time algorithm for finding O,(@) that does
not use any information about simple groups [32]. This is an important type of
fieVelOPment. Once theorems are known to be true by using the classification, it
Is very dgsira.ble to see if alternative proofs might be discovered that do not use
Fhe classification. Tn the context of algorithmic group theory, this is especially
tmportant, since algorithms obtained without the classification might be more
practical than ones obtained using it. This is the case, for example, with (4.5).

100

g
<

5. PERMUTATION REPRESENTATIONS OF SIMPLE GROUPS

Suppose that the group & < Sym(X) is known to be simple (cf. (4.1)). By
the classification of finite simple groups, & is known. Sporadic groups have order
O(1), so that all questions concerning them are ‘easy’ in the polynomial-time
context. Similarly, if [GZ] < n® then most questions can be answered by brute
force. For example, Sylow subgroups can be built up recursively by the method
frequently tanght in basic undergraduate courses,

There is no problem reducing to the case in which G is primitive. Assume as
well that [G] = n®. Let w € X. It is not hard to show that this implies that
gither ¢ = A, and G, is the stabilizer of a subset or a partition of the r-set
into subsets of equal size, or (7 is classical and G, is the stabilizer of a subspace
(cf. [17, 18]). 1f G = A, call the underlying r-set the natural permutation
representation of (75 while if (7 is classical call the set of points of the underlying
projective space the natural permutation representation of G. (Note that the
assumption |G| =2 ¥ has eliminated all need to consider the exceptional simple
groups of Lie type!)

THEOREM 5.1 (Replacement Theorem [18]). Given a simple subgroup G of
S, of order > n®, there is a polynomial-time algorithm that finds the natural
permutation representotion of G {and that permutation representation has degree
< 2n).

This is proved using the geomoetry of the classical groups. The bound can
be improved, with »7 in place of n®, using [29]. A potentially more practical
polynomial-time algorithin for (5.1) is being investigated [24]. One goal of this
is a more practical Sylow algorithin for an arbitrary G and ‘large’ n than is
presently in the literature.

Much more can he obtained concerning the natural action when G is a classical
group. The following appear in [18, 19].

Veetor spuce: In polynomial time the underlying vector space V' can be found.
This involves a very classical method for coordinatizing projective geometry [38].

Matrices: A group of matrices inducing G can be found. Note that G itself
may not act on the vector space: G only acts projectively. But of course, G
is usually ‘viewed’ as a group of matrices or linear transformations, and this
standard point of view is readily achieved using (5.1).

Forms: Tn the case of a symplectic, orthogonal or unitary group, a suitable
form can be constructed on V.

Linear algebra: The preceding constructions have the effect of replacing per-
mutation group considerations by ‘ordinary’ types of linear algebra. In view of
this, it should come as no surprise that the simple group case of (4.4) can be
deduced from the Replacement Theorem (by means of some rather tedious work
— mostly linear algebra awkwardly phrased in terms of permutation groups).
The much more interesting part of the proof of (4.4) is the reduction to the case
of simple groups.

As noted above, I have avoided dealing with exceptional groups of Lie type by
starting with a suitable inequality |G | > n®. However, it would be interesting to
have analogous algorithmic results for those groups as well, under the assumption
that the given permutation representation is sufficiently natural (e.g., on a class
of maximal parabolic subgroups).

6. QUOTIENT GROUPS

There are polynomial-time algorithms for finding many other properties of
G = (T) < 8,. Lists of these can be found in [19, 23], and will not be included
here. Instead, I will briefly discuss the question of computations in quotient
groups.

Let G = (I') < S, be as usual, and let K < G be given. It is natural to ask
for properties of the quotient group G/K. Unfortunately, /K need not lie in
S, for any r of size polynomial in n, as the following example shows [33]. Let
n = 4m, partition X into m sets of size 4, and let & be the direct product of
m dihedral groups of order 8, each of which acts faithfully on one of the 4-sets
and is the identity on the remainder of X. Let (/K be the quotient group
obtained by identifying the centers of the m dihedral groups. Then (/K is an
extraspecial group, and it is easy to use the complex representation theory or
subgroup structure of this group in order to show that it does not have a faithful
permutation representation on a set of polynomial size.

Thus, studying G/K is harder than studying (&, Entirely new algorithms are
needed. For example, while it is easy to find the center Z(G), it seems to be
very difficult to find Z(G/K). In fact, even for p-groups it is by no means
obvious how to go about finding the ascending central series (the descending
central series is, however, easy; cf. (2.7)). In [23] the classification of finite
simple groups was used to find Z(G/K) for general . More generally, in [23]
analogues were found for G/K of every known polynomial-time algorithm for
computations in G. A fairly typical though simple example is as follows.

ProposITION 6.1, Given solvable subgroups A/ and B/K of G/K, their
intersection A/KNB/K = (AN B)/K can be found in polynomial time.

ProoF. If K is solvable, use (2.8). So WLOG K is not solvable, and hence
in particular K is not nilpotent. Use (4.4) to find a Sylow subgroup @ of K
that is not normal in K, and also to find Ni(Q), Na(Q), Na(Q) and Np(Q).
Recursively find [N4(Q)/Nk (Q)] N [Np(Q)/Nk(Q)] = Nann(Q)/Nk(Q). By
the Frattini argument, AN B = K[Nanp(Q)] = K[NA(Q) N Np(Q)]. O

One interesting consequence of the consideration of quotient groups is the fol-

>wing result, which does not appear to have anything at all to do with quotient
Toups:

THEOREM ‘6.2 [23] Gwen H < G, the largest normal subgroup N{HY | g € G}
of G contained in H can be found in polynomial time,

102

e e

.. e e e i ||t

N . e
" e e A e —

————

N ey s sttty \ s

Note that the intersection in (6.2) may involve exponentially many subgroups
of G. A special case of this situation is finding O, (G), but the algorithm indi-
cated in (4.5) is simpler — and, as already mentioned, this case of (6.2) has a
polynomial-time solution not requiring the classification of finite simple groups

32,

7. (ALOIS GROUPS

Some of the methods described here have limited applicability to a superficially
similar but much harder subject: polynomial-time Galois theory. There, one is
given a finite extension I of Q and a polynomial f € KJz], and the basic
problem is to find properties of the Galois group of f. For simplicity, assume
that f € Z[z] (although extensions of Q must eventually be considered as well).
Then the problem is to determine Gal(f) in time that is polynomial in the
number of (binary or decimal) digits required to write f. Analogues of (2.2)
and (2.3) exist: f can be factored into irreducibles [28]; an extension L = Q(c)
of Q@ can be obtained with f(«) = 0 (described as a vector space over @ with
a distinguished basis and a multiplication rule for that basis); and, when f is
irreducible, subfields of L can be specified in polynomial time that correspond to
the blocks involved in (2.3) (specified as the sets of roots of explicitly constructed
polynomials) [27]. Of course, it is then easy to test for 2-transitivity, or 5-
transitivity, using factorizations (over number felds).

This situation is harder than the one in this paper because (1) Galois groups
are determined only up to conjugacy in symmetric groups; (ii) hence, describing
a nontrivial element of G = Gal(f) is difficult (except possibly for complex
conjugation); and (iii) a splitting field of f generally has non-polynomial degree
over Q, and hence cannot he written (as a vector space over Q) in polynomial
time. In view of these difficulties, it is not surprising that no polynomial-time
algorithm is known for determining |G|.

Only the following have been proved: In polynomial time it can be decided
whether or not G is solvable [27], in which case all prime factors of |G| can be
found (but not the multiplicities to which they occur: it is an open problem to
determine |G| in polynomial time, even when it is known that G is a 2-group).
Very weak analogues of (4.1) and (4.2) have been obtained [22, 21] when it is
assumed that @ acts primitively on the set of roots of f (based on analogues of

(5.)).

REFERENCES

1. M.D. ATKINSON (1975). An algorithm for finding the blocks of a permutation
group. Math. Comp. 29, 911-913.

2. L. BABAI (1980). On the length of subgroup chains in the symmetric group.
Comm. in Alg. 14, 1729-1736.

3. L. BABaI, P.J. CAMERON and P. PALFY (1982). On the order of primitive
groups with restricted nonabelian composition factors. J. Algebra 79, 161-

168.

102

S

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

. L. BABAI, G. COOPERMAN, L. FINKELSTEIN and A. SERESS (1991). Nearly

linear time algorithms for permutation groups with a small base. Proc. Int,
Symp. Symbolic and Algebraic Computation, 200-209.

. L. BaBal, W. M. KANTOR and E. M. LUks (1983). Computational com-

plexity and the classification of finite simple groups, Proc. IEEE Symposium
on Foundations of Computer Science, 162-171.

. L. BaBal, E.M. Luks and A. SERESS. Managing permutation groups in

O(n*log®n) time (in preparation).

. J. J. CanNON (1984). An introduction to the group theory language Cayley.

Computational Group Theory (ed. M. D. ATKINSON), Academic Press 1984,
145-183.

P.J. CAMERON, R. SoromoN and A. TuruULL (1989). Chalns of subgroups
in symmetric groups. J. Algebra 127, 340-352.

. G. CoOPERMAN, L, FINKELSTRIN and E. Luks (1989). Reduction of group

constructions to point stabilizers. Proceedings of the International Sympo-
sium on Symbolic and Algebraic Computation, ACM Press, 351-356.

P. Diaconis, R. L. GrRAHAM and W.M. KANTOR (1983). The mathematics
of perfect shuffles. Advances in Applicd Mathematics 4, 175-196.

M. Furst, J. HoPCROFT and E. Luks (1980). Polynomial-time algorithms
for permutation groups. Proc. 21st L E.E.E. Symp. Found. Comp. Sei., 36-41,
S.D. GLasBY (1988). Constructing normalisers in finite soluble groups. J.
Symbolic Computation 5, 285-294,

D. GORENSTEIN (1968). Finite Groups. Harper and Row, New York.

C.M. HorrMANN (1982). Group-Theoretic Algorithms and Graph Isomor-
phism. Springer Lect. Notes in Comp. Seci. 130.

IM. Isaacs, W.M. KANTOR and N. SPALTENSTEIN On the probability that
a group element is p-singular (in preparation).

M.R. JERRUM (1982). A compact representation for permutation groups.
Proc. 28rd IEEE Symp. Found, Comp. Sci., 126-133,

W.M. KANTOR (1979). Permutation representations of the finite classical
groups of small degree or rank. J. Algebra 60, 158-168.

W.M. KANTOR (1985). Polynomial-time algorithms for finding elements of
prime order and Sylow subgroups. J. Algorithms 6, 478-514.

W.M. KANTOR. (1985). Sylow’s theorem in polynomial time. J. Comp. Syst.
Sei. 30, 359-394.

W.M. KANTOR (1990)
Algorithms 11, 523-563.
W.M. KANTOR (unpublished).

W.M. KANTOR and E. LANDER Recognizing exponentially large Galois
groups (unpublished manuscript)

W.M. KanTor and E.M. Luks (1990). Computing in quotient groups.
Proc. 22nd ACM Symposium on Theory of Computing, 524-534.

. Finding Sylow normalizers in polynomial time. J.

K . W.M. KANTOR and T'. PENTTILA (in preparation).
2%,

W.M. KANTOR and D.E. TAYLOR (1988). Polynomial-time versions of Sy-
low’s theorem. J. Algorithms 9, 1-17.

104

e i W L SR
————

26

27.

28.

29.

30.

31

32.
33.

34.

35.

36.

37.

38

. D.E. Knutl (1991), Efficient representation of perm groups. Combinatorica
11, 33-43.

S. LANDAU and G.L. MILLER (1985). Solvability by radicals is in polynomial
time. J. Comp. Syst. Sei. 30, 179-208.

A.K. LENSTRA, H.W. LENSTRA and L. LovAsz (1982). Factoring polyno-
mials with rational coeflicients. Math. Ann. 261, 513-534,

M.W. LisiEcK (1985). On the orders of maximal subgroups of the finite
classical groups. Proe. LMS 50, 426-446.

E.M. Luks (1982). Isomorphisin of graphs of hounded valence can be tested
in polynomial time. J. Comp. Syst. Sci. 25, 42-65,

E.M. Luxs (1987). Computing the composition factors of a permutation
group in polynomial time. Combinatorica 7, 87-99.

E.M. Luks (uupublished).

P.M. NEUMANN (1987). Some algorithms for computing with finite permu-
tation groups. Proceedings of Groups-St. Andrews 1985 (Eds. E. F. ROBERT-
soN and C. M. CaMmpBiLL)., Loudon Math. Soc. Lect. Note 121, Cambridge
U. Press, 59-92.

A, NIEMEYER, W, NICKEL and M, SCHENERT (1988). GAP, Getting started
and reference manual. Aaclen.

L. RONYAT (1985). Zero divisors and invariant subspaces. Technical Report
CIS-TR 85-12, Department of Computer and Information Science, University
of Oregon.

L. RONYAI (1987). Simple algebras are difficult. Proc. ACM Symposium on
Theory of Computing, 398-408.

C.C. Smis (1970). Computational methods in the study of permutation
groups. Computational Problems in Abstract Algebra (ed. J. Leech), Perg-
amon Press, NY, 169-183.
. 0. VeBLEN and J.W. YouNcG (1916). Projective geometry. Ginn, Boston.

105

