Note on permutation groups of degree $n \leq 10^7$

At the request of J. J. Cannon, I have upgraded the algorithms SIMPLY and COMPFY in [Ka] to the range $n \leq 10^7$. The required modifications are given below. Afterwards there are remarks concerning these modifications.

Table $1 - addendum$		Table 2	
n^*	y	m	u
16	16!/2	5	5!/2
17	PSL(2, 16) ; 17!/2	6	5!/2; 6!/2
18	PSL(2, 17) ; 18!/2	7	PSL(3,2) ; 7!/2
19	19!/2	8	$ PSL(2,7) $; $ AGL(3,2) = 8 \cdot 168$; $8!/2$
20	PSL(2,19) ; 20!/2	9	PSL(2,8) ; 9!/2
21	7!/2; PSL(3,4) ; 21!/2	10	$60; 2^4 \cdot 60; 360; 10!/2$
22	$ M_{22} ; 22!/2$		
23	$ M_{23} ; 23!/2$		
24	$ PSL(2,23) ; M_{24} ; 24!/2$		
25	25!/2		

SIMPLY

The only changes are the above tables, and the following modification of part of Step 7:

 $|G| = tu \cdot y^m$ where y is as in Table 1, m and u are as in Table 2, and either $t = 2^i | 2^m$, $t = 2^{2i} | 2^{2m}$ when $n^* = 10$ and y = 360, $t = 3^i | 3^m$ when y = |PSL(2,8)|, or $t = 2^i 3^j | 6^m$ when $n^* = 21$ and y = |PSL(3,4)|.

COMPFY

Steps 1-5 are unchanged.

6. WLOG $n = n^{*m}$ for some $n^* > 5$ and m > 5. Find such an n^* and m.

(Here $5 \le m \le 10$ and $5 \le n \le 25$ since $n \le 10^7$. The only new cases not covered by the published version of COMPFY are $n = 5^{10}, 6^8, 7^8, 8^7, 9^7, 10^7, 11^6, 12^6, 13^6, 14^6, 15^6$, and n^{*5} for $16 \le n^* \le 25$. Note that n uniquely determines n^* and m except when $n = 5^{10} = 25^5$.)

7. If |G| cannot be written in the form

 $|G| = tu \cdot y^m$ where y is as in Table 1, m and u are as in Table 2, and either

7.1. $t = 2^i | 2^m$

7.2. $t = 2^{2i}|2^{2m}$ when $(n^*, y) = (10, 360)$ or (17, |PSL(2, 16)|),

7.3. $t = 3^{i}|3^{m}$ when $(n^{*}, y) = (9, |PSL(2, 8)|)$, or

7.4. $t = 2^{i} 3^{j} | 6^{m}$ when $(n^{*}, y) = (21, |PSL(3, 4)|)$,

then either

n is not a prime power, in which case output the simple group G, or

n is a prime power, in which case proceed as in 5.2.

8. WLOG |G| can be written in the form $|G| = tu \cdot y^m$ given in 7. (This does not uniquely determine u: both $2^3 \cdot 168$ and $2^4 \cdot 60$ can arise as tu in more than one way.)

If the pair (n^*, y) is not (8, 168), then output as follows:

m copies of a simple group of degree n^* and order y (the apparent ambiguities about this statement are removed by noticing that the degree and order uniquely determine each of the groups in question),

in 7.1, i copies of Z_2 ,

in 7.2, 2i copies of Z_2 ,

in 7.3, i copies of Z_3 ,

in 7.4, i copies of Z_2 and j copies of Z_3 ;

and a simple group of order u — unless either

 $u = 8 \cdot 168$, in which case output instead PSL(3,2) and 3 copies of Z_2 , or

u = 16.60, in which case output instead A_5 and 4 copies of Z_2 .

(Note that the latter possibilities for u are actually subsumed in earlier ones unless t is large.)

9. Same as in [Ka].

Remarks. As already noted, there are some minor ambiguities concerning the formula $|G| = tu \cdot y^m$: it may not uniquely determine the integers t and u. This was also the case in [Ka], due to an oversight; but the outputs for SIMPLY and COMPFY are in no way affected by this. (However, remark (iv) on p. 523 is not correct in this case, without a bit more care. COMPSER also needs a minor change due to this error.)

The proof of correctness proceeds as in [Ka]. However, there is one annoying case that requires some additional work. This occurs when $n^* = 8$, y = 8!/2 and m = 5. The numerical approach on p. 523 for showing that there is no earns, is not sufficient: it only shows that, if there is an earns then a 1-point stabilizer contains Sylow 5- and 7-subgroups of SL(21,2). Instead, I wound up beating this possibility to death using information about irreducible subgroups of SL(21,2).

[Ka] W. M. Kantor, Finding composition factors of permutation groups of degree $n \le 10^6$. J. Symbolic Computation 12 (1991) 517-526.

September 16, 1992