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1. Introduction

This note contains a polynomial-time algorithm for recognizing a black box group 
that is isomorphic to PGL(2, 2e) by constructing such an isomorphism. The existence 
of a fast algorithm of this type has been open for a number of years. The standard 
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way around this existence problem is based on a lovely idea of Leedham-Green [4,5], 
which avoids black box groups, instead focusing on groups represented on finite vector 
spaces and using a Discrete Log Oracle (this idea applies to all nonzero characteristics). 
Unfortunately, no black box version of our result is known in odd characteristic.

For the required background concerning black box groups, including the timing pa-
rameter and straight-line programs (SLPs), see [6,7]. Let μ be an upper bound on the 
time required for each group operation in G = 〈S〉. We will assume that |S| is small 
and hence suppress it in our timing estimates (not suppressing it would multiply various 
times by |S|).

The following appears to be the first deterministic polynomial-time black box recog-
nition algorithm:

Theorem 1.

(i) There is an O(μe3 log e)-time algorithm which, given a black box group G = 〈S〉
isomorphic to PGL(2, q) with q = 2e, finds 3-element generating sets Ŝ and S∗

of PGL(2, q) and G, respectively, and a bijection Ψ : Ŝ → S∗ inducing an isomor-
phism Ψ : PGL(2, q) → G.

(ii) In O(μe3) time an SLP of length O(e) can be found from Ŝ to any given element 
of PGL(2, q), and in O(μe3) time an SLP of length O(e) can be found from S∗ to 
any given element of G.
In particular, the isomorphism Ψ is effective: the image of any given element 
of PGL(2, q) and the preimage of any given element of G can be found in O(μe3)
time.

More precisely, Ŝ will essentially be
{( 1 0

1 1

)
,
( 0 1

1 0

)
, diag(s, s−1)

}
⊂ SL(2, 2e), where

F2e = F2[s] and the minimal polynomial for s has been computed (cf. 8 and 10). (We 
identify PGL(2, 2e) and SL(2, 2e).) If desired, one can switch to F2[t] where t is a root 
of another irreducible polynomial.

Our new and crucial observation is Proposition 4, which can be viewed as providing 
involution-producing formulas in a black box group isomorphic to PGL(2, 2e) (cf. Re-
mark 5). This is then used to produce first a Borel subgroup and a field F ∼= Fq, and 
then a group isomorphism. Also essential is Proposition 9, which recovers the entries of a 
matrix using the matrices for two given noncommuting involutions. An unexpected fea-
ture of this result is that any given element of G can be obtained quickly using our new 
generators (Theorem 1(ii)). A Monte Carlo algorithm related to the theorem appears 
in [2, Theorem 3.1].

Our field calculations all take place inside F, hence essentially “inside” G, which ex-
plains the timing in both parts of Theorem 1(ii). No Discrete Logs are involved, unless 
a user needs to describe the field using a generator of the multiplicative group. We have 
not tried to optimize the timing of our algorithm, for example by using fast multipli-
cation in F2[s] or fast computation of minimal polynomials, and we expect that careful 
optimization can reduce the time from essentially cubic to essentially quadratic in e.
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2. Preliminaries

The following easy fact is critical:

Lemma 2. If a, b, c, d are distinct points of the projective line over a field F , then there 
is one and only one involution in PGL(2, F ) acting as (a, c)(b, d) . . . .

Proof. By transitivity we may assume that the points are 〈(1, 0)〉, 〈(1, 1)〉, 〈(0, 1)〉, 
〈(s, 1)〉, and then 

( 0 1
s 0

)
behaves as required. �

Lemma 3. Let h ∈ G = PGL(2, q) with q > 2 a power of a prime p not dividing |h|. Let 
g ∈ G be such that [h, hg]p �= 1. Then there is a unique involution z ∈ G conjugating h
to hg.

Proof. If h fixes two points a, b of the projective line, then the hypothesis [h, hg]p �= 1
states that |{a, b, c, d}| = 4 for {c, d} := {a, b}g. By the preceding lemma there is a 
unique involution y ∈ G acting as (a, c)(b, d) . . . . Then hy ∈ 〈hg〉 since the stabilizer of c
and d is cyclic, so that hy = (hg)ε for ε = ±1 since |NG(〈h〉) : 〈h〉| = 2.

There is also an involution u acting as (a, b)(c, d) . . . , and hence commuting with y
and satisfying hyu = (hg)−ε. Then y or yu is the unique involution that conjugates h
to hg.

If h does not fix any points, embed G into PGL(2, q2) and let σ be the involutory field 
automorphism. Then h fixes two points of the larger projective line. We have already 
seen that there is a unique involution z ∈ PGL(2, q2) such that hz = hg. Since zσ also 
has this property, it follows that zσ = z is in G. �
Proposition 4. Let G = PGL(2, q) with q > 2 even, let 2k + 1 = q2 − 1 denote the odd 
part of |G|, and let 1 �= h ∈ G have odd order. For g ∈ G with [h, hg] �= 1 either [h, hg]
or (hhg)kh is an involution.

Proof. If [h, hg] is not an involution it has odd order. For z in the preceding lemma, u :=
hz has odd order (as u2 = hhz = hhg �= 1). Then (hhg)kh = (hhz)kh = (hzhz)khz · z =
(hz)2k+1z = z. �
Remark 5. This result deterministically produces many involutions in a black box group 
isomorphic to G = PGL(2, 2e). The unavailability of such a deterministic or probabilistic 
result has long been the obstacle to a polynomial-time recognition algorithm for G. It has 
been folklore for several years that an involution u would lead to a Las Vegas algorithm 
based on the following idea: find U := CG(u) using [3,1]; use a random element of U

to produce a random element b of NG(U) (cf. “lifting” below in 3); turn U into a field 
generated by a single element corresponding to b; and finally make the algorithm Las 
Vegas by verifying a standard presentation of G.
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We will need a standard elementary fact:

Lemma 6. If z, z′ are involutions in a group and |zz′| divides 2k + 1, then (zz′)k+1

conjugates z to z′.

3. The square root of a matrix

We will use square roots of 2 × 2 matrices over F ∼= F2e , e > 1. This already occurred 
in Proposition 4: (hhg)−k is the square root of hhg. Such square roots involve very 
elementary calculations (finiteness is not even required). We need to exclude the matrices 
having trace 0, which are precisely those of order dividing 2.

Lemma 7. If h =
(
a b
c d

)
with Tr(h) = a + d �= 0, then

√
h = 1√

a + d

(
a + 1 b

c d + 1

)

is the unique matrix whose square is h.

Proof. Since h2 + Tr(h)h + I = 0 by Cayley–Hamilton, 1√
Tr(h) (h + I) is a square root 

of h. It is unique: h has odd order > 1, so that any square root of h also has odd order 
and hence has to generate the same cyclic subgroup as h. �

For u =
( 1 0

1 1

)
, g ∈ SL(2, F ), |F | = q = 2e, and q2 − 1 = 2k + 1 as in Proposition 4, 

write

B(g) :=
(
uug

)k+1
g−1 if

[
u, ug

]
�= 1. (1)

Since 
√
h = hk+1 in the lemma, this definition of the partial function B is based on [3,1]

and can be used for elements of either group in Theorem 1.

Lemma 8. If g =
(
a b
c d

)
with [u, ug] �= 1 then b �= 0 and B(g) =

(
1 0

1+ a+d
b 1

)
.

Proof. Calculate h := uug and use the preceding lemma for 
√
h:

B(g) =
(

a b
ab+a2+1

b a + b

)(
d b

c a

)
=

(
1 0

1 + a+d
b 1

)
. �

In particular, B(g) = u if and only if g2 = 1. Let B21(g) denote the 2, 1-entry of B(g). 
Starting with knowledge of the entries of u, we can use B21 to find the entries of most 
matrices:

Proposition 9. Let r =
( 0 λ
λ−1 0

)
with λ ∈ F ∗, and let N be the normalizer of the maximal 

torus containing ru. If g ∈ SL(2, F )\N , then λ and the entries of g can be calculated (by 
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formulas given below) using rational expressions in the square roots of the field elements 
B21(g1gg2), g1, g2 ∈ {1, u, r}3, for which [u, ug1gg2 ] �= 1.

In particular, if SL(2, F ) = 〈S〉 then F is generated by the set
{
B21(g1gg2)

∣∣ g ∈ S ∪ S2, g1, g2 ∈ {1, u, r}3, for which
[
u, ug1gg2

]
�= 1

}
.

Proof. We need to determine the entries of g =
(
a b
c d

)
. By the preceding lemma,

B21(g) = 1 + A := 1 + a + d

b
, B21(gr) = 1 + B := 1 + λ−2b + c

a
,

B21(rg) = 1 + C := 1 + λ−2b + c

d
and B21(rgr) = 1 + D := 1 + a + d

λ2c
, (2)

where B is not defined in those cases where the denominator is zero. Note that Tr(g) =
Tr(rgr) = a + d and Tr(rg) = Tr(gr) = λ(λ−2b + c).

If all of the elements A, B, C and D are defined and nonzero (which is equivalent 
to abcd(a + d)(λ−2b + c) �= 0), then the relation

ABCDλ2 = (A + D)(B + C) (3)

determines λ. Moreover, since ad + bc = 1,

a = ACD

Δ , b = D(B + C)
Δ , c = λ−2A(B + C)

Δ and d = ABD

Δ ,

where Δ :=
√
λ−2AD(B + C)(A + B + C + D) �= 0.

If only three of A, B, C, D are defined, then g, gr, rg or rgr has 1, 2-entry 0, so consider 
the possibility that A is not defined but B, C and D are defined and nonzero (which is 
equivalent to acd �= 0, b = 0 and a �= d). Then

BCDλ2 = B + C (4)

determines λ. Moreover, since ad = 1,

a = C

Δ , b = 0, c = BC

Δ and d = B

Δ ,

where Δ :=
√
BC �= 0. Thus, we can recover λ and the entries of g. We still must consider 

the possibility that acd �= 0, b = 0 and a = d. Then ad + bc = 1 implies that a = d = 1. 
If c �= 1, λ−2 then all entries of urg are nonzero and Tr(urg) Tr(r · urg) �= 0, so we can 
find λ and the entries of urg and hence of g by the previous paragraph. If c = 1 then 
g = u ∈ N . If c = λ−2 �= 1 then g′ := urgu satisfies Tr(g′) Tr(rg′) �= 0 and hence has 
been dealt with already.

If only two of the entries of g are not zero, then gu has only one zero entry, and we 
can recover the entries of g unless g ∈ {1, r} ⊂ N .
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Finally, we need to deal with the case where A, B, C and D are all defined and at least 
one is 0, so that abcd �= 0 and either a = d or b = λ2c. Replacing g by gr if necessary, 
we may assume that a = d. Then Tr(gu) = b �= 0 and Tr(r · gu) = λ(c + a) + λ−1b. If 
Tr(r · gu) �= 0 then the previous cases determine λ and the entries of gu, hence also of g. 
On the other hand, if Tr(r · gu) = 0 then a = c + λ−2b, which is precisely the condition 
that the involution g inverts ru and hence lies in N . (Note that it is not surprising that 
it is not possible to recover λ if g ∈ N\{1, u}, since then B(g) ∈ N ∩ CG(u) = {1, u}
by (1).)

For the last statement of the proposition, note that the entries of S generate F . We 
have already computed the entries of every generator s′ ∈ S\N , while we can obtain the 
entries of any s ∈ S ∩N from the entries of s′ and ss′. (In fact we do not need S2, only 
S ∪ s′S for a single s′ ∈ S\N .) �
Remark 10. The calculation of B(g) in Lemma 8 was unexpectedly simple. Although it 
will be less simple in larger groups having more elements of even order, such a calculation 
might occasionally be useful in order to speed up the recovery of the entries of a matrix 
from various values of B (as in Proposition 9 and 7 below).

4. Proof of Theorem 1

We are given a black box group G = 〈S〉 ∼= PGL(2, q). We may assume that q = 2e > 2. 
We proceed in several steps, each of which begins with a hint of its content.

1 (Noncommuting involutions u, r). If every element of S is an involution then two of 
them do not commute and we obtain noncommuting involutions u, r. If some 1 �= h ∈ S
has odd order, then CG(h) is cyclic and not normal in G, and hence hg /∈ CG(h) for 
some g ∈ S, so that Proposition 4 produces an involution u. Then some s ∈ S does not 
normalize CG(u), so that r := us /∈ CG(u). (Time: O(μe) using SLPs of length O(e).)

2 (The field: motivation). In order to define a field we need to understand consequences 
of the assumed isomorphism Ĝ := PGL(2, F ) → G, where F ∼= Fq. (In 3 we will define 
a specific model of Fq.)

Let û :=
( 1 0

1 1

)
, Û := CĜ(û), B̂ := NĜ(Û) and B̂∗ := B̂/Û . Writing matrices modulo 

scalar matrices, B̂∗ consists of cosets s̃Û =
(
s 0
∗ 1

)
that can be viewed as field elements. 

For such cosets s̃Û and t̃Û , their product in F ∗ corresponds to the group operation 
on B̂∗, while field-addition occurs via ûs̃+t̃ = ûs̃ût̃ when s̃Û �= t̃Û .

Each x̂ ∈ Û has the form x̂ = X̂(t) :=
( 1 0
t 1

)
, t ∈ F . If r̂ =

( 0 λ
λ−1 0

)
with λ ∈ F ∗ (as 

in Proposition 9) and t �= 0, then (using 2k + 1 = q2 − 1)

b(x̂) :=
(
ûûr̂

)k+1(
ûr̂x̂

)k+1
Û =

(√
t 0√ −1

)
Û ∈ B̂/Û , (5)
0 t
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which is independent of r. For, ûûr̂ and ûr̂x̂ have odd order (since ûr̂ /∈ Û). Then 
(ûûr̂)k+1(ûr̂x̂)k+1 conjugates û to x̂ (by Lemma 6), hence normalizes Û and so lies in B̂. 
A simple matrix calculation in B̂ produces all matrices conjugating û to x̂, as stated 
in (5).

3 (The field F). We define what amounts to a “black box field” F obtained from the 
involution u. Define U := CG(u), B := NG(U) and B∗ := B/U . Then F arises from 
the pair consisting of U and B∗ as additive and multiplicative groups, respectively; as a 
set F will be B∗ ∪ {0} with 0 treated in the obvious ways. We do not yet have these as 
constructed groups.

• If g ∈ G, then g ∈ U ⇔ [u, g] = 1, and g ∈ B ⇔ [u, ug] = 1.
• If t1U, t2U ∈ B∗ then t1U = t2U ⇔ (t1t−1

2 )2 = 1.
• Lifting elements of U to B/U : If 1 �= x ∈ U , then uur and urx have odd order (since 

ur /∈ U), so that (as in (5))

b(x) :=
(
uur

)k+1(
urx

)k+1
U conjugates u to x. (6)

Then b(x) normalizes U and so lies in B/U . (Time: O(μe) using SLPs of length O(e).)
• Labeling U\{1} using F∗ = B∗: If tU ∈ B∗ then X(tU) := ut ∈ U\{1} defines the 

inverse of the map b : U\{1} → B∗ in (6). Also let X(0) := 1.
• Field multiplication: This is inherited from B/U and hence from G. (Time: μ.)
• Field addition: t1U + t2U = tU = b(ut1ut2) for distinct t1U, t2U , so that ut =

ut1ut2 . (Time: O(μe).)

All of the above imitated 2. We emphasize that the field depends entirely on u (which 
uniquely determines U and B): it does not depend on r, which was used only to obtain 
elements of B∗ = B/U . We also emphasize that nonzero field elements are cosets: when-
ever we write a nonzero field element we are implicitly also writing (and storing) a coset 
representative.

Field-theoretic calculations are postponed to Section 5.

4 (Generators of F). The elements b(B(g1gg2)) with g ∈ S ∪ S2, g1, g2 ∈ {1, u, r}3 and 
[u, ug1gg2 ] �= 1, generate F ∼= Fq. Here the partial function B is defined as in (1), b was 
defined in (6), and “generate” means that the stated elements lie in no proper subfield. 
(Time: O(μe) to find these elements using SLPs of length O(e).)

For, there is an isomorphism Ψ : PGL(2, F) → G. By a basis change of F2 we may as-
sume that Ψ sends û :=

( 1 0
1 1

)

→ u and r̂ :=

(
0 λ−1

λ 0

)

→ r for some uniquely determined 

λ ∈ F. Since the preimages of S cannot all lie in a proper subfield of F, the elements 
b(B(g1gg1)) arising from the last part of Proposition 9 do not lie in a proper subfield 
of F.
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Remark 11. The isomorphism Ψ sends û 
→ u and induces an isomorphism from the 
usual Borel subgroup B̂ of Ĝ to B. The latter isomorphism is uniquely determined up 
to conjugation and field automorphisms. Hence, we may assume in our arguments that 
X̂(t) 
→ X(t). (We emphasize in our arguments since we have yet to construct such an 
isomorphism, as required in the theorem.)

We will abbreviate Ψ ′ := Ψ−1 and ĝ := Ψ ′(g).

Remark 12 (The projective line). We also obtain the projective line P = F ∪ {∞}. The 
fact that we can obtain the action of any g ∈ G on it motivated parts of this paper. 
It suffices to show how to compute 0g and ∞g. For, any x ∈ F∗ is represented by an 
element b ∈ B, so that xb−1u = 0 by definition and hence xg = 0ubg.

By the proof of Proposition 9, if B(g), B(gr), B(rg) and B(rgr) are all defined and 
are not equal to u (so that g /∈ N), then

0g = b
(
uB(g)

)
b
(
uB(gr)

)(
b
(
B(g)B(rgr)

))−1
,

∞g = b
(
uB(g)

)
b
(
uB(gr)

)(
b
(
B(rg)B(gr)

))−1
.

5 (PGL(2, 2) and r′). By the proof of Proposition 9, there is an element g ∈
{1, r, u}3S{1, r, u}3 such that three or four of the elements B(g), B(gr), B(rg), B(rgr)
are defined, and each of those is not equal to u.

If all four behave this way, calculate

τ := b
(
B(g)B(rgr)

)
b
(
B(rg)B(gr)

)(
b
(
B(g)u

)
b
(
B(rg)u

)
b
(
B(gr)u

)
b
(
B(rgr)u

))−1
.

Let τ = tU , t ∈ B. Then uutru has order 3 and r′ := utru is an involution, so that
〈u, r′〉 ∼= PGL(2, 2). (Time: O(μe).)

For, the definitions of B and b (in (1), (5) and (6)) imply that

ûΨ ′(b(B(g)B(rgr))) = Ψ ′(ub(B(g)B(rgr))) = Ψ ′(
B(g)B(rgr)

)
= B(ĝ)B(r̂ĝr̂),

and hence that Ψ ′(b(B(g)B(rgr))) = b(B(ĝ)B(r̂ĝr̂)); and similarly for the other terms in 
the definition of τ . Using (2), (3) and (5), we obtain

Ψ ′(tU) = b

(
1 0

A + D 1

)
b

(
1 0

B + C 1

)

×
(
b

(
1 0
A 1

)
b

(
1 0
B 1

)
b

(
1 0
C 1

)
b

(
1 0
D 1

))−1

=

⎛
⎝

√
(A+D)(B+C)

ABCD 0√
(A+D)(B+C)

−1

⎞
⎠ Û =

(
λ 0
0 λ−1

)
Û .
0 ABCD
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Since r̂ =
(

0 λ−1

λ 0

)
, it follows that r̂′ = Ψ ′(r′) = ûΨ ′(tU)r̂û = û

( 0 1
1 0

)( 1 0
1 1

)
=

( 0 1
1 0

)
, so 

that 〈u, r′〉 ∼= 〈û, r̂′〉 ∼= PGL(2, 2).
Similarly, assume that exactly three of the elements B(g), B(gr), B(rg), B(rgr) are 

defined and not equal to u. If B(g) is not defined, then (4) can be used as above in place 
of (3), this time together with the field element

τ := b
(
B(rg)B(gr)

)(
b
(
B(rg)u

)
b
(
B(gr)u

)
b
(
B(rgr)u

))−1
,

letting τ = tU and r′ = utru in order to obtain 〈u, r′〉 ∼= PGL(2, 2). The remaining cases 
are handled by replacing g by rg, gr or rgr.

Now we can introduce some standard elements of Ĝ and G for all t ∈ F∗:

n̂(t) := X̂(t)X̂
(
t−1)r̂′X̂(t) and ĥ(t) := n̂(t)n̂(1),

n(t) := X(t)X
(
t−1)r′X(t) and h(t) := n(t)n(1).

Then Ψ sends r̂′ → r′ and ĥ(t) 
→ h(t).

6. Proof of Theorem 1(i). In 10 we will express F in the form F2[s]. Since the isomorphism 
Ψ sends X̂(1) 
→ X(1), r̂′ 
→ r′ and ĥ(s) 
→ h(s), the map Ŝ := {X̂(1), r̂′, ̂h(s)} → S∗ :=
{X(1), r′, h(s)} determines Ψ .

The stated time is dominated by 10. �
7. Proof of Theorem 1(ii). In order to handle elements of Ĝ, first consider X̂(t), t ∈ F. 
In O(μe3) time write t as 

∑e−1
0 ais

i with ai ∈ F2 (cf. 9), and then find an SLP from Ŝ
to X̂(t) =

∏
i X̂(si)ai of length O(e). Now it is easy to use the definitions at the end 

of 5, together with straightforward row reduction, to find an SLP of length O(e) from Ŝ
to any given element in Ĝ = B̂ ∪ B̂r̂B̂, where B̂ = Û{ĥ(t) | t ∈ F∗}. This takes O(μe3)
time (dominated by 9).

Now consider g ∈ G. We must find an SLP from S∗ to g. Assume that g /∈ NG(〈u, r〉). 
For each g1, g2 ∈ {1, u, r}3 such that [u, ug1gg2 ] �= 1, find B(g1gg2) ∈ U and B(ĝ1ĝĝ2) =
Ψ ′(B(g1gg2)) ∈ Û , and then use Proposition 9 to find the entries of the matrix ĝ = Ψ ′(g). 
Use the preceding paragraph to find an SLP from Ŝ to ĝ of length O(e). Then the Ψ -image 
of that SLP is the required SLP from S∗ to g. Finding ĝ takes O(μe) time, finding an 
SLP to ĝ takes O(μe3) time, and applying Ψ to the members of the SLP takes O(e) time.

If g ∈ NG(〈u, r〉) then g = gh(s)−1 · h(s) with h(s) ∈ S∗, and we can find an SLP 
from S∗ to gh(s)−1 /∈ NG(〈u, r〉) in the required time. �
5. Field computations

The proof of Theorem 1 depends on the black box field F in 3 that is a model of the field 
Fq inside the black box group G. Using it we will emulate some classical field-theoretic 
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algorithms. Recall that each addition in F takes O(μe) time while each multiplication 
takes O(μ) time.

8 (Preliminaries).

(i) Given s ∈ F∗, find m such that F2[s] ∼= F2m in O(μe) time: find the first m ∈
{1, . . . , e} such that s2m = s. In particular, we can test whether F2[s] = F.

(ii) For s and m in (i), the minimal polynomial of s over F2 is 
∏m−1

0 (x − s2i), 
found in O(μe3) time. This yields an isomorphism F2[x]/(f) → F2[s] induced by 
x + (f) 
→ s.

(iii) The trace map Tr : F → F2, defined by Tr(t) :=
∑e−1

0 t2
i , is calculated in O(μe2)

time using uTr(t) =
∏e−1

0 ut2
i

.
(iv) In 9 we will use linear equations over F2. While this F2 is contained in F, with its 

rather slow field operations, we can work with a standard model of F2 with much 
faster field operations.

9 (Linear algebra). Let s ∈ F with F = F2[s]. In O(μe3) time, given t ∈ F we can find 
the unique xi ∈ F2 such that t =

∑e−1
0 xis

i.
First find all 2e − 1 traces aij := Tr(si+j) ∈ F2 and all Tr(tsj) ∈ F2, 0 ≤ i, j < e, 

in O(μe3) time. Since Tr(tsj) =
∑e−1

i=0 xi Tr(si+j), we obtain

Tr
(
tsj

)
=

e−1∑
i=0

aijxi, 0 ≤ j < e.

In O(e3) time solve these linear equations over F2.

10 (Field generator). In O(μe3 log e) time we can find s such that F = F2[s].
By 4, F2e ∼= F = F2[α1, . . . , αn] with n = O(1) (we are ignoring |S|).

1. Factor e =
∏

i qi into powers qi = pki
i of O(log e) different primes pi. (Time: O(e).)

2. Find the degree of each αj over F2. (Time: O(μe2) as in 8(i).)
3. For each i find αji such that qi divides mi := [F2[αji ] : F2] (this exists since the αj

generate F).
4. For each i compute the polynomial fi :=

∏(mi/qi)−1
t=0 (x − α2tqi

ji
), whose coefficients 

generate a field F2qi . (Time: O(μe3 log e).)
5. For each i find a coefficient ci of fi such that F2qi = F2[ci] (this exists since qi is a 

prime power). (Time: O(μe2 log e), testing all coefficients using 8(i).)
6. Output s :=

∏
i ci. Then Fq = F2[s] since the groups F2[ci]∗ have pairwise relatively 

prime orders, so that each ci is a power of s. (Time: O(μ log e).)

At this point we have completed the requirements made after the statement of The-
orem 1: we have obtained F as F2[s], and we can find the minimal polynomial of s

(cf. 8(ii)).
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6. Odd characteristic

We conclude with remarks about a case we have not been able to handle: G =
PSL(2, q) with q = pe for an odd prime p. Since about a quarter of all group elements 
have even order, it is easy to (probabilistically) find an involution. The problem is to 
find an element of order p.

There is an analogue of Proposition 4 that might not be entirely useless, though we 
do not see how to use it. That result can be imitated given an element h such that |hhg|
is a factor of the odd integer (q ± 1)/2; if the involution t in Lemma 3 is in PSL(2, q), 
then we obtain that involution as before.

There is an analogue of Lemma 2 involving elements of order p acting as g =
(a, c, . . .)(b, d, . . .) . . . : given distinct a, b, for about half of all pairs c, d there is such 
an element g (in fact, two of them), and then Gg

ab = Gcd. However, we do not see how 
to use this fact.
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