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In Part I of this paper (Hering, Kantor, and Seitz [S0]), 2-transitive groups
of even degree were classified when the stabilizer of a point has a normal
subgroup regular on the remaining points. The identification with groups of
known type was made by finding a 2-Sylow subgroup and then applying the
deep classification theorems of Alperin, Brauer and Gorenstein [1, 2] and
Walter [39].

The purpose of the present continuation of [50] is to point out that the
proof of the main result of [50] can be completed without using [1] and [2].
Moreover, Walter’s classification theorem [39] and the Gorenstein—~Walter
Theorem [49] are not required in [50], although the end of Walter [53] seems
to be needed.

Our arguments are natural continuations of those of [50, Sections 4, 8,
and 9]. Much use is also made of character-theoretic information contained
in Brauer [46] and [47]. Our goal is to show that a minimal counterexample
has a cyclic two points stabilizer G, and then apply a result of Kantor,
(’Nan and Seitz [22, Theorem 1.1 or Section 35, Case D]. We first show that
G,; 18 metacyclic, and then “transfer out field automorphisms™ in order to
prove that G4 is cyclic.

This transfer argument yielded an unexpected dividend: in the course of
examining a similar argument in Suzuki [34, Section 21], an error was found.
This has been corrected, and, in fact, the entire transfer argument is stated
for odd and even degree groups simultaneously.

The numbering of both the sections and the references will be continued
trom [50].
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11. PRELIMINARY LEMMAS

LemMa 11.1. Let p be an odd prime and x a positive integer such that
x = —1l(mod p). Then (x* + 1),/(x + 1), == p

Proof. Sctx = —1 + yp. Then

Al = (=1 +yp)P + 1= —1+p-yp— (g)yzpz ey ]
Thus, (+* + D)(x + 1) = p(mod $?)

LemMa 11.2. Let P be a p-Svlow subgroup of a group G and N == Ny(P).
Suppose that P contains no section isomorphic to Z,\ Z,. Then GIO*G) ~
N{OP(N),

Proof. 'This version of the Hall-Wielandt Theorem follows from the
Proof of Theorem 14.4.1 in [14].

LEmMaA 11.3. Let G be a finite group having no normal subgroup of index 2.
Suppose that a 2-Sylow subgroup S of G is quasidihedral. Then the principal
2-block B2, G) of G consisis of characters yo == 14, x1, X2 > X3 > Xa» and
characters '/ of the same degree x such that, if x, = x (1), there are signs
81, 85, 8 and an integer m == 1(mod 4) such that the following hold:

(1) xq(2) = dym, xu(t) == —8ym and y,(t) = —0; for any involution t;
(i1) 1 =0y, = 8,0 == —8y%, — 8y%y, 1 + Oy, == Soy;
(i) x, = 8,(2—m), xy = —m, xy = —8; 1S (mod | S} and

m oz 1+ 3HS (moddi S));
(iv) a, == x = O(mod 2);
(V) 81828, = 1, wyx, = mixy;
(vi) x{s) == &;, where | S: ()] = 2andi=1,2,3;
(vit) | G| divides | C(#)]3x, (%, + 8 )(m + 1); and
(vii) If {k, ¢} ={1,2} and 8, = | then h = m?> — x, > 0, &, == —1,
Xy = m¥(m? — h — 1)/h, and xy = (m* — h)(m® — h — 1)/h.

Proof.  (i)~(vii) are found in Brauer [47, Section VIII]. It is straightforward
to deduce (viii) from (1)~(v) [1, Proposition 3.2.8].
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Lemna 11.4. Let G be a finite group having no normal subgroup of index 2
whose 2-Sylow subgroups are wreathed Z, \ 7Z,. Let 1,7 be any Klein
group in G.

(1) By2, G) consists of characters of degrees 1, em?, m(m + 1),
m? - m - 1 em(m? -F m A1), e(m - 1)(m* +m 1), and e(m — 1) = m - 1),
where m is an odd integer, € ~. -1 and em - 0.

(n)  There are integers a, ¢, I such that

[ G @chemd(m — 1)(m — 1) -+ m - 1),
'C(Y)] = ache(m + Dym(m — 1),
O, w)p)l == che(m - 1).

Proof. 'This is all stated in Brauer [46] except for the fact that m is odd,
which is clear since |G : C(f), 1s odd.

12. Review

We now continue the proof of Theorem 1.1. We will not assume that
Theorem 7.8 holds. The following situations were arrived at in [50].

A minimal counterexample to Theorem 1.1 is simple (Theorem 7.7).
A 2-Sylow subgroup S of G is either (I) quasidihedral or wreathed, or (11)
elementary abelian of order § (see the first part of the proof of Theorem 7.8).
It follows that all involutions are conjugate to an involution t € G4 . Here
Cy)* = PSL(2, q) for some power ¢ of an odd prime ¢, (Sections 5-7). We
may assume that £ € Z(S) and S,4 is a 2-Sylow subgroup of G, .

The only places where Theorem 7.8 was used were in Lemmas 8.4,
9.2(ii), and 9.6. Consequently, we have the following cases.

Case I. Here Cy(t) = SL(2, g).

Case II. Here Cyt) = PSL(2,q) and | C(@#)*: Cyt)*| is odd. Also,
q >> 3 by Theorem 5.1, ¢ - 3 (mod 4), and | S5 | = 2 (see Cases 2 and 4
at the end of the proof of Theorem 8.9).

13. Case I Becun

In Sections 13-15 we will consider Case 1 of Section 12. In this section
n = | | and the structure of G,; will be determined.
Let 0 be the permutation character of degree n — 1. Then 6 € By(2, G)
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[22, Lemma 3.6]. Clearly 8(1) is odd and 8(#) > 1. We will use the notation of
Lemmas 11.3 and 11.4.

In the quasidihedral case, ¢ = -£mand 8 = yx,; or y, . Once we have shown
in Lemma 13.1 that # — 1 == [(mod 4) it will follow that §; == 1, m == ¢ and
8 =y .

In the wreathed case, n — 1 = em®, m* 4 m - 1 or em(m® - m = 1).

Lemma 13.1. (1) C(t)4 contains PGL(2, q) as a subgroup of odd index f.

(1) S,sis a 2-Sylow subgroup of G, , and is cyclic of order >-4.

(in) If S is quasidihedral then n — 1 = q - 1(mod 4), while if S is
wreathed then n — 1 = g == 3(mod 4).

(i) ¢ >3

Proof. Recall that 7 — 1 == g(mod 4) (Lemma 4.1). Let £ and F be as in
Lemma 9.2. Then E is generalized quaternion and F is cyclic (Lemma 9.2(it)).
We distinguish the two possibilities (a) | F'| == 2 and (b) | F | > 4.

(a) There is an involution v €. — E. By Lemma 9.3(iii), C(t)4 contains
PGL(2, ¢). Thus, 59 is a semidirect product of a dihedral group of order
(¢* — 1), and a cyclic group. Since S4 a S/¢t> it follows that S is quasi-
dihedral and (i) holds.

Suppose that ¢ -= 1(mod 4). Then 24 is regular, so that £,(S,,) = Jt:.
Also, S 4 is cyclic of order == 2| §% | > 4, and (it) holds.

Now suppose that ¢ == 3(mod 4). Then .S,4is a Klein group. By Lemma 4.5,
Q is abelian of order ¢ In the notation of Lemma 11.3; ¢* = x, or x, . If
# = x5, then by Lemma 11.3(iii) we have ¢° = x, = Lg(mod | S |). Since

S 2 21C(1)., this is impossible.

Thus, —1 == ¢% = x -~ 8;(mod 4), so that

S - 1 and 1G] COPPE — g — 1),

Since9 1 ¢* — ¢ + Ithereisaprime/ | ¢ — ¢ + 1,/ 5 3. Then¢® + | |16
implies that /| |C(f)]. An element x e C(¢) of order / fixes at least three
points of 4. Also, /'t ¢® — ¢, so that x fixes a point of £2 — 4. Since Q is
abelian and Cy(f) N C(x) = SL(2, ¢') for somc ¢', this is impossible by
Lemma 4.4.

(b) Here .S is wreathed since EF is a central product. We first show that (i)
holds. As Cy(t)? = PSL(2, q), Z(S/F) has order 2 and Z(S) <. EF. Thus,
Z(S) = Z(EF) = F. As §/Z(S) is dihedral, it follows that Z(S) = F and
S/F is dihedral. By Lemma 9.4, § > EF. Then (Cy(1)S)? = PGL(2, q),
PGI(2, g), or PSL(2, g){a*> where a? is an involutory field automorphism.
However, $4 is dihedral, so that (i) holds.
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Clearly, S is cyclic and hence S, is abelian. Suppose that S, is cyclic.
Since EF — {t; contains an involution v, we must have g = 3(mod 4).
Thus, (1)-(111) hold in this situation.

Now suppose that .S, 1s noncyclic. By Lemma 4.5, Q) is abelian of order ¢3.
We have seen that I =+ Z(S) and S/F is dihedral. Now from the structure of .S
it follows that each involution v in S is in EF, and since F is cyclic, C(f)
contains a single class of involutions other than t. As ¢ € 5, , ¢ == 1{mod 4).

In the notation of Lemma 11.4, ¢* = em® or m®> -+ m -~ 1. If ¢* — | =
m? -+ mtheng® — | | |C(t)l. Letting ¢/ be a primesuch that3 » /| g® -+ ¢+ I,
as in (a) we again obtain a contradiction. Thus, ¢ == em. Suppose that ¢ = .
Then | G'1 divides 1C(#)]P¢*(q + 1)(¢® — 1), which again leads to a contra-
diction. Consequently, ¢ =« —~m and ~ C(t, 20| == ch(g -+ 1).

On the other hand, o? e Cyt)ly, so that 'C(t) N C(v), divides
2(g — 1),Cyp(x)i f- Thus, i(g + 1) | Cu(e)i f- Here Cy(e) is faithful and
semiregular on A(2) — {&, B}, so that |Cy(2)] | (g -- 1). Since (g -+ 1) is
odd we must have (¢ +— 1) | f. However, ¢ = ¢/ for some ¢'. This contra-
diction completes the proof of (i)—(i).

Finally, if ¢ = 3, then ' .S'{ = 32, C(t) is solvable by the Feit—-Thompson
Theorem, and, hence, G &~ PSU(3, 3) (Fong [48]), which is not the casc.

Levima 1320 (1) 1€ Z(G,,)-
(i G:C@H) =nn— Djq-+ Dgand | G, : C(t), = (n— 1)iq.

Proof. 1f t ¢ Z(G,p) then xf = &7 for some x € G of odd prime order r.
Suppose that Cy(x) = 1. Applying the Brauer-Wielandt Theorem [41] to
the dihedral group <t, x> acting on Q, we find that | Cy(t)*" = | O !7, contra-
dicting Theorem 6.1.

Thus, 1d(x)] => 2. Since t e N((a)) — C(x), , C(¥),5, 18 odd. In view of
the 2-Sylow subgroups of G, by Lemma 4.4 we must have C(x) == PSL(2, /)
with / == 3(mod 4). If » is an involution in Cy(x) then A(u) N A(x) == ¢, so
thatv = - & [ A(u)] = ¢+ 1.

Let R be an r-Sylow subgroup of G, normalized by .S, . Suppose that
A(R)| > 2. x is conjugate to an element of R, so that as above, C(R) -=
PSL(2, /") with /' =z 3(mod 4). Since S, is cyclic of order >4 we must have
te Wg. Now Cy(R) X Wy contains an elementary abelian subgroup of
order 8, which is not the case.

Thus, Co(R) == 1, so that 7 | | Q7 | == n — 2. It follows that

0=n—(£+1)=:2—~(/+ 1) (modr).

Since Cy(x)t> == PGL(2, /), there is an element y € Cy(x),5 N C(2) of order 7.
Here vy acts on 4 — {w, 8} and 2 — 4, where |4 — {o, 8} = ¢ — 1 =
—2(modr) and |2 — 4| - n—(g+ 1) = 2(modr). From Lemma 4.4 it
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follows that Cy(y)4¥ = PSU(3, ¢'), where ¢ = ¢'* for some integer 7. Then
0=n— (g% +1)=2— (¢ + l)(mod r), so that 43 = ¢’ =1 (modr).
However, ¢ = —1 (mod r), a contradiction.

This proves (i), and (ii) follows readily.

Lemma 13.3. (1) Cy(t)apSas 25 cyclic of order =2(q — 1).
(ii)  O(Cy(t)yg) s fixed-point-free on Q.
(1) If ¢ — 1is not a power of 2 then Q is nilpotent.

Proof. (1) Cy{t)ag» Sus» and (Cy(t)S,s)? are all cyclic.

(i) If 1 5 x e Cy(t)ys then & is inverted in Cy(f) and centralizes S, .
By Lemma 4.3, |4(x)] = 2.
(i11) This follows from (ii) and a theorem of Thompson [37].

Lemma 13.4. (1) Each prime divisor of f divides n.

(W) (frglg—1) =1

Proof. (i) Let p be a prime dividing f but not #. Suppose that
G, > X 2 Y = C(t)eSsWO, where G, /X is a p-group. G, = Xa;,
where we may assume that [A(q); = 3. If a9 G,, g€ G, we claim that
a = a“(mod X). Let a9 € G for ke Q. Then a** = a“, d € G5 (Lemma 4.3).
Here a~'a® € X, so that ¢ = a** = @ = a(mod X).

Since (|G : G, |, ]| G,/X|) == 1, it follows that the image of a under the
transfer map G — G,/ X is nontrivial, contradicting the simplicity of G.

(i1) Clearly ¢ ] n — 1. By Lemma 13.3 (11), (¢ — 1)y l 1O* |. Thus, (ii)
follows from (1).

Lemma 13.5. Lett' = (off) -+ be an tnvolution, and suppose that t’ inzveris b
elements of O(W). Then n — 1 == q(b(q® — 1) -+ 1).

Proof. If u 5=t is an involution in C(¢) then %< Is a regular involution.
There are (¢ — 1)/2 such involutions in C(¢)? interchanging « and §, all of
which are conjugate in C(¢)4. Suppose that w4 = t'4. Then wt’' ¢ W, and ¢
inverts ut’. Thus, there are }(¢ — 1)b* involutions («, B) -**, where b* is the
number of elements of W inverted by #'. However, Cy(¢') contains a 2-Sylow
subgroup of IV. Thus, b* = 2b.

There are (n — 1)(g — 1)b involutions moving «. Since this number is
also n(n — 1)/(¢ + 1)g — (n — 1)/q, the lemma follows.

LemmA 13.6. Let A 5 1 be a normal subgroup of G, contained in Q. If
(g, 1 A1) = 1then G,z 15 fixed-point-free on A.

481/20/3-4
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Proof. Let xe G7 have prime order » and suppose that C(x) # I.
By Lemma 13.3, » = 2 and « ¢ Cy(t),s . Assume first that |4 N A(x)] = 3.
Then Cy(t) ™ C(x) is SL(2, ¢') with ¢ | g. Since C 4(x) 4 1 this is impossible
by Lemma 4.4.

Thus, |4 N A(x), = 2. Since G5 - Cy(t),555G.s, d€4 — {a, B}, we
have 8 ¢y with 1 24 ¢ Cy(t), | = veGgand [¢| = ;v =r. Then
r{q — 1,50 y€ Wby Lemma 13.4.

Now consider Cy(x). By Lemmas 4.4 and 13.2, Cy(x) must be PSL(2,/)
for some /. There is an involution ¢ € Cy(x) interchanging « and 8. Then ©
normalizes Cy(?),; by Lemma 13.2. Consequently, v inverts ¢ and we have
cv = (¢y)" = ¢ " where ¥" ¢ W. However, ¢ -4 | has odd order, so this is
mmpossible.

Lemma 137, n —=¢* - 1.

Proof. By Lemma 13.3 there is a g,-Sylow subgroup Qy .= Cy(f) of
O normalized by Cy(1),,5,,. Since Cy(t).4S,e 1s fixed-point-free on
No (Co(t)/Co(t) and has order _=2(g — 1), we find that [Qy. = q or
1Oy g

First suppose that S is quasidihedral. We have 6 = x;, ¢ - m and
3, 1 by the remark preceding Lemma 13.1. Then A = ¢* — &, 0
and & ¢¥¢*— A — Djh. M 1Qy - g we can write 4 - gk’ and
ay o oqg® gt~ DjE << ¢ whereas x; = ¢® by Lemma 13.5. Since
ap < ¢" we must have 1 Q. - ¢% Then ¢ g% - h - |, sothath - q-- |
and vy 0 ¢ Thus, x; = ¢

Suppose now that .S is wreathed. By Lemmas 13.3 and 13.1 (in1), (iv),
O Q, » A with 4 an abelian ¢, -group. Let A 7 [. By Lemma 13.6, G, is
fixed-point-free on . 1If ,Q, - ¢* then by Lemma 13.5 we have

b W Gyl < A= Q0 s (g — 1) = Dig b,

Thus, O, must be Cy(t), Q is abelian, and the argument in [4, Satz 3.15] or
[22, Lemma 1.5] shows that G is not simple.
Consequently, Q == O, and # — 1 is a power of a prime. By Lemma 1.4,

n--1 - endorm®- m + 1. Also, by Lemma 13.2 n(n — 1)/(g + l)g
IG:C@) = a*m*m®> -+~ m 2 1). Thus, n—1 =em® 1f ¢-= ml the
lemma is immediate.

Assume that ¢ <[ m|. Then C(@t), - m]| > g. We may assume that

o -t in Lemma 11.4. Let L be a g,-Sylow subgroup of G,; normalized by z.
By Lemma 13.4, L7 W. Since qqy | 1O © - g(b(g*> — 1) + 1), g 1 b. Thus,
1. C(“t,v-), so that

TC(<1) z’>)‘ao = ‘;C(\/t’ 'Z)))mB ‘i’hj =i W |r1(~. =gt ‘;C(l',)‘,,“-
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By Lemma 11.4, ¢ = |C(@) : C({, )|, = (a(m + Dym), > g, which is
absurd. This proves the lemma.

We now list the properties of G to be used in Section [5.

Tueorem 13.8. Set g = g,f and 4 == A(W).

(1) G == O¥(G) and G does not satisfy the conclusions of Theorem 1.1.
(i) If X C G fixes =3 points then C(X)?X satisfies the conclusions of
Theorem 1.1.
(i) n = ¢4 land |4} =q—+ 1.
(ivy N(W)2 is a subgroup of PI'L(2,q) containing PGL(2,q) as a
subgroup of odd index f | e.
(V)  Wis a nontrivial weakly closed subgroup of G, .
(vi) W is the porntwise stabilizer of A.
(vit) W is semiregular on Q — A.
(viil) W centralizes each involution (of) ---.
(ix) [Wi|g+ L.
(x) G,p has a weakly closed subgroup D = W suchthat | D : W | =gqg—1,
G5/ D is cyclic of order f, and D4 is contained in PGL(2, q).
(1) Co(W) <10 and D is fixed-point-free on Q]Co(W).
(xit) D is cyclic.
(xiil) No element of W -— (t) is inverted in G.
(xiv) G > D.

Proof.  (1)~(1v) are already known. (v) follows from Lemmas 13.2 and 4.3.
(vi) is clear.

(vii) Ifwe W#and A(w) O 4 then, by Lemma 4.4, |A(w) = ¢* + | =n,
which is absurd.

(viit) 'This follows from Lemma 13.5 as I < (Z)S.

(ix) By (vi) and (viu), if t' = (af) --- is an involution then I is
semiregular on A(t'), so that | W | ¢ 4 1.

(x) D = Cy(t)upS,sW meets all the requirements.

(x1) Since (| Co(1),sSs 1, | W) = 2 or 4, D is fixed-point-free on
No(Co)/Co(t). Here 2(g—1)||D| and |Q:Co(W)j = g% Thus,
Co(W) <1 0.

(xi)) We have just scen that D acts irreducibly on Q/C,(W). Since
Co(W),5 <= Z(D)and | Cy(W),s | = ¢ — 1, this representation can be viewed
as a 2-dimensional GF(g)-representation. Since each Sylow subgroup of D is
cyclic, it suffices to show that D is abelian. By Lemma 13.3(ii), we may
assume that | W | > 2.
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Suppose that D is nonabelian. Then, D is an absolutely irreducible
subgroup of GL(2, ¢), so that Cy(W),; —= Z(GL(2, ¢)). Then D/C (W), is
isomorphic to a subgroup of PGL(2, ¢), has order dividing ¢ i- 1, and has
cyclic Sylow groups. Thus D/Cy(W),, is cyclic or is dihedral of order twice
an odd number.

If D{Cy(W),;1s cyclic, then so is D and (xii) holds. Suppose that D, C (W),
is dihedral. Then Cy(W)W/[Cy(W ), is its cyclic subgroup of index 2, so that
Co(W),sW is cyclic. If ¢ == 1(mod 4) cach element of C(W)S, ;I — C(WHYIF
must invert . By (viii) we must have ¢~ 3(mod 4). Then ' W S, - 4
inplies that iD/Cy(W),4ls == 4, which is not the case.

(xuii) By (xii) no element of H™ — ¢ is inverted In G5, and (xiii)
follows from TL.emma 4.3.

(xtv) If G,y - D then G 41s cyclic. By {22, Theorem [.1 or Section 5,
Case D], it follows that G 1s PSU(3, ¢), which we have assumed is not the

case.
14. REMARKS ON SUzZUKI'S PapEr [34]

We digress from the even degree case of Theorem 1.1 in order to discuss
the important part of the odd degree case due to Suzuki [34]. Therc is an
error in [34, p. 577, lines 3-4], as can be seen from our Lemma [1.1 or by
considering PI'U(3, ¢). This error is due to [34, Lemma 38(iii)].

In Section 15 we will consider both the cven and odd degrec cases of
Theorem 1.1. As a result we will prove [34, Lemma 60].

First, it is necessary to note that (i)—(xiv) of Theorem [3.8 again hold.
(i) and (xiv) are assumed in the proof of [34, Lemma 60]. (ii) is found in
[34, Section 8] (iii) 1s Lemma 59, while (iv)-(xiu1) follow from [34, Lemma 31,
Theorem 5, Section 14, and Lemma 49].

15. Cast I COMPLETED

The following result will complete Case I and correct the crror in Suzuki
{34] mentioned in Section 14.

Turorem 15.1. If G is a finite group 2-transitive on a set §2 such that, for
x e, G, has a normal subgroup Q regular on 2 — o, then there are no 4 C
and W < G such that conditions (1)-(xiv) of Theorem 13.8 hold.

Proof.  We shall “transfer out” part of G4, thereby contradicting the
fact that 0?'(G) = G. Cleatly,

(*) VG (g Dgdg = i WS
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Recall that O is a g,-group. Let p be a prime divisor of f. Precisely as in
Lemma 13.4, p | ¢* 4- 1, and in particular ¢, 1 f. Let ¢ = /2. If X < G, we
can define Cy(X) as in Lemma 4.2. Then Lemma 4.3 still holds.

We will frequently use the fact that a central extension of PSU(3, q) by
a group of order a prime =% 2, 3 splits (see the proof of [34, Lemma 58]).

Lenima 152, (1) If X s a subgroup of G, fixing =3 points of 4 and such
that X N\ W = |, then N(X) = C(X).

(i) Either p | ¢* — g + 1 or p | | W | and a p-Sylow subgroup of G,y is
noncyclic.

(i) If either p 5= 3 or p =3 and a p-Sylow subgroup P, of G.g is
noncyclic, then P,y has a subgroup P, of order p such that A(Py)| = (3 4 1
and Cy(P) 0 = PSU(3, /).

Proof. (i) This follows from Lemma 4.3 and N(X)%; - C(X)3,.

(i) Ifptq®—g+1then3-£p|q+ Iand, by (), Co(W)G,p contains
a p-Sylow subgroup P of G. If G, has a cyclic p-Sylow subgroup then P is
metacvclic and nonabelian (Lemma 11.1). A result of Huppert [SI] then
contradicts the fact that G = 0% (G).

(iii) A p-Sylow subgroup X of G, acts on Q/Co(W). If p | ¢* — ¢ + |
but p # 3, then ptg®— 1, and hence Cy(X) << Co(W). If pig+ 1
and .Y 1s noncyclic then X has a subgroup P, of order p with Co(Py) < Co(W).
Thus, in either case we can find Py < G4 of order p with Cy(Py) X Co(I).
Moreover, Cy(Py) N Co(W) # 1 since p+ g — 1. Thus, C(W) N C(P,) is
SL(2,0).

If g is odd then (iii) follows from Lemma 4.4. Suppose ¢ is even. Then
3|1 Cy(Py)| implies that Cy(P,)4%0) is not a Suzuki group. Since Co(W) ==
Z(Q) = £,(0Q) and Q has exponent 4 [34, p. 568], C((P,)4*¢ is a unitary or a
Frobenius group. In the latter case, Co(P,) is a Frobenius complement of
exponent 4. Then 8 = |Cu(Py)| = (Co(Py) N Co(W)| == 2 implies that
C\(Py)APo) is unitary.

Lemma 153, plg+ 1.

Proof.  Otherwise, 3 # p | ¢* — ¢ + |. Choose P; as in Lemma 15.2. Let
P, ; be a p-Sylow subgroup of G4 containing P, . Let R be a p-Sylow subgroup
of Cy(FP,) normalized by P, . Both P,; and R are cyclic and RP,; is a
metacyclic group. By (%) and Lemma 11.1, RP,; is a normal subgroup of
index p in a p-Sylow subgroup P of G.

Since | <0 R < RP,; <] P with each quotient cyclic, and since p = 5,
Lemma 11.2 applies to P. It follows that N(P) has no normal subgroup of
index p.
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As in Lemma 15.2(1i1), Co(P,g) s Co(W), and since Cy(P,;) =< Co(Py)
the group Cy(P,)4F® is unitary. We can find a 3-element a € Cy(P,,)
normalizing the subgroup R, == £,(R) of Cy(P,;) and acting nontrivially
on R . Then ae Cy(P)) N N(R,) implics that @ normalizes R. Clearly a is
fixed-point-free on K. Write R . <r. and r® =, where clearly
7 == <l(mod p). By Lemma 15.2(1), N(£2)  C(P,), and so R, ~ P, .
Also, P < N(P,).

Thus, R, is characteristic in KP,;, and so central in 2 while P is transitive
on the subgroups #R; of R,P, of order p. Consequently, N(R,P,) =
PN(Py) = PC(P,). Then N(RPy)/C(R,P,) is a Frobenius group of order
divisible by 3p, so that ¢ normalizes a p-Sylow group P7 of N(RP,). Let
P70 =2 P owith ge N(RP,) — P(N(R)) N C(P)). We may assume that
geNR) N C(Py), and then R R, a? e N(R)) 0 Cy(PY) and a? is fixed-
point-free on R. Since ¢’ normalizes I we may assume that P* == P and
g = 1. Let i be a p-complement of N(P) containing a.

We now claim that N(P) <0 N(&,P,). If P, > P,, then RP, :
D(P) =2 RP 5, sothat R\ P, = Q(P(P)) <=: N(P). Assume now that P, = P,
and R P, is not normal in N(P). Then RP, is not pormal in N(P), and as
above P, :i. PM. Since R x P -~ RP,; has index p in P it follows that P has
class 2. Then £(P) - = R P(s> with s ¢ P — RP, and {z, conjugate to I .
Here Q,(P)is nonabelian of order p* and R, is its center. Set H - H{Cy(Q2,(P))
and let @ be the image of a in this group. /1 acts on £,(P)/R, and may be
regarded as a subgroup of GL(2, p). If ke H7 normalizes R, P, it centralizes
some conjugate of P, and hence centralizes R,P,/R, . Thus, H contains no
nontrivial element of Z(GL(2, p)). In particular, H contains no Klein group.
Since H is isomorphic to a subgroup of PGL(2, p) it is cyclic or dihedral
(Dickson [9, pp. 285-286]). In particular, <a» =1 H. Also, a is nontrivial on
R, ,so @+ 1. Thus, H normalizes the centralizer R, P,/R, of @ in Q(P)/E, .
Then I centralizes R Py /R, . Since R, . PV, H centralizes P, PW/PM,
Consequently, N(P) has a normal subgroup of index p, which is a contradic-
tion. Therefore R P, = N(P), as claimed.

Now, N(P) << N(R,P,)) < PN(P,) - PC(P,) and N(P) N C(P,) normalizes
P C(P) == RP,; . Thus, RP,; <1 N(P).

Note that H = PC(P,) implies that we may assume that

H < C(P) N N(Ry).

Then H normalizes Cy()) N N(R;) and hence also R. Since H acts on
RP/R and centralizes RP,/R, [H,RP,] < R and RP, = RL with
L = RP,, n C(H). Since a s fixed-point-free on R, L is cyclicand RN L == 1.
Also, L = P

Clearly, P/®(RP,;) has order p3. Since N(P) contains no normal subgroup
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of index p, it follows that LO(RP,5) <X PYD(RP,p). Since P/P(RP,;) is not
metacyclic(Huppert[51]) it is extraspecial of exponent p with center LO(RP, ).
We have R == {r), r* =+ and i =% -=l(mod p). Since a centralizes
LO(RP ;)|P(RP,;), there is an clement z€ P — RP,,; such that 27 == 2b
with b € §(RP,;) and §j = 1(mod p).
Write R, = {r> and Py, = 2,(L) == {¥>. Then [v, 2] € R,". Let [y, 2] =
r,* == 1. Apply a to both sides and obtain

= 3] = [ = [, 3 =

Thus 7 = j(mod p), so that 12 == 1(mod p), whercas 7 == ~ [(mod p). This
is a contradiction.

LeEMma 154, p =3,

Proof. Otherwise, 3 # p | | W| (Lemma 15.2(ii)). Let P, and P, be as
in Lemma 15.2(i11). Let R be a p-Sylow subgroup of Cy(IW) normalized by
P,y . By (%), P == RP ; is a p-Sylow subgroup of G. Set R, == £,(R) and
Py = (PN W). Then R,P; = Q,(Z(P)), and, from the structure of P, it
follows that £,(P) = R, P, P, .

We first show that N(P) contains a normal subgroup of index p. Since
‘R Cr(Py) = p, |P: Cp(Py)| = p? or p. Suppose first that [P : Cp(Py)] = p~
For each hie N(P), P/ < 2,(P) but P N Z(P) = 1, so that P = Py
for some beP. Thus, N(P) <X PN(P,) = PC(P,). Set P, -=<{x, and
consider the image of & under the transfer of N(P) into P/R(P N W), If
g€ N(P) <. PC(P,) then for each integer m we have

(x™)? = x™ (mod R(P n W)).

Thus, N(P) has a normal subgroup of index p in this case. Next suppose that
P :Cy(P,)| = p. Here P,y < C(Py). Clearly P,; contains p subgroups of
order p other than P, , all of which are central in P, . Since N(P P,z
centralizes PPy/P;, none of these p subgroups are conjugate in G,; and,
hence, in G (Lemma 4.3). Thus, the subgroups of R;P,P, of order p not in
R,P, lie in p classes in G, with cach class containing p subgroups and P
transitive on each class. Once again it follows that N(P) <. PC(P,), and N(P)
has a normal subgroup of index p.

Since p = Sand 1 <1 PN W <9 Py <1 P with each quotient cyclic, as in
Lemma [5.3 we can apply Lemma 11.2 to our situation. Then G/O(G) ~
N(P)JOY(N(P)), whereas G = O%(G).

Notation. Let P,z be a 3-Sylow subgroup of G, , R a 3-Sylow subgroup of
Cy(W) normalized by P, and P a 3-Sylow subgroup of G containing
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RP,, . From (x) it follows that | P : RP,, | == 3, and, hence, RP,; - P. Set
Ry = Q(R) < Cy(W) N C(Pyg) = CoPup).

LEmMmA [5.5. 3 [ P

Proof. Suppose that 31| W| and set Py = §,(P,). Then RP, -
2(RP,;) <t P.Since R 5. N(Py), Ry <. Z(P), and some element of P — RP,,
centralizes Py . Thus, C(Py) <5 N{W) and hence Cy(Ly} -= PSU(3, /) (scc
the proof of Lemma 15.2(iii)). Since 3+ Cp(Py)|, (/--1); =3 and
PR = (g + 1)y = (£ + 1)(/2— £+ 1); = 9. Moreover, / is not a cube,
sothat Pz = P, . Thus| P! = 3% Also,/ # 2as| W || /2 1.

We claim that C(P,) = PSU(3,/). For, as C(£,) docs not contain a
3-Sylow subgroup of G (Lemma 11.1), a 3-Sylow subgroup of C({P) is
abclian. By transfer, Py 5. Cy(£y).

We next show that R <] P. We have R P, <1 P and Cy(P,) = PSU(3, /).
From the structure of the group Cy(P,) x Py, it follows that there is a
3-Sylow subgroup of C(P,) having the form {a> X R, :# P,; moreover,
a can be chosen to normalize the subgroup

L = (CW) 0 C(P) 0 CR))W N C(Py)).

Here L is an abelian subgroup of order (7 - 1) - }(¢ + 1). Then a e N(C(L)).
Since £ # 2, W C(Py) =+ 1 and C(L) < C(JV), so that

CL) = (CL) N CWWP,  and  CLY g+ 1) g+ 1) -3

Moreover, C(L) is not nilpotent and C(L) has a normal abelian subgroup of
index 3, say L, . Then a € N(L,), so that a normalizes the unique 3-Sylow
subgroup R of Ly . As a € N(P,) we have R <] RP(ay. Then N(RP,) induces
a 3'-group of automorphisms on RP/R, . Consequently R - P, as claimed.

As R <1 P, P has class 2. The Hall-Wielandt Theorem (Lemma 11.2)
implies that O3(N(P)) == N(P).

Now Cy(P,)) = PSU(3, ¢) implies that a 3-Sylow subgroup of C(P) is
clementary abelian of order 9. As above, P contains an elementary abelian
subgroup of order 27. As P has class 2 and is not of exponent p, | Q,(P)] = 27
and @(P) = R, . It follows that N(P) acts on £,(P)/P(P) as a subgroup of
GL(2, 3) of order prime to 3. As OP(N(P)) == N(P), there must be an clement
i e N(P) such that % inverts £2,(P)/®(P). Then /i inverts R;Py/R; . But P is
transitive on the subgroups #R; of order p contained in R, P,. Thus,
he PN(P,) = PC(P,), a contradiction.

We can now complete the proof of Theorem 15.1. Set P, - &(P n ).
Then, R,P, = 2,(Z(RP.5)) <1 P, so P normalizes C(R,P;). Since f is now a
power of 3, C(RP)) = (C(R) N Cy(W)WP,;. Then P normalizes
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C(RP)) O C(Oy(C(RPy)). If ¢ 4 8, then ¢ + 1 is not a power of 3, and
(g -+ 1}/3(/ + 1) 1s not divisible by 3 (Lemma 11.1). Then no element of
Py — PN W centralizes Oy(C(RP,)), and R(P N W) 1s the unique
3-Sylow subgroup of C(R,P,) N C(Ox(C(RP)))).

We claim that R(P n W) <1 P. If this is false, then we must have ¢ = 8.
Suppose that P, is cyclic. Then RP, is metacyclic of class 2, and
RPN W) <1 P since RPN W) = {xec RP,; | x* & (RP,;)™}. Next let P,,
be noncyelic and choose P, as in Lemma 15.2. Here, C(P,) = PSU(3, 2),
and we can use the proof of [34, Lemma 60.1] to obtain a contradiction.
Thus, RGP N W) < P.

Note that P, and R, are not conjugate as R; is inverted whercas P, is not.
Also, P, is not normal in P. Thus,

N(RPy) == P(N(R,) N N(P,))
= P(N(R) N C(P) > RPN W).

Suppose that R.P; is weakly closed in P. Then by the Hall-Wielandt
Theorem, N(R,P,) has no normal subgroup of index 3. As N(R,P,)/R(P " W)
has metacyclic 3-Sylow subgroups, P/R(P N W) is abelian (Huppert [51]).
We have N(R,P,) = (P, C(RP,), u» with u an involution in N(R;) N Cy(P,5)
inverting R, . Also, C(R\P}) = (C(R,) N Cy(P))WP,; . Thus,

(VR P, Pl = (C(Ry) 0 C(P)

and N(R,P,) has a normal subgroup of index 3, which is a contradiction.

Thercfore, RP; is not weakly closed in P. Then, some conjugate P,
of P, lies in P but not in R, P, .

Note that no conjugate P,¥ of P, can licin Cp(P;) = RP,zbutnotin R P, .
For otherwise, (P*)* << R4 and (RP,;)“ is nonabelian and metacyclic.
Therefore there is an element r € R such that P{” is in P, but not in PN W.
Then P, , P{"are conjugate in G but not in G, , which contradicts Lemma 4.3,

We thus have [Py, P;*] & 1. Also A(P)) N A(P}*) == ¢, since an element
of (P{*)* conjugates P, to a subgroup of R, P, having no fixed points on 4.

Moreover, C(P,) N C(P,*) contains no conjugate P, of P, , since otherwise
Py Py, Py = Py < {P;, P/*> would be conjugate to a subgroup of Cp(P,),
and this is impossible. The proof of Theorem 15.1 will be complete once we
prove the following fact.

LemMAa 15.6. If xe G, [Py, Py"] % | and A(P)) \A(Py") = ¢, then
there is a comjugate of Py lving in C(P)) N C(Py*).

Proof. Let P, Py, P,, P, denote distinct conjugates of P, . Since RP,,
contains no conjugate of P, outside of RP,, if [P, P} =1, then
Py = C(Py)P, . Moreover, P, X P, then contains precisely one conjugate
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#P,, Py of P;. Consequently, C{P,) contains precisely 2 - lg(g — 1)
conjugates -~ P, of P, .

Next, note that there are ¢%(¢® — ¢ - 1) conjugates of P, in G, ¢* of which
lie in G, . 'The number of conjugates P, -f C(P,) with A(P)) N A(P,) = ¢ is
thus (g2 g~ D)~ 12 glg- )~ 4 (@~ 1) —qlg— 12— 2)

The lemma asserts that whenever [P, P)] = | there is a P, in
C(P) N C(P,). We first show that there is at most one such Py. For let
Py, Py C(P) N C(Py). Then we have scen that (P, P 0 Cy(P)P, .
Here, <P, , P, 1s not a 3-group, as otherwise <P, , P, , P,> would be conju-
so that P, . Py, Py> . C(P,), which is not
the case. Since 3t ¢, (Py, Py 420 or {P,, P, 42 contains a Klein group
(Dickson [9, pp. 285-286]). Now <P, , P! is even and A(P)) N A(P,) - ¢,

so that ¢ must be odd. Since C(P)?*Y and C(LP,)**¥ have no quaternion

gate to a subgroup of RP,

w3y

e

subgroups, <P, , P, contains a Klein group <u, v Then (P, P,
Cylu)W, N C(z) (by the first paragraph), whereas the latter group has a
normal abelian 3-Sylow subgroup. This is a contradiction.

We now fix P, and count n two wavs the ordered pairs (P, , P,) with
Py, Py, P,y distinet and conjugate, [Py, Py] = |, A(Py) 0 A(P,) - ¢, and
[P, Py} [P, Py] = 1. On the one hand, we have just seen that each P,
determines at most one Py, so that there are at most glg — )(¢* — ¢ — 2)
such pairs. On the other hand, each Py determines 2 - Lg(g - 1) - 2 groups
P, in C(P,) not in C(P)). Since there are 2 - 1q(g -- 1) Py’s, the number of
pairs (P., Ps) is (¢* - ¢)(¢* - ¢ - 2). It follows that each P, does in fact
determine a P, , and this proves the lemma.

As already noted, the preceding lemma provides the contradiction needed
to complete the proof of Theorem 15.1.

Remark. 'The proof of Theorem [5.1 could bave been completed without
LLemma [5.6 by using an involved fusion argument. The preceding lemma
shows that an entirely different kind of structure is available than we have
needed before. It is clear that this lemma will hold in other situations: it
could have been deduced carlier in Scetion 15, and was implicitly available,
though scemingly not needed, in the work of Suzuki [34, Sections 21--24,
and 35], O’Nan [24], and Kantor, O’Nan and Seitz [22] (following their
Lemma D.5).

We note that Lemma 15.6 represents the bulk of the construction of a
projective plane of order ¢* on which G acts. The same is true of the analogues
of this lemma available in the above references.

16. Case 11

We now return to the second situation described in Section 12. In this
case we wish to prove:
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Tueorem 16.1. G is of Ree type.

What we will in fact show is that n = ¢*+ |, W ~ [t < Z(G,),
C(t) = {> x L with L a subgroup of PI'L(2, g) containing PSL(2, g) as a
subgroup of odd index f, |G| == (¢ + 1)¢®(g — 1) f, and each prime
divisor of f divides ¢*> — ¢ + 1. As in Walter’s work [53], it is hard to eliminate
field automorphisms of order a power of a prime p | ¢* — ¢ 4 1, and we
have not been able to do so even in our permutation group situation. The
difliculty is due to the fact that a p-Sylow subgroup of a group of Ree type is
not known to be cyclic. However, we remark that Walter’s argument 1s made
simpler once one knows ;| G| and the existence of a character of degree
#n — 1 = ¢3in the principal 2-block [22, Lemma 3.6].

We first show that ¢t € Z(G,,). If this is not so let xe G, ~ (1> with
xt = a1 As in the proof of Lemma 13.2(i), Co(x) + 1. Then Cy(x)* is
as in Lemma 4.4. However, | Cy(x),; | 1s odd and a 2-Sylow subgroup of C(x)
has order 4 and can be assumed to be centralized by ¢. This is impossible for
the group N((x»)4t.

Let t" = («B) - be an involution. Since <t is the 2-Sylow subgroup of
G, , by Lemma 4.3 ¥ centralizes W. As in Lemma 13.5 it follows that
n=¢*+ 1. Then | G = Yg* + Ng*(g — 1) W f, where

f=1C0": Gty .

As in Section 13, Cyt),;W is semiregular on 2 — 4. Since W < C(t'),
| W g+ 1. Also, Wis cyclic since | W |, = 2. If f — 1, then G4 is cyclic
and the theorem follows from [22, Section 5, Case D]. We may thus assume
thatf = 1.

As in Section 15, each prime p | f divides ¢* — g + | or | W|. Suppose
that p | | W |. If a p-Sylow subgroup of G, is cyclic, then G is not simple by
a result of Huppert [51]. Thus, a p-Sylow subgroup of G,; is noncyclic and
G,z contains a subgroup P, of order p such that Cy(P )47 is of Ree type.
As Wis cyclic, 1t follows that Cy(P,) = <{t>. This contradicts the supposition
thatp | | W |.

Thus, each prime divisor of f divides ¢*> — ¢ ++ 1. Since W < C(#') it
follows that W44 < Cy(# )4, If (¢, u)> is a 2-Sylow subgroup of Cy(t) then
a1t centralizes W41 which has even order. This is only possible if
| Wae) 't — 2. Thus W = ().

Clearly, C(t) — <t % Ct)0(Guy) with Cy()O(Ge) ~ (CDOG )
At this point it seems to be necessary to invoke Walter’s work [53] in order
to conclude that f = 1.
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17. Historicar NOTE

The proof of Theorem 1.1 clearly depends on the classification of
Zassenhaus groups [10, 20, 33, and 43]. When n —= 2] is odd, results of
Suzuki [34], Bender [45] and Shult [30] are required, and these depend in
turn upon the Feit-"Thompson Theorem [11].

When #n is even we have used results of Bender [4], Hering [17], Suzuki [35],
O’Nan [24] and Kantor, O’Nan, and Seitz [22], together with the end of
Walter [53]. Of these, only Hering’s result and that of [22] involve the
Gorenstein—Walter Theorem [49]. However, we have used only the even
degree case of [22], and then the Gorenstein-Walter Theorem is not needed.
Since we have shown how to prove Theorem 1.1 without using the results of
Alperin, Brauer and Gorenstein [1, 2], it scems fitting to point out that the
Gorenstein~Walter Theorem can also be dispensed with in the proof.

Thus, we will prove the special case of Hering’s result [17] which was
used in Lemma 4.[(v). The following situation will be considered.

(H) G 1s a group 2-transitive on a fimite sct £ with n = | 2| even, some
mvolution ¢ fixes two points a, 5, but no involution fixes more than two

points.

Using very clementary arguments, Hering [17] observed that (H) implies the
following: (a) a 2-Sylow subgroup S of G is dihedral or quasidihedral;
(b) if S is quasidihedral then G is 3-transitive; and (¢) G, has at most two
orbits on £ — {«, 8}.

Lentvia V7.1, If (H) holds and G, has a normal subgroup Q regular on
£ - «, then G has a normal subgroup acting on 2 as PSL(2, q) in its usual
2-transitive representation.

Proof. Clearly, t inverts O, Q is abelian, and ¢ is the unique involution in
G,s. If # =0 (mod 4), then ¢ 1s an odd permutation, so G has a normal
subgroup of index 2 all of whose involutions are regular. In this case Bender's
result [4] completes the proof.

We now assume that n = 2 (mod 4). Morcover we may assume that no
proper normal subgroup of G satisfies (/) in its action on £. Then all
involutions in G are conjugate and we can choose S so that S, is a 2-Sylow
subgroup of G 5.

If y € 2 — {«, B}, then ¢ centralizes the involution u in G, , and u inter-
changes « and 8. There are thus (# — 2)/2 involutions («f8) ---. Consequently,
K = {xe G| a% — x71} contains precisely (n — 2)/2 elements.

Next note that Q is a p-group. For otherwise we can write Q = 4 x B
with 4 % 1 and B == 1 Hall subgroups of Q. Then 84 and 8% are nontrivial
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imprimitivity classes of G, having different sizes, so that G, leaves 4 —
and B2 — B invariant, which contradicts (c).
We now distinguish between the cases S, cvclic or noncyclic.

(i) Suppose that S,; is cyclic. Here G5 has a normal 2-complement and
K N O(Gyp)l = (n— 2), . By alemma of Bender [26, Lemma 1.2] and the
minimality of G, G,, = (K. It suffices to show that G, is scmiregular on
2 — {, 8.

Write | Q ; = p¢. Here p¢ = [(mod 4). If p* is not the square of a Mersenne
prime then by [5] there is a prime » dividing p* — 1 but not dividing p* -— |
for | <7 <e. Then r|| K| and hence Q is elementary abelian. By an
elementary result of Passman [52, Proposition 4.2], G, can be regarded as a
group of certain mappings of the form x -— ax¥ + b on GF(p"), where a 7 0
and b are in GF(p?) while ¢ € aut GF(p"). Since G, =K, G ,=KG). If
u == (xf)--is an involution normalizing S, then C(u),; <<t >GE N (H>O(G, ).
However, G} is semiregular on 2 — {«, 8} whereas O(C(u),;) fixes cach of
the fixed points of u. Thus, C(u),; = 7t> and G,; = K is cyclic and semi-
regular on £ — {a, B}, as required.

If p¢ == p* with p a Mersenne prime, then Q is elementary abelian, and
G,z can be regarded as a subgroup of GL(2, p) containing the central involution
of GL(2, p). Since S,p is cyclic, O(G,;) ts abelian (Dickson [9, pp. 285-286]),
and since we may assume that (p -+ 1), > 4 the image of G,zin PGL(2, p) is
cvelie. Thus, G, is abelian and metacyelic, and as before this implies that
K = G is cevelic. Using Lemma 4.3 we find that G,4 is semiregular on
O~ {a, B

(ity Now suppose that S,, 18 noncyclic. Then S,; 1s generalized
quaternion and S is quasidihedral. G has no subgroup of index 2. The
permutation character ¢ of odd degree n -~ 1 is in By(2, G) [22, Lemma 3.6].

In the notation of Lemma 11.3, 6 ~ y;, 7 = 1,2, 0or 3, and §, -~ 0(s) == —1
since s ¢ G, for any y. Clearly, 8(f) -~ 1.

Since Xy = —m = —Il(mod 4), & % y,. Suppose that § - x,. Then
U = x4ty = ém = —m, whereas m —: 1(mod 4). Thus, 8 == y,. Since
8y - -1, either &; or 8, is | and Lemma 11.3(viii) applies. Then n — | =
(m? — I(m? — h — 1)/h. However, n — | == [ Q| is a prime power by (b).

Thus, h:==m>—h or m* —h— 1. Since m is odd we must have
ho=m*—h—1, so that m*>—h =n —1 = I(mod }! S|). However,
m*—h =x or x,. If 8§ — —1 then 1 == x == —2 4 m(mod }! S}),
whereasm == 141} §|(mod §' §). If 8, —= —1then | = x, == —m(mod }| S}).
These contradictions prove the lemma.
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