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WILLIAM M. KANTOR

ABSTRACT. This note is a response to a request by Claude Carlet for a brief
summary of some of what is known about spreads for use in John Dillon’s
fundamental partial spread construction of bent functions.

This note was not written to be published.

1. INTRODUCTION

We assume that readers are familiar with the basic notions regarding bent func-
tions, including partial spreads: a partial spread of Fgm is a set X of m-dimensional
subspaces any two of which meet only in 0. The starting point of this note is the

following fundamental result constructing bent functions:

Dillon’s Theorem [Di, Theorem 5.2.2]. If  is a partial spread of F3™ consisting

of 2™~ 4+ 1 subspaces, then U X is the support of a bent function on F3™.
Xex

There is a variation on this theorem also appearing in [Di, Theorem 5.2.2] that
uses 2™~ ! subspaces, but the preceding version suffices for our purposes.

The present note is intended to provide some information concerning aspects of
partial spreads related to finite geometries, in the hope that this will be helpful
for bent function researchers. We have tried to be brief, hence not to give details,
nor many types of examples, nor examples that are complicated to describe, nor
historically complete references. Such a short survey is guaranteed to be biased by
this author’s tastes.

A partial spread ¥ is a spread if its union is F3™, in which case |%| = 2™ + 1.
Not all partial spreads are contained in spreads. For example, this occurs for an
“orthogonal spread”, whose union is the set of zeros of a quadratic bent function [Di]
(Dillon used the term “Pall partition” instead of “orthogonal spread”); orthogonal
spreads are maximal partial spreads, and there are reasonably large numbers of
them (as noted in Question 9 below).

Dillon [Di, pp. 36, 40 and 46] referred to [Os] for the existence of many spreads
arising from affine planes. In [Di, Remark 5.4.6] he noted that his theorem applies
to each of the (2,2,:111) choices of 2™~! + 1 members of a spread of Fgm Forty
years later this observation was revisited in [Ca, Wu, CMP].

Known vs. unknown bent functions. By [LL], there are approximately 206

different bent functions F5 — Fy, ignoring the equivalence of such functions (cf.
Section 2.2). Moreover, of these fewer than 277 arise from constructions in print,
which in turn are dominated by two types of constructions introduced in [Di]:
Maiorana-McFarland bent functions and partial spread bent functions. This means
that already in a small dimension the known types of constructions are woefully
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inadequate for describing “most” bent functions. This gap in knowledge increases
exponentially as the dimension of the underlying vector space grows.

There are many inequivalent spreads from which to choose partial spreads, but
the number of known ones does not help at all to deal with the aforementioned gap.

Other characteristics. Much of this note applies to all characteristics, although
various constructions are tied to the parity of the field size. However, our focus is
on classical bent functions and hence on vector spaces over the field of order 2.

2. AFFINE PLANES

Spreads arise naturally in finite geometry: if ¥ is a spread of F%m then the
vectors in F3™, together with the translates X + ¢ for X € > and ¢ € F3™, form
the points and lines of an affine plane of order 2™. Such an affine plane is called
a “translation plane”: all translations v — v+ ¢, ¢ € F%m, are collineations (i.e.,
automorphisms) of this plane. There is a large literature on these planes. This was
already noted long ago in [Di, pp. 36, 40 and 46].

Since then the number of papers concerning translation planes has grown enor-
mously. There is now a large, almost encyclopedic book [JJB2] containing a wealth
of information about these planes and their associated spreads, together with large
related books [JJB1, Jo2]. The crucial point is that are many different construc-
tions known for spreads. Hundreds of different types of constructions are in [JJB2],
and there are many more (in the other two books; also see Mathscinet). We will
not make any attempt to describe more than a tiny number of types of spreads.
We refer to the above books for many far more complicated examples.

2.1. Prequasifields. Let 3 be a spread of Fgm. Pick any two members X,Y of
$. Fiz an isomorphism between X and Y. Then F2™ can be viewed as the set of
pairs (z,y) with z,y € X, and we can think of X = [y = 0] and Y = [z = 0] as
the z and y “axes”. We emphasize that there were choices made here, there is no
“best” choice of the ordered pair X,Y € 3. One of the fundamental properties of
partial spreads is that the underlying vector space is the direct sum of any two of
its members (cf. Section 3.1).

Any other member of ¥ can be identified with the set of all pairs (z, Mz) for an
invertible linear transformation M of ]F%m. Thus, lines through 0 are just sets of
the form z = 0 and y = Mz (here M is allowed to be O).

The lines through 0 are just the members of f], so there are 2™ + 1 of them.
One of them is X; label the others bijectively in any way using F5'. Then the lines
through 0 look like z = 0 and y = M,z for 2™ matrices M,, a € Fy".

This leads to a binary operation on F5":

axx:= M,x.

Since M, is additive, we have the distributive law a * (v + v) = a * u + a * v.
The fact that pairs of sets y = a * x meet only in 0 translates to the condition
that a*xz =bxx # 0 = a = b. Such a system (F3', +,%) = (F,+,*) is called a
prequasifield. Note that there are various choices that have been made: X,Y € X,
the isomorphism X — Y, and the labeling of the lines through 0 as y = M,x.

Using the prequasifield (F, +, %), the points of our affine plane are the vectors in
F2, and the lines are x = c and y = a * x + b, as in High School.
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Quasifields. It is straightforward to relabel in order to have an identity element
1 e FY, sothat 1xa=a=ax1 for all a € FJ", in which case our algebraic system
is called a quasifield. A spread or affine plane described using a prequasifield can
always be described using a quasifield isotopic to it (cf. Section 2.2).

Presemifields and semifields. Our prequasifield is a presemifield if the other
distributive law (u 4 v) * a = u* a4+ v *a holds (for all a,u,v); and it is a semifield
if it is a presemifield with an identity element. Once again, a spread or affine plane
described using a presemifield can also be described using a semifield.

Examples: Fields. The desarquesian affine plane of order 2™ arises from the
spread consisting of the set of 1-spaces of a 2-dimensional vector space over Fom.

2.2. Equivalence and automorphism group.

Bent functions. We view bent functions f,g:IF%m — Fy as equivalent if there
is an invertible affine transformation M of F2™ such that f(M(v)) = g(v) for all
v € F3'. Then the notion of automorphism group Aut(f) is clear. The preceding
definitions correspond to the standard notions of equivalence and automorphism
group of the difference sets associated with the bent functions [Di].

The problem of determining whether bent functions f and g are or are not
equivalent is difficult, as is the determination of Aut(f) (cf. [Be, Kal, De2]).

Spreads. Similarly, (partial) spreads X,%’ of F3™ are equivalent if there is an
invertible linear transformation (or matrix) M € GL(2m,2) such that M(X) =
Y. The automorphism group Aut(X) of ¥ consists of the elements of GL(2m,2)
sending ¥ to itself.

Prequasifields. Equivalences of prequasifields are called isotopisms: prequasifields
(F,4+,*) and (F’,+,0) using binary vector spaces F' and F’ are isotopic if there is
a triple (o, 3,7) of bijections F' — F’ such that § and + are additive, «(0) = 0, and
v(u *xv) = a(u) o B(v) for all u,v € F. See [JJB2, Sec. 5.4] for a discussion of this
notion, in particular for the following results and many more: isotopic prequasifields
determine equivalent spreads, but the converse is false.

In order to understand this remark, start with spreads ¥ in F2 and 3/ in F”2
for isomorphic (binary) vector spaces F and F’. Choose ordered pairs X,Y € N
and X', Y’ € ¥/ in order to obtain prequasifields (F,4+,*) and (F’,+,0). Then
there is an additive isomorphism F? — F'2 sending X — X' and Y — Y’ if and
only if the corresponding prequasifields (F,4+,*) and (F',+,0) are isotopic; this
is a straightforward calculation using the definitions (cf. [JIJB2, Sec. 5.4]). We
will see what this means more precisely in Section 3.1. For now we note that
a given spread 3 need not have many automorphisms, hence there may be many
essentially different ways to choose an ordered pair of its members, producing many
non-isotopic prequasifields.

Of course, the most familiar example occurs for a desarguesian affine plane, where

the automorphism group of the spread is 2-transitive on the spread and hence all
pairs X, Y are “indistinguishable”.
2.3. Bent functions from prequasifields. Once again this was foreseen in [Di]
as an application of Dillon’s Theorem. If (F5', +, *) is a prequasifield let g: F5" — Fy
be any balanced function! such that g(0) = 0, and define f(z,y) := g(y/x) where
(y/z) * v = x, with the convention that g(y/0) = 0. Then f is a bent function.

LA balanced function takes each value equally often.
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Once again we note that there was a choice made of members z = 0 and y = 0 of
the spread. Different choices usually give nonisotopic prequasifields, and presum-
ably will often produce inequivalent bent functions.

3. EXAMPLES

Before giving some examples we need to emphasize that most of the known types
of spreads are not described using prequasifields. In other words, the description
used in Section 2.3 is very special in view of published examples. See Section 3.7
for some examples. By contrast, semifield spreads are always described using more
or less explicit presemifields, but there are far fewer of these known than for more
general prequasifields.

3.1. Changing X and Y. Before giving explicit examples we indicate the change
of “coordinates” in the choices made in Section 2.1 and discussed in Section 2.2.

Start with a prequasifield (F,+,x), and consider V = F? so V is naturally
X@Y for X =[y=0] and Y = [z = 0], the z- and y-“axes”. Fix distinct nonzero
¢,d € F,and let X' = [y = cxz] and Y’ = [y = d x x]. (This considers most
but not all possible choices of ordered pairs X', Y’ of members of our spread.) We
will replace the decomposition F2 = X @Y by the direct sum decomposition of F2
using X’ and Y’ in order to obtain a new prequasifield operation.

Each point of the line y = a * x looks like (z,a * z) = (u,c*u) + (v,d * v)
for unique (u,c*u) € X', (v,d*v) € Y'. Then u is a function of a and z, say
u = G(a,x), that is additive in x and is determined as the unique solution to the
equation a * z = ¢ x G(a,z) + d * [G(a,x) + z]. (Here, v = G(a,z) + z.)

Recall that we obtain a prequasifield using additive isomorphisms such as (z,0) —
x and (0,y) — y (cf. Section 2.1): (x,a * z) = (x,0) + (0,y) where the “X”-
coordinate is x and the “Y”-coordinate is y = a * x. There are additive bijections
X' — F via (u,cxu) » uwand Y — F via (v,d*v) — v (recall that ¢ and d do not
vary here). In the equation (z,a*x) = (u,c*xu)+ (v,d*v) we have “X'”-coordinate
u and the “Y’”-coordinate v, so write v = a o u. Then the equations

aoG(a,z) =Gla,x)+2z, axx+dxx=cxG(a,x)+dxG(a,x)
implicitly define the new prequasifield (F,4,0).2 In order to calculate a o u we
would have to solve the equation v = G(a, ) for x in terms of a and u. We leave
it to the reader to try to calculate the operation o explicitly in the examples below.
The equations to be solved are often disgusting.

For most choices of %, c,d the new prequasifield is not isotopic to the original
one: in Section 2.2 we noted that isotopism amounts to the existence of an auto-
morphism of the spread sending X — X’ and Y — Y’. So the above process yields
many “‘new” prequasifields producing the same spread and hence the same partial
spreads in Dillon’s Theorem. If * is a presemifield operation but the spread is not
desarguesian, then o will not be isotopic to a presemifield.

3.2. Examples: André prequasifields [An|. Start with a finite field F', a proper
subfield K with associated norm map N: F — K, and an arbitrary map « from
K* = K\{0} to the Galois group Gal(F/K). Then 0% x = 0 and

N(a))

a*z:=az® ,a€F* xeF,

2In place of “ao” on the left we could have used “a(a)o” for any permutation a of X fixing
0, obtaining an isotopic prequasifield. For the same reason we do not need to use a copy F’ of F.
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defines a prequasifield. (Proof: az®(N(a)) = pga(N(®) £ 0 = N(a)N(z) = N(az®(®) =
N(B)N(z) # 0 = az®N(@) = pza(N(2)) = ¢ = b))

These easily described prequasifields were among the first to be studied. When
[F: K] = 2 the resulting spreads appeared in a very different and independently
obtained description in [Br]; and those spreads and variations [BEP] provide asymp-
totically “most” (up to isotopism, cf. Section 2.2) of the known examples of pre-
quasifields of size |F|, due to the large number of choices for the map a: K* —
Gal(F/K) = Zs.

Many variations on André’s construction appear in [JJB2].

3.3. Examples: Knuth’s “binary semifields” [Kn2]. Let K be a proper sub-
field of F' = Fam with [F': K] odd and associated trace map T: F — K. Then

wxy:=ay+ (aT(y) +yT(x))?, o,y € F,

defines a commutative presemifield operation on F'. (Proof: 0 # zy=22T(y)%+ y>T(z)?> =
(y/x)?T(x)? + (y/x) + T(y)2 =0=[since [F: K] is odd] y/x=a € K=a?T(z)%+a+(aT(z))2=0
=a = 0, whereas y# 0.) If m > 3 then this produces a spread ¥ whose automorphism
group fixes x = 0 and is transitive on the remaining members of X.

There is a generalization of these examples [Ka3] obtained using orthogonal ge-
ometries, arbitrarily long chains of fields instead of F' D K, and a more complicated
formula for * than the above one. These and related presemifields [KaW2, Ka3]
account for most of the known presemifields of size 2™, in the sense that (up to
isotopism) their number is not bounded above by any polynomial in 2™, whereas
there are O(m2%™) other known presemifields of size 2™ (up to isotopism).

3.4. Examples: More semifields due to Knuth [Knl|. Let f,g € F = Fom
and 1 # o € Aut(F) be such that the polynomial t°T* + gt + f has no root in F.
Then it is straightforward to check that each of the following rules for (a, b) * (¢, d)
produces a noncommutative semifield (F2, +, ):

(1) (ac+ fb°d° " bc+a’d+ gb°d® )

(2) (ac+ fbod,bec+ a®d + gb®d)

(3) (ac+ fb° 'd° " \bc+ a®d + gbd® )

(4) (ac+ fb° 'd,bc+ ad + gbd).
In each case the “dual plane” arises from the semifield operation x oy := y * x
[JIB2, p. 43].

3.5. Examples: A recursive construction [HMO]. Since 2 x 2 matrices are
easier to deal with than larger matrices, early prequasifield constructions used K2,
K =Ty, with an operation of the form

(a,0) * (2,y) = (a’b)( ; ; )

9(z,y) h(z,y)
for all a,b,x,y € K. (For example, consider Fy2.) We leave to the reader the
condition on the functions g, h in order to obtain a prequasifield.
Let F=F; D> K andr € F\K withr?*+r e K. Forv=xz+ry € F (z,y € K)
let f(v) := h(z,y) + g(z,y) + h(z,y)r. Then it is straightforward to check that

ud

oot =) (41 1)



6 WILLIAM M. KANTOR

defines a prequasifield on F2. This construction produces both presemifield spreads
and spreads not obtainable from presemifields [Jol], and can be repeated using fields

of order qzk containing F, where k =2,3,....

3.6. Examples: Jha-Johnson presemifields [JJ]. For a d-dimensional vector
space V over a finite field K, let T:V — V be an irreducible semilinear transfor-
mation (that is, T is additive, satisfies T'(av) = o(a)T(v) for some o € Aut(K)
and all a € K,v € V, and leaves invariant no proper K-subspace of V). Then
S = g_l KT is a vector space of |V| endomorphisms of the binary vector space
V'; choose any additive isomorphism h: V' — S. Then u x v := h(u) (v),u,v ev,
defines a presemifield operation on V. (Proof. If ( g_l a;T*)(v) = 0 # v and at least
one a; € K*, let 1 <r <d—1with 0 # a,T"(v) = 7(2871 a;T%)(v). Since all powers of T' are
semilinear, T(KT""1(v)) = Ka,T"(v) = K( 671 a; T")(v) C 2671 KT?*(v), so the latter is a
proper T-invariant subspace, which is a contradiction.)

This construction is based on a standard description of a field of order |V| that
occurs when o = 1. There seems to be a lot of flexibility in this description, but in
fact fewer than |V|log, |V inequivalent spreads are obtained [KL]. All possible T'
are described in [De3].

3.7. Spreads constructed without the use of prequasifields. We have al-
ready observed that most known constructions behave in this manner [JJB2]. We
mention a few instances.

1. Spreads of (F,s)? on which GL(2,q) acts with orbits of size ¢ + 1 and ¢ — ¢
[JJ]: in Example 3.6 let V = F and F' = F;s O K =TF,, with T not K-linear (i.e.,
o # 1). The desired spread consists of the following ¢ + 1 additive subgroups of
F?2: 2 =0, y = ax with a € K, and ¢* — ¢ subgroups {(m,T(x))(g 2) |z € F} for
a,b,c,d € K with det( %) # 0. (Proof. (v,T(v)) = (u, T(u))(*4) # 0 = T(ua+T(u)c) =
ub + T(u)d = TT(u)o(c) + T(u)(o(a) —d) — ub = 0. If o(c) # 0 then T?(u) € Ku + KT (u),
whereas the K-space Ku + KT(u) # T(Ku+ KT(u)) (cf. Example 3.6). Similarly, (%) =
(6 0,(0(1)), so that {(z,T(z))(2%) |2z € F} = {(z,T(z)) |z € F}. Thus, the different subgroups
{(z,T(x))(¢Y) |z € F} pairwise meet in 0, and there are |GL(2,q)|/(qg — 1) = ¢ — q of them.)
The nonlinearity of T' implies that the spread is not desarguesian.

2. Spreads for which there is a cyclic group of automorphisms transitive on the
spread [KaW1], described using the behavior of this cyclic group rather than a
prequasifield. We give an example.

Start with F' = Fjem D L = Fym with m > 1 odd, the trace map T': L — F,, r €
F,2\F,, and s € F* of order ¢™+1. If h(z) := T(z)+rz, then {s'h(L) | 0 <i < g™}
is a spread. (Proof: Let “bar” € Aut(F) have order 2. If s*[T(z)+rz] = T(y)+ry # 0 with s* # 1
then z +y # 0. Multiply by the bar-image: T'(x)2 + (r +7)zT(z) +r7rz2 =T (y)2 + (r + 7)yT(y) +
riy? = [applying T) T(x)? + (r +7)T(2)T (x) + riT(2?) =T(y)* + (r + )T (YT (y) + r7T(y*) =
I4+r)1+7)(T(2)2+T(y)2) =0 = (r + 7)(z + y)T(z) +ri(z+y)? = 0 = rr(z+y) = (r+7)T(x) €
L = [applying T r7(z+y) = T(rf(z +y)) = r7(T(x) + T'(y)) = 0, whereas z +y # 0.)

This spread is not desarguesian if |F'| > 8. A much more complicated version
of this construction replaces the pair L D F, by an arbitrarily long chain of fields
[KaW1]. These examples, and those alluded to in the second paragraph of Sec-
tion 3.3, did not arise due to any kind of experimentation. They were forced by
considerations of high-dimensional orthogonal geometries.
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3. Spreads corresponding to the Liineburg-Tits planes [Lii]. The Suzuki simple
group Sz(q) acts 2-transitively on such a spread, just like SL(2, q) acts 2-transitively
on a desarguesian spread. See [Lii, (13.1)] for a description in terms of coordinates,
using a nonabelian group of order ¢2.

4. Spreads whose full automorphism group has order 1 ([Ka2] constructs more than
2™ pairwise inequivalent spreads of this sort in (F3")? for composite m relatively
prime to 6). There is no reasonable way to describe these spreads in terms of a
choice of members X and Y of the spread. It is dubious that such a spread could
be described in any meaningful way via a prequasifield.

4. WHICH BENT FUNCTIONS ARE ESPECIALLY “USEFUL’?

In this section we consider questions about “useful” bent functions, as well as
about properties of bent functions. The word “useful” is intentionally vague: it
refers to known or future uses either in mathematics or in applications. As with
the rest of this note, the questions are a bit biased. It is hoped that none of the
answers are too obvious.

Question 1. Which should come first: obtain a long list of “explicit” bent functions
and then try to decide which are useful? Or first decide on criteria for usefulness
of bent functions and then try to find many of them?

The first of these seems especially hard: given a list of dozens or even hundreds
of functions, how can one “see” anything useful, how can one even focus on so many
functions? Nevertheless, cataloguing a large number of bent functions appears to
be viewed in part as “data collection” for possible eventual use.

Question 2. Are univariate (or bivariate) bent functions especially useful? If so,
would this make many partial spread and Maiorana-McFarland [Di] bent functions
less interesting?

Question 3. Are normal bent functions especially useful? Are non-normal bent
functions especially useful? Are there large numbers of non-normal bent functions
(cf. [CDDL])? Here a bent function on F3™ is normal if it is constant on some
m-~dimensional affine subspace.

Question 4. Is every finite group isomorphic to Aut(f) for some bent function f?
Or even for a bent function f obtained in Dillon’s Theorem?

Certainly every finite group is isomorphic to a subgroup of some Aut(f), namely
when f is a quadratic form. Motivating this question are the many theorems of the
following sort: every finite group is isomorphic to Aut(X) for some given type of
combinatorial object X, such as a graph, a symmetric design, etc.

Question 5. Are bent functions f such that Aut(f) = 1 especially useful? Are
they more “random” than the bent functions appearing in familiar constructions?

Presumably “most” bent functions behave this way, but very few appear to be
known and only in F3: one in [Be, p. 91], and 166 of partial spread type in [De2,
p. 1117]. Many more such functions are needed! Compare Question 13.

Question 6. Are bent functions especially useful if they arise from Dillon’s Theo-
rem via a partial spread ¥ for which Aut(X) is transitive on 37

The only known partial spreads of this type appear to be those arising from qua-
dratic bent functions. There are many variations on this type of question, such as:
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Question 7. Are bent functions f for which Aut(f) is transitive on both f=1(0)
and f~!(1) especially useful? All such f have been determined [Del].

More generally: are bent functions f for which Aut(f) is transitive on f~*(0)
especially useful? Determining all such bent functions may be difficult.

Question 8. Are bent functions especially useful if they arise from Dillon’s Theo-
rem via a partial spread 3 for which Aut(X) fixes one member of ¥ and is transitive
on the remaining members (cf. [KaW2, Lemma 2.21])?

Question 9. Are bent functions on Fgm especially useful if they arise from Dillon’s
Theorem via a partial spread ¥ for which Aut(X) = 17

It is not hard to construct reasonably large numbers of such partial spreads
(exponential in m) — in fact, partial spreads not properly contained in other partial
spreads — by modifying suitable orthogonal spreads. (Of course, the resulting bent
functions are not quadratic.)

Finally, we turn to a partial spread ¥ as in Dillon’s Theorem that is con-
tained in a spread 3. First, it may be worth noting that ¥ can be contained in
a large number of spreads by (even: inequivalent spreads; even: ¥ can be contained
in both desarguesian and nondesarguesian spreads). This occurs in Example 3.2
and variations [BEP].

Question 10. Are there any relationships or differences among the various bent
functions obtained from subsets of a spread ﬁ), especially if the balanced function g
in Section 2.3 is restricted somehow? For example, if g is chosen to be random, do
the resulting bent functions differ in some significant manner? Alternatively, what
if g is a linear functional?

Question 11. If 3 contains partial spreads ¥;, ¢ = 1,2, with associated bent
functions f; in Dillon’s Theorem, are there circumstances that relate equivalence of
the functions and equivalence of the partial spreads? Can the balanced function g
in Section 2.3 be carefully chosen to produce such an equivalence of equivalences?
It is probably worth mentioning that, for bent functions f; determined by partial
spreads X;, i = 1,2, if 31 and X5 are equivalent then so are f; and fo. However, the
converse if false; for example, there are many orthogonal spreads that are partial
spreads producing the same quadratic bent function [KaW1, KaW2]. (Presumably
containment in a spread 3 does not prevent the existence of examples.)

Question 12. Is there any relationship between the automorphism group of 3 and
the automorphism groups of any of the associated partial spread bent functions
(even for carefully chosen balanced functions g in Section 2.3)7

Question 13. Is a bent function on Fgm especially useful if it arises from a partial
spread ¥ for which Aut(3) = 1?

This means that there are no nontrivial scalar transformations available (over
some proper extension of Fy, as occur, for example, in the desarguesian case using
(z,y) — (azx,ay), cf. Section 2.1). Nevertheless, the number of such spreads 3 is
exponential in m (cf. Example 3.7.4).

Given such a spread, it should be possible to prove that Aut(f) = 1 for many
of the associated bent functions f; or alternatively, for carefully chosen balanced
functions g in Section 2.3 (cf. Question 5).
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Question 14. Is a bent function arising from X especially useful if Aut(3) is
transitive on 7

This is the primary source of partial spread bent functions provided by Dillon
using desarguesian spreads (cf. Section 2.1). However, there are many other spreads
with this property (cf. Example 3.7.2).

Question 15. Is a bent function arising from ¥ especially useful if $ comes from a
presemifield (cf. Section 2.1)?7 Or even to a commutative presemifield (cf. [CMP])?

The number of such spreads 3 is not bounded above by any polynomial in 2™
[KaW2, Ka3].

Question 16. Is a bent function arising from ¥ especially useful if 3 comes from a
prequasifield having associative multiplication but not isotopic to a field? The num-
ber of such prequasifields of size 2™ is at most m and hence is rather limited [Za).

Question 17. Is a bent function arising from ¥ especially useful if ¥ comes from
a prequasifield obtained using 2 x 2 matrices as in Example 3.57

Question 18. When 3 arises from a presemifield, there is a dual plane also coor-
dinatized by a presemfield, as at the end of Section 3.4. (Nothing new is obtained
in the commutative case.) Are there relationships between bent functions produced
by this pair of dual planes (cf. [CMP])?

Question 19. Some (partial) spreads on F2™ are symplectic: there is a nondegen-
erate alternating bilinear form ( , ) on F3™ such that (X, X) = 0 for all X in the
(partial) spread. Desarguesian spreads are examples, as are the spreads in Sections
3.7.2-3.7.4 and all orthogonal spreads. Subsets of a symplectic spread are symplec-
tic. Before 2013 all partial spreads used to construct bent functions were symplectic.

Do bent functions arising from symplectic partial spreads have useful special
properties?

The number of such spreads 3 is not bounded above by any polynomial in 2™
[KaW2].

Question 20. Symplectic partial spreads may be especially suitable for use with
bent functions since all linear functionals on F3™ arise as v — (v,c¢), ¢ € F3™. Is
there any advantage to the study of bent functions using an alternating bilinear
form in place of the more familiar dot product?

5. SUMMARY

We have probably asked too many questions concerning bent functions. If 20
questions seem too many to focus on, how can 20 formulas for bent functions be
sufficiently helpful? Or 200 formulas for bent functions?

It is hoped that this note will stimulate discussions concerning properties of bent
functions.
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[An]
[BEP)
[Be]
(Br]
(oo
[CMP)]
[Del]
[De2]
[De3]

[Di]
[HMO]

[JJ]
[Jo1]
[Jo2]
[JIB1]
[1JB2]
[Kal]
[Ka2]
[Ka3]
KL
[KaW1]
[KaW2]
[Kn1]
[Kn2]
[LL]
L
[Os]
(W]
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