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In Part I of this paper (Hering, Kantor, and Seitz [SO]), 2-transitive groups 

of even degree were classified when the stabilizer of a point has a normal 

subgroup regular on the remaining points. The identification with groups of 

known type was made by finding a 2-Sylow subgroup and then applying the 

deep classification theorems of Alperin, Brauer and Gorenstein [l, 21 and 

Walter [39]. 

The purpose of the present continuation of [50] is to point out that the 

proof of the main result of [50] can be completed without using [I] and [2]. 

1Ioreover, Walter’s classification theorem [39] and the Gorenstein-Walter 

Theorem [49] are not required in [50], although the end of Walter [53] seems 

to be needed. 

Our arguments are natural continuations of those of [50, Sections 4, 8, 

and 91. Much use is also made of character-theoretic information contained 

in Brauer [46] and [47]. Our goal is to show that a minimal counteresamplc 

has a cyclic two points stabilizer G,,, and then apply a result of Kantor, 

O’Nan and Seitz [22, Theorem 1.1 or Section 5, Case D]. Re first show that 

G,, is metacyclic, and then “transfer out field automorphisms” in order to 

prove that G,, is cyclic. 

This transfer argument yielded an unexpected dividend: in the course of 

examining a similar argument in Suzuki [34, Section 211, an error was found. 

This has been corrected, and, in fact, the entire transfer argument is stated 

for odd and even degree groups simultaneously. 
‘Phc numbering of both the sections and the references will be continued 

from [50]. 
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11. PRELIMINARY LEMMAS 

LEMMA 11. I. Let p be an odd prime and x a positive integer such that 

x = -l(modp). Then (xv’ + 1),/(.x + I),, z-1 p. 

Proof. Set x = -1 + yp. Then 

= yp ( p - ( ; ) yp + . . . - y,-lp+ 

Thus, (sp + 1)/(x + 1) = p(modp”). 

LEMMA 11.2. Let P be a p-sylow subgroup of a group G and Av ~= No(P). 

Suppose that P contains no section isomorphic to Z, I. ZD. Then G/O”(G) = 

IV/O~(fV). 

Proof. This version of the Hall-Wielandt Theorem follows from the 

Proof of Theorem 14.4.1 in [14]. 

LEMMA 11.3. Let G be a $nite group having no normal subgroup of index 2. 

Suppose that a 2-Sylow subgroup S of G is quasidihedral. Then the principal 

2-block B&2, G) of G consists of characters x0 -=- lo , x1 , xn , x3 , x4 , and 

characters ~“1 of the same degree x such that, af xi = xl(l), there are s&ns 

S, , S, , 6, and an integer m -1 l(mod 4) such that the folIowing hokl: 

(v) S,S2S, = 1, x1x2 = m%,; 

(vi) x,(s) .m= Si , where 1 S : (sj -- 2 and i = I, 2, 3; 

(vii) 1 G I divides (C(t)/3x1(x1 + S,)(m + I); and 

(viii) If (k, a> L { 1, 2) and 6,; = I then h = rn’ - xE > 0, 6, =-= -- I, 

s,, ~--, mz(m2 - h - 1)/h, and x3 = (m” - h)(me - h -- 1)/h. 

Proof. (i)-(vii) are found in Brauer [47, Section VIII]. It is straightforward 

to deduce (viii) from (i)-(v) [l, Proposition 3.2.81. 
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LERlRIA I I .4. Let G be a finite group having no normal subgroup qf index 2 

,whose 2-Sylow suhg~‘oups are weathed Z1, 1 Zz . Let I, P’ be any Klein 

group in G. 

Proof. ‘I‘his is all stated in Braucr [46] except for the fact that m is odd, 

which is clear since IG : C(t): is odd. 

I 2. Kl?vlE\\ 

We now continue the proof of Theorem I. I. We will not assume that 

Theorem 7.8 holds. The following situations were arrived at in [50]. 

A minimal counterexample to Theorem 1 .I is simple (Theorem 7.7). 

A 2-Sylow subgroup S of G is either (I) quasidihedral or wreathed, or (11) 

elementary abelian of order 8 (see the first part of the proof of Theorem 7.8). 

It follows that all involutions are conjugate to an involution t E G,, . Here 

C,(t)A = PSL(2, Q) for some power 4 of an odd prime q,, (Sections 5-7). We 

may assume that t E Z(S) and S,,s is a 2-Sylow subgroup of G,, 

The only places where Theorem 7.8 was used were in Lemmas 8.4, 

9.2(ii), and 9.6. Consequently, we have the following cases. 

Case I. Here C,,(t) = X(2, n). 

Case II. Here C’,,(t) 1-m PSL(2, y) and / C(t)4 : C,,(t)” ~ is odd. Also, 

q .,-* 3 by Theorem 5.1, q 3 (mod 4), and , S,, ~ = 2 (see Cases 2 and 4 

at the end of the proof of Theorem 8.9). 

13. CASE 1 hXJN 

In Sections 13-15 we will consider Case I of Section 12. In this section 

n =- ) Q 1 and the structure of G,, will be determined. 

Let 0 be the permutation character of degree n - 1. Then 6’ t B,(2, G) 
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[22, Lemma 3.61. Clearly O( 1) is odd and B(t) > 1. We will use the notation of 

Lemmas 1 I .3 and 11.4. 

In the quasidihedral case, y  = &rn and 0 = x1 or xz . Once we have shown 

in Lemma 13. I that n - 1 :- I(mod 4) it will follow that 6, = 1, vz - q and 

0~ x1. 
In the wreathed case, n - 1 = EWZ~, rn’ -i m -I~ I or <m(m2 A- m -~ 1). 

LEMMA 13.1. (i) C(t)A contains PGL(2, q) as a subgroup c$odd indezc.f. 

(ii) A’,, is a 2-Sylow subgroup qf G,, , and is cyclic of order --4. 

(iii) If S is quasidihedral then n -~ 1 q mu l(mod 4), while 17 ,S is 

wreathed then n - I = q 1 3(mod 4). 

(iv) q ,:> 3. 

Proof. Recall that n - 1 -1 q(mod 4) (Lemma 4.1). Let E and I*’ be as in 

Lemma 9.2. Then E is generalized quaternion andF is cyclic (Lemma 9.2(ii)). 

\Yc distinguish the two possibilities (a) 1 F 1 2 and (b) / F ~ 2: 4. 

(a) There is an involution zi E S - E. Ry Lemma 9.3(iii), C(t)d contains 

PGL(2, q). Thus, SJ is a semidirect product of a dihedral group of order 

(Q’ - I):! and a cyclic group. Since S” a S//t: it follows that S is quasi- 

dihedral and (i) holds. 

Suppose that q l(mod 4). ‘Then z’~ IS regular, so that Q,(S,,j) m= it ,. 

Also, S,, is cyclic of order ;J 21 S$ 1 ;> 4, and (ii) holds. 

Kow suppose that q -~ 3(mod 4). Then S,, is a Klein group. By Lemma 4.5, 

,O is abclian of order y3. In the notation of Lemma 11.3, 4” a\11 or So . I f  

H x2 , then by Lemma 11.3(iii) we h ‘3 ~ ave q - .x2 _ _‘q(mod i S i). Since 

S! ’ 2:C,,(t) t this is impossible. 

Thus, - [ q.3 :: .T, S,(mod 4), so that 

6, -~ --I and ~ G i 1 ‘C(t)i3q3(q3 - l)(y - I). 

Since 9 7 q” - q + I there is a prime / 1 Q” - q + 1, / f  3. Then q3 + 1 1 I G : 

implies that / 1 iC(t)i. A n element x E C(t) of order / fixes at least three 

points of 13. Also, /f  q3 - q, so that x fixes a point of Q - d. Since Q is 

abclian and C,,(t) n C(X) = SL(2, q’) for some q’, this is impossible b! 

Lemma 4.4. 

(b) Here S is wreathed since JYF is a central product. iV:‘e first show that (i) 

holds. As C’,,(t)” =: PSL(2, q), %(SjF) has order 2 and Z(S) -‘I EF. Thus, 

Z(S) -c Z(EF) 7 F. As S/Z(S) is dihedral, it follows that Z(S) z F and 

S/F is dihedral. By Lemma 9.4, S > Z?F. Then (C,(t)S)’ ‘-; PGL(2, q), 
PGL(2, y), or PSL(2, q)(a”> where aA is an involutory field automorphism. 

However, S” is dihedral, so that (i) holds. 
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Clearly, St, is cyclic and hence S,, is abelian. Suppose that S,, is cyclic. 

Since EF - (ti contains an involution z’, WC must have q e 3(mod 4). 

Thus, (i)-(iii) hold in this situation. 

Xow suppose that S,, is noncyclic. By Lemma 4.5, Q is abelian of order q”. 

JVe have seen thatF Z(S) and SjF is dihedral. Now from the structure of S 

it follows that each involution z’ in S is in ITF, and since F is cyclic, C(t) 

contains a single class of involutions other than I. As z’ r S,,, , q 1 (mod 4). 

In the notation of Lemma 11.4, q3 ~- ~nlO or WP ~/ m 1. If  4:’ - 1 

r$ !- m then q3 - 1 1 lC(t)‘. Letting Z’ be a prime such that 3 ; / j q2 -t- y  +~ I, 

as in (a) we again obtain a contradiction. Thus, q .~= cm. Suppose that q :=: IIT. 

Then / G i divides !C(t)/3q”(q -1~ I)(q” ~~~ I), which again leads to a contra- 

diction. Consequently, q -nr and C’( t, 7,‘ ji --- ch(y ~. 1). 
On the other hand, 7:J E C,,(t)& , so that ‘Y’(t) n C(V), divides 

2(q - l),(,‘,,(c)if. Thus, i(y J- I) / ,C,(c)if. Here C’,(z) is faithful and 

semiregular on d(v) - {N, p>, so that iC,(z:)i i (y - - I). Since i(q ;- I) is 

odd we must have i(q I I) 1 f.  However, q ~ $1 for some q’. This contra- 

diction completes the proof of (i)-(iii). 

Finally, if q :=- 3, then : S , _~~ 32, C(f) is solvable by the Feit-Thompson 

Theorem, and, hence, G a PSC(3, 3) (Fong [48]), which is not the case. 

LEarnI. 13.2. (i) 1 E Z(G,,). 

(ii) G : C(t)1 ::= n(fl ~ l)/(q mi 1)q and G, : C(f), (II -~ l),‘q. 

Z’yoof. I f  t $ Z(G,,) then s’ :: x.-l for some x E GLB of odd prime order I’. 

Suppose that C,(x) =- 1. Applying the Brauer--\Vielandt ‘Theorem [41] to 

the dihedral group (t, x,, acting on Q, we find that I C,(t),2’ m: j Q )r, contra- 

dicting Theorem 6. I. 

Thus, id(x)1 ;z 2. Since t E :%‘(<sj) - C(s), C’(X),~ IS odd. In view of 

the 2-Sylow subgroups of G, by Lemma 4.4 we must have C,,(x) :: PSL(2, /) 

with ( ~~ 3(mod 4). I f  u is an involution in C,,(x) then d(u) n n(x) m= 4, so 

that r .I / ‘d(u)/ = q ‘m I. 
Let K be an r-Sylow subgroup of G,, normalized by .Y,>,, . Suppose that 

,/l(R)! ;, 2. s is conjugate to an element of R, so that as above, C,(R) == 
PSL(2, /‘) with L’ km I 3(mod 4). Since S,,< is cyclic of order I;-4 we must have 

t E WR Now C,(R) x PI/R contains an elementary abelian subgroup of 

order 8, which is not the case 

Thus, C,(R) =- 1, so that Y j 1 Q* / =- n -. 2. It follows that 

0 E n - (G-L 1) =: 2 - (f + 1) (mod Y). 

Since C,,(x)~t> == PGL(2, /), th . ere is an element y  E C’,(S),,~ f~ C(t) of order Y. 

Here y  acts on d - (01, /3} and 9 - 3, where / il -- (a, /3>1 = (I - 1 r-m 

--(mod v) and / Q - rl IE - (q + 1) mm 2(mod Y). From Lemma 4.4 it 
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follows that C,(y) d(u) = PSU(3, a’), where y  = q’$ for some integer i. Then 

0 = n - (q’3 + 1) = 2 - (qr3 + I)(mod Y), so that q3 -= q’3i z 1 (mod Y). 

However, q = - 1 (mod r), a contradiction. 

This proves (i), and (ii) follows readily. 

LEMMA 13.3. (i) Co(t)asS,, is cyclic of order 32(q - 1). 

(ii) O(C,,(t)& is jixed-point-free on Q. 

(iii) If q - 1 is not a power of 2 then Q is nilpotent. 

Pyoof. (9 C,,(t>ao , & , and (C,,(t)&)d are all cyclic. 

(ii) I f  1 # .r: E Co(t)au then x is inverted in Co(t) and centralizes S’,, . 

By Lemma 4.3, lO( = 2. 

(iii) This follows from (ii) and a theorem of Thompson [37]. 

LEMMA 13.4. (i) Each prime divisor off divides n. 

(ii) (f, d4 - 1)) =. 1. 

Proof. (i) Let p be a prime dividing f  but not II. Suppose that 

G, > *Y + 1- = CO(t),aSEaWQ, where GJX is a p-group. G, = S(a,,, 

where we may assume that lO( 3 3. If  a” E G, , g E G, we claim that 

a =A ag(mod X). Let uQh E G,, for h E Q. l’hen ugh = a”, d E GIR (Lemma 4.3). 

Here a-la” E S, so that a” E aglL = a’$ := a(mod X). 

Since (i G : G, 1, 1 G,/S ,) == I, it follows that the image of a under the 

transfer map G -+ G,,‘X is nontrivial, contradicting the simplicity of G. 

(ii) Clearly q ] n - 1. By Lemma 13.3 (ii), (q - l)z, 1 1 Q+ 1. Thus, (ii) 

follows from (i). 

LEMMA 13.5. Let t’ = (a/3) ... be an involution, und suppose that t’ ineeufs b 

elements of O(W). Then n - 1 = q(b(q2 -- 1) + 1). 

Proof. I f  u i: t is an involution in C(t) then z& is a regular involution. 

‘There are (q - 1)/2 such involutions in C(t)” interchanging N and ,/3, all of 

which are conjugate in C(t)A. Suppose that u3 = 2’“. Then ut’ E W, and t’ 
inverts ut’. Thus, there are $(q - l)b* involutions (ol, ,6’) ..., where 6” is the 

number of elements of W inverted by t’. However, C,(t’) contains a 2-Sylow 

subgroup of W. Thus, b* = 2b. 

There are (n - l)(q - l)b involutions moving 01. Since this number is 

also n(n - I)!(q + I)q - (n - 1)/q, the lemma follows. 

LEMMA 13.6. Let A + 1 be a normal subgroup of G, contained in Q. Ij- 

(q, 1 z-1 !) = 1 then G,, is$xed-point-free on ,4. 
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Proof. Let s E G$ have prime order r and suppose that C,(x) f  1. 

By Lemma 13.3, Y .:- 2 and x $ C,,(t),, Assume first that !d n Am c 3. 

Then C,,(t) n C(s) is ,X(2, 9’) with 9’ ( q. S ince C,d(x) -,I- I this is impossible 

by Lemma 4.4. 

Thus, pl n A(X) 2. Since I,,j C’ (‘(,(t)~J,,G,,, ) 6 t A -~-- \!I, /3), WC 

have .\ CJ with 1 # c E C,(t),,, , I t y  t G,%,,, and ~ c ~ , y  r. Then 

I. / 9 - I, so 1’ E IV b!; Lemma 13.4. 

Xow consider C,(x). By Lemmas 4.4 and 13.2, C,(x) must be t’SL(2, /) 

for some /. ‘rhcre is an involution z cl; C,(x) interchanging a: and /3. Then 7’ 

normalizes C,,(t),,j by Lemma 13.2. Consequently, v  inverts c and we have 

fq’ (CJ)’ c ‘y” where 1”’ r II’. EIowww-, c ,i 1 has odd order, so this is 

impossible. 

Prwj’. By Lemma 13.3 there is a 90-Sylow subgroup 9” I C’,(r) 01 

Q normalized by C,,(t),,J,,, . Since C,,(t),,& is fixed-point-free on 

.Vo,,(Cu(t))/c’o(t) and has order ,2(9 ~~- I), we find that 1 Q(, 9 or 

; a, ‘f’. 

First suppose that S is quasidihcdral. \Vc have 0 =- x1 , 9 112 and 

4 I by the remark preceding Lemma 13.1. Then /I -: 9’ x2 0 

and .x1 @(y’? ~~ k ~- 1)//z. I f  , Q,, , 9 wc can write h y/i and 

Xl &’ ($1’ ~~ l);h’ C: (I”, whereas ,x1 -- 9” by Lemma 13.5. Since 1 

“‘1 9’ U\C’ must have Q,, ‘I”. ‘I’hen ‘I ! c/z h I, so that h 4 1 
and .A, y:s. Thus Y1 : ‘/:S. 

Suppose now &at S is wreathed. By I,cmmas 13.3 and 13.1 (iii), (iv), 

C-, Q,, :1 hvith ,-I an abelian q,,‘-group. Let rl j I. By Lemma 13.6, G,) is 

fired-point-fret on .-I. I f  Q,, 9” then by Lemma 13.5 we have 

/I- IIT, G‘& / .: .A (,, ,:;(I, ~ ‘< (D(9’ ~- I) fm- I),‘y’ h. 

Thus, 0, must be (,‘0(1), 0 is abelian, and the argument in [4, Satz 3. 151 OI 

[22, I,cmma II.51 shon~s that G is not simple. 

c‘onscquently, Q m= 0, and n - I is a power of a prime. By Lemma 1 I .4, 

II- I 6~~3 or U? -1 vz t- 1. Also, by Lemma 13.2 n(n - I)/(9 t- I)9 

IC : C(t) a”nz”(nz” -7 n1 -1 I ). ‘lhs, 12 ~~~ I -z EVZ”. If  y  r/7 ~ the 

lemma is immediate. 
Assume that 9 .:I : ~1 1. Then c‘(t)i,J,, m j _ 9. \\‘c may assmlic that 

7’ t’ in Lemma 1 1.4. Let 1, be a q,,-Sylow subgroup of G,,,, normalized by F. 

By Lemma 13.4, /, ’ IV. Since 99(, / 10 y(b(y2 ~ 1) ?m I), 9,, r 1). Thus, 

I. (‘(s 1, 7% ), so that 

‘c((t, 2’))/“. =~-I !C(<f, U))& ,?” z / 14. lu,, =-- q l :c(t),,,II 
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By Lemma 11.4, q = IC(t) : C((t, ~“>)l~, = (a(m + I)m),” > q, which is 

absurd. This proves the lemma. 

\Vc now list the properties of G to be used in Section 15. 

THEOKE~I 13.8. Set q 2 4”’ and A : A(W). 

(i) G =: O”‘(G) and G does not satisfy the conclusions of Theorem 1. I. 

(ii) I f  A7 C G j,xes 23 points then C(S)“(x) satis$es the conclusiorls of 

7%eorrm 1.1. 

(iii) rl q” it- 1 and 1 A ~ ~- q + I. 

(iv) X(n’)” is a subgroup of P1%(2, y) containing PGL(2, y) as N 

sub<yroup of odd index f  1 e. 

(v) TV is a nontrwial weakly closed subgroup of GnR . 

(vi) TV is tRe point&se stabilizer of A. 

(vii) Wis sevvziregulav on D -- A. 

(\,iii) H7 centralizes each ivwolutiovt ($I) .... 

(ix) i TV i / q + 1. 

(s) GL,cI has a weakly closed subgroup D >- W such that 1 D : W ~ 

Gtiil/lI is cyclic of order f, and DA is contained in PGL(2, q). 

(xi) C,(W) (1 Q and D is jised-point-jvee on CJCo( IV). 

(*ii) D is cyclic. 

(xiii) No element of W -- (t) is inzerted in G. 

(xiv) G,,] I>, II. 

q- 1, 

Proof. (i)-(iv) are already known. (v) follows from Lemmas 13.2 and 4.3. 

(vi) is clear. 

(vii) I f  zu E M’c and A(w) I) A then, by Lemma 4.4, 1 A(w); = q” + I = n, 

which is absurd. 

(riii) This follows from Lemma 13.5 as F :< (Z)S. 

(ix) By (vii) and (viii), if t’ = (a/3) ..’ is an involution then Ti’ is 

semiregular on A(t’), so that 1 W / / q + 1. 

(x) II = C,(t),,S,,lV meets all the requirements. 

(xi) Since (1 C,,(t)&‘tio 1, / W ;) :m= 2 or 4, D is fixed-point-free on 

~\‘o(C,(t))/C,(t). Here 2(q - 1) 1 / D / and /Q : Cog -= q2. Thus, 

C,(W) -1 Q. 

(xii) We have just seen that D acts irreducibly on Q/C,(W). Since 

C,( IV),, :;, Z(D) and / C,( W’),, 1 = q - 1, this representation can be viewed 

as a 2-dimensional GF(q)-representation. Since each Sylow subgroup of D is 

cyclic, it suffices to show that D is abelian. By Lemma 13.3(ii), we may 

assume that I W 1 > 2. 
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Suppose that D is nonabelian. Th en, D is an absolutely irreducible 

subgroup of GL(2, q), so that C,(W),, -= Z(GL(2, q)). Then DjC,,( WI/),, is 

isomorphic to a subgroup of PG1,(2, y), h as order dividing q I- I, and has 

cyclic Sylow groups. Thus D C,(W),,,j . is cychc or is dihedral of order twice 

an odd number. 

If  f>/C,,( IV),,, is cyclic, then so is D and (xii) holds. Suppose that U;C,,( W),,,, 

is dihedral. Then C,,( W),,W/C’,,( IV),, is its cyclic subgroup of index 2, so that 

C,,(IV)l,lt’ is qclic. I f  q l(mod 4) each element of C,,(TV)S,,jII~ --- CU( W)H’ 

must invert W. By (viii) we must have q 3(mod 4). Then H’ n S,,, ’ 4 

implies that lf~/C,,(W),,,lz -’ 4, which is not the casr. 

(xiii) By (xii) no element of II- - t, is inverted in G,,, , and (xiii) 

follows from 1,cmma 4.3. 

(xiv) If  G,, D then G,, is cyclic. By [22, ‘Theorem 1.1 or Section 5, 

C’asc I)], it follows that G is PSrl(3, y), which we have assumed is not the 

case, 

14. I<EMARKS ON SUZLKI’5 PAI’ER [34] 

\Vc digress from the even degree case of Theorem I.1 in order to discuss 

the important part of the odd degree CdSe due to Suzuki [34]. There is an 

error in [34, p. 577, lines 3-41, as can be seen from our Lemma Il. 1 or hy 

considering PrO’(3, 4). This error is due to [34, Lemma 38(iii)]. 

In Section 15 we will consider both the even and odd degree cases of 

Theorem 1. I. As a result we will prove [34, Lemma 601. 

First, it is necessary to note that (i)-(xiv) of Theorem 13.8 again hold. 

(i) and (xiv) are assumed in the proof of [34, Lemma 601. (ii) is found in 

[34, Section 81 (iii) is Lemma 59, while (iv)- (xiii) f  0 11 ow from [34, Lemma 3 I. 

Theorem 5. Section 14, and Lemma 491. 

Thr following result will complete C’ase I and correct the error in Suzuki 

[34] mentioned in Section 14. 

TI<I;oKEnI 15. I. Jf G is a finite group 2-tmnsitiw on a set 9 such that, .f;,l 

iy E Q, G, has a normal subgroup Q regular on -0 -- 3, then there aye no A C Q 

rind IV < G such that conditions (i)-(xiv) of Theorem 13.8 hold. 

Proof. \Ve shall “transfer out” part of G,, , thereby contradicting the 

fact that O”‘(G) x- G. Clearly, 

(*) j G 1 2 (4” + l)y”(y - 1)i TT f. 
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Recall that Q is a p,,-group. Let p be a prime divisor off. Precisely as in 

Lemma 13.4, p j q3 + 1, and in particular q,, f f .  Let 4 = 0’. I f  X < Gtiu we 

can define C,(X) as in Lemma 4.2. Then Lemma 4.3 still holds. 

\Ye will frequently use the fact that a central extension of PSU(3, q) by 

a group of order a prime -/;- 2, 3 splits (see the proof of [34, Lemma 581). 

LEMMA 15.2. (i) If A” is a subgroup of GfiB jix& >3 points of A and such 

that S f7 W ~= I, then n’(X) = C(S). 

(ii) Either p 1 q2 - q + 1 OY p j / IV, and a p-Sylou! subgroup qf G,,,j is 

noncyclic. 

(iii) If either p # 3 or p -= 3 and a p-Sylow subgroup PUB of G,, is 

noncyclic, then Pa0 has a subgroup PC, of order p such that ,A(PJ = /” + 1 

and C,,(PO)3(pu) = PSG(3, t). 

Proof. (i) This follows from Lemma 4.3 and S(S)$ C(S)!,, . 

(ii) Ifp 7 q’ - q + 1 then 3 =/p 1 q + 1 and, by (*), C,,( W)G,, contains 

a p-Sylow subgroup P of G. If  Gti, has a cyclic p-Sylow subgroup then P is 

metacyclic and nonabelian (Lemma 1 I. 1). A result of Huppert [51] then 

contradicts the fact that G = O”(G). 

(iii) A p-Sylow subgroup X of G,, acts on Q/C,(W). If  p 1 $ - y  - 1 

but p f  3, then p r q” -- 1, and hence C,(X) -& C,(W). If  p / y  t 1 

and S is noncyclic then X has a subgroup P,, of orderp with C&P,,) .& Co(W). 

Thus, in either case we can find P,, -< G,, of order p with C&P,) 4 Co(W). 

AIoreover, C’,(P,) n C,(I+J / 1 since p { q - I. ‘Thus, C,,(W) n C(P,) is 

X(2, L). 

I f  q is odd then (iii) follows from Lemma 4.4. Suppose q is even. Then 

3 i / C”(P,,)l implies that C,,(PO)4(p~) is not a Suzuki group. Since C,(W) ~~ 

Z(Q) == n,(Q) and Q has exponent 4 [34, p. 5681, C,,(P,,)-“‘o) is a unitary or a 

Frobenius group. In the latter case, C,(P,J is a Frobenius complement of 

exponent 4. Then 8 = lC,(P,,)l :- ,C,(P,,) n C,(lV)I ~; 2 implies that 

G,(P,,) d(Pa) is unitary. 

LEMMA 15.3. p 1 q + I. 

Proof. Otherwise, 3 f  p 1 q” - q -+ I. Choose P, as in Lemma 15.2. Let 

P,,9 be ap-Sylow subgroup of G,, containing PO . Let R be ap-Sylow subgroup 

of C,,(P,,) normalized by PaB . Both P,ls and R arc cyclic and RP,, is a 

metacyclic group. By (*) and Lemma 11.1, RP,, is a normal subgroup of 

index p in a p-Sylow subgroup I’ of G. 
Since 1 4 R 4 RP,, 4 P with each quotient cyclic, and since p ;: 5, 

Lemma 11.2 applies to P. It follows that N(P) has no normal subgroup of 

index p. 
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As in Lemma 15.2(iii), C,(P,,) :I. C,(M), and since C,(P,,) r- C,(P,) 

the group Co(P&.8)d(P~~fi) is unitary. We can find a 3-element u t C,(P,,) 

normalizing the subgroup K, == Qr(R) of C,,(Z’,,) and acting nontrivially 

on R, ‘Then a E C,,(P,,) n S(R,) im pl ies that a normalizes K. Clearly a is 

fixed-point-free on R. lVr:rite K r and P ~~ ~1, \r-IlfX clearly 

i :?I. .~:- 1 (mod p). Bv Lemma 15.2(i), -V(f),,) 

Also;;’ : X(1’,,). 

C(P,,), and so K, + P,, . 

Thus, K, is characteristic in RI’,, , and so central in I’ while P is transitive 

on the subgroups -fiR, of R,Po of order p. Consequently, K(R,P,,) --I 
PN(Pc,) PC(Ip,,). Then N(R,PJjC’(R,P,,) IS a Frobenius group of order 

divisible by. 3~, so that (1 normalizes a p-Sylow group P’ of &7(K,P,). Let 
p--x/ 1’ vvith x t ~\‘(R,P,,) ~~ P(:Y(K,) n C(P,)). We may assume that 

g E :V(R,) r‘l C(P,,), and then K R”, a” t- .\‘(R,) n C,,(P$) and a” is tised- 

point-free on R. Since n” normalizes P WC may assume that P” := I-’ and 

<q I= 1. Let N be a p-complement of N(P) containing a. 

JVe ~iow claim that l\:(P) j\‘(K,P,,). I f  PIti :-. I’,, , then RIP,, 

Q(P) . . w, , so that R,P,, -~= Qi(@(P)) I;, A\‘(P). Assume now that P,,,, -= P,, 

and R,I’,, is not normal in X(P). Then RP,, is not normal in i\:(P), and as 

above P,, P(l). Since R x P,, RI’,, has indcs p in P it follows that P has 

class 2. Then Qi(P) R,P,,(z \ with 4 t: I’ ~~~ RI’,, and xx; conjugate to P,, . 

Hcrc Q,(P)is nonabelian of ordcrp” and K, is its ccntcr. Set ii H/C,(l),(P)) 

and let (I be the image of n in this group. II acts on Q,(P);‘R, and may be 

regarded as a subgroup of GL(2, p). I f  /I G [Is normalizes R,P,, it centralizes 

some conjugate of P,, and hence centralizes R,P,,;R, . Thus, H contains no 

nontrivial element of z(GL(2, p)). In particular, f1 contains no Klein group. 

Since II is isomorphic to a subgroup of PCX(2,p) it is cyclic or dihedral 

(Dickson [9, pp. 28552861). In particular, (i,;, 2 Ii. Also, n is nontrivial on 

R, , so N + 1. Thus, 11 normalizes the centralizer R,PJR, of LI in Qr(P)/R, . 

Then II centralizes R,P,,/R, . Since K, 1 P(l), H centralizes P,,P’l)IP(l) / . 
(:onsequently, I\‘(P) has a normal subgroup of index p, which is a contradic- 

tion. Therefore RIP,, 3 _V(P), as claimed. 

Now, :V(P) ::. X(R,P,,) I‘ PN(P,) = PC(P,,) and N(P) n C(P,,) normalizes 

P n C(P,) :- RPe,j . Thus, RP,,,? ‘-1 IV(P). 
?Jotc that JZ --g PC(P,) implies that WC’ may assume that 

II < C(P,,) n N(H,). 

Then H normalizes C,,(P,,) n lV(R,) and hence also K. Since H acts on 

RI-‘,,,‘R and centralizes RP,,,‘R, [H, RP,,] :< R and RP,, := RL with 
L -= RP,, n C(H). Since a is fixed-point-free on R, L is cyclic and R n L -= I. 
Also, L ;‘r P,, . 

Clearly, P,‘@(RP,U) has order p3. Since n;(P) contains no normal subgroup 
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of index p, it follows that L@(RI’J < P(W(RP,,). Since P/@(RP& is not 

metacyclic(Huppert [51]) it is extraspecial of exponentp with centerL@(RZ’,U). 
i\,Te have R :-= (r,\, ya z yi and i =+ & I(modp). Since a centralizes 

~@W’&WCA th ere is an element x t P - RP,, such that ,z” :: z’b 
with b E @(RP,,) and ;j :: 1 (mod p). 

Write R, == <yl) and PO = Qn,(L) == ( y\. Then [F, Z] E HIP. Let [y, Z] = 
).k 

1 # 1. Apply a to both sides and obtain 

Thus i tiz j(modp), so that ia z l(mod p), whereas i $ I‘m I(modp). ‘I’his 

is a contradiction. 

LEMMA 15.4. p : 3. 

Proof. Otherwise, 3 f  p 1 / R’ i (Lemma 15.2(ii)). Let P,,, and P,, be as 

in Lemma 15,2(iii). Let R be a p-Sylow subgroup of C,,(W) normalized b! 

e,,, . R!; (+), P -= RPeij is a p-Sylow subgroup of G. Set R, = .QI(R) and 

I’, I= B,(P n W). Then RIP, = Q,(Z(P)), and, from the structure of P, it 

follows that Ql(P) = RIP,P,, . 
We first show that N(P) contains a normal subgroup of index p. Since 

R : C,(PJ = p, IP : C,(P,,)l = p’ or p. Suppose first that ;P : C,(P,,)~ ps. 
For each h t g(P), P,,” :< Q,(P) but P,” n Z(P) =m= I, so that I’,,” = Poh 

for some b E P. Thus, IV(P) ~< PN(P,) = PC(P,,). Set P,) == (x, and 

consider the image of N under the transfer of X(P) into P’l<(P n IV). I f  

,g F ,V(P) .: PC(P,,) then for each integer 111 wc have 

(P’)” s P (mod R(P r‘l W)). 

Thus, K(P) has a normal subgroup of index p in this case. Next suppose that 

P : C,,(P,,)~ = p. Here Pns ;< C(P,J. Clearly PaLI contains p subgroups of 

order p other than P, , all of which are central in P,,p. Since lV(P,P,,),, 

centralizes P,P,/P, , none of these p subgroups arc conjugate in G,X, and, 

hence, in G (Lemma 4.3). Thus, the subgroups of R,P,P, of order p not in 

R,P, lie in p classes in G, with each class containing p subgroups and P 

transitive on each class. Once again it follows that -V(P) .’ PC(P,,), and N(P) 

has a normal subgroup of index p. 
S’ L mce p > 5 and 1 -; I-‘n W (1 Paa <ZI P with each quotient cyclic, as in 

Lemma 15.3 we can apply Lemma 11.2 to our situation. Then G/O,‘(G) 2 

:V(P)i;W(;V(P)), whereas G = OZ’(G). 

Yotation. Let Pap bc a 3-Sylow subgroup of Geti , R a 3-Sylow subgroup of 

C,,(W) normalized by PaR , and P a 3-Splow subgroup of G containing 
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RPau . From (c) it follows that 1 P : RP,‘,a i m= 3, and, hence, RI’,, -3 P. Set 

R, == Ql(R) ss C,,(W) n C(P,,) r: C,(P,,). 

LEMMA 15.5. 3 / ; 7V/. 

Proof. Suppose that 3 { 1 W 1 and set PO := .Ql(PaB). Then RIP,, 
R,(RP,,) (: P. Since R 3; :V(P,,), R, c.. Z(P), and some element of P .- RP,,ii 
centralizes P,, Thus, C(P,) -iC :V(W) and hence C,(P,,) --; PSU(3,L) (see 
the proof of Lemma 15.2(iii)). Since 3 Y I C,(P,)!, (/--I- l), = 3 and 

1 R ~ = (q +- I)s := (/ 1 I),(/” - G -) 1)3 ~: 9. Moreover, / is not a cube, 

so that PTrn =2 P,, . Thus 1 P ! m:= 3”. Also, / ,A- 2 as 1 W 1 j t” -1~ I. 

kvc claim that C&P,) em PSC:(3, F). ITor, as C(P,,) dots not contain a 

3-Sylo\v subgroup of G (Lemma Il. I), a 3-Sylow subgroup of C(P,,) is 

abclian. By transfer, P, ‘;; C,,(P,,). 

1ve next show that R .,‘I I’. \\‘e have R,P, il P and C;(P,:,) = PSU(3, /). 
From the structure of the group C,,(P(,) x P,, , it follows that there is a 

3-Sylow subgroup of C(P,,) having the form <a\ x R, ;< P,; moreover, 

a can be chosen to normalize the subgroup 

L =- (C,,(W) n C(P(,) n C’(R,))(Wn C(P,,)). 

Here L is an abelian subgroup of order (i i- 1) i(G + 1). Then a E .V(C(L)). 
Since G + 2, W n C(P,) =/~ 1 and C(L) :; C(W), so that 

C(L) =; (C(L) n C,(W) W)P,, and ,C(L)~ 1(q + 1) k(q + I) 3. 

1Iorcover, C(L) is not nilpotcnt and C(L) 1 las a normal abelian subgroup of 

index 3, say L,, . Then u t X(&J, so that a normalizes the unique 3-Sylow 

subgroup R of L, . As a E lV(P,,) we have R -cl RP,,(a). Then :Y(RP,) inducts 

a 3’-group of automorphisms on RP,,/R, . Consequently R -.j P, as claimed. 
As li ~1 P, P has class 2. The Hall-Wielandt Theorem (Lemma 11.2) 

implies that W(N(P)) - X(P). 

Now C,,(P,)) = pscy3, 6) pl lm ies that a 3-Sylow subgroup of C’,(P,) is 

elementary abelian of order 9. As above, I’ contains an elementary abelian 

subgroup of order 27. As I’ has class 2 and is not of exponent p, / .Iz,(P)i : 27 
and Q(P) -= R, . It follows that A’(P) acts on Q,(P)/@(P) as a subgroup of 

GL(2, 3) of order prime to 3. As @fIV(P)) :: N(P), there must be an clement 
Iz E _V(P) such that h inverts Q,(P)/@(P). Then 11 inverts R,P,/R, . But P is 

transitive on the subgroups +R, of order p contained in RIP,, . Thus, 
h E PX(P,,) = PC(P,,), a contradiction. 

‘Ilie can now complete the proof of Theorem 15.1. Set P, Q,(P n if’). 
Then, RIP, = Ql(Z(R&)) 4 P, so P normalizes C(R,P,). Since f is now a 

power of 3, C(R,P,) = (C(R,) n C,(W))WP,, . Then P normalizes 
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C(R,P,) n C(Q(C(R,P,))). I f  q + 8, then q + 1 is not a power of 3, and 

(9 + 1)/3(/ f  I) is not divisible by 3 (Lemma 11.1). Then no element of 

Pau - P n W’ centralizes O,,(C(R,P,)), and R(P n W) is the unique 

3440~ subgroup of C(R,P,) n C(O,,(C(R,P,))). 

We claim that R(P n Ml) 4 P. I f  this is false, then we must have (1 8. 

Suppvse that E& is cyclic. Then RP,, is metacyclic of class 2, and 

R(P n W) -4 P since R(P n IV) = (x E RP;,, 1 x~’ E (RP,B)(l)). Next let P&, 

be noncyclic and choose P,, as in Lemma 15.2. Here, C,,(P,,) = PSU(3,2), 

and we can use the proof of [34, Lemma 60.11 to obtain a contradiction. 

Thus, R(P n IV) CI P. 
Note that P, and R, are not conjugate as R, is inverted whereas P, is not. 

Also, I’, is not normal in P. Thus, 

X(R,P,) P(Y(R,) n -V(PJ) 

~: P(X(R,) n C(P,)) G R(P n W). 

Suppose that RIP, is weakly closed in P. Then by the Hall-Wielandt 

Theorem, X(R,P,) has no normal subgroup of indes 3. As N(R,PJR(P n W) 

has metacyclic 3-Sylow subgroups, P/R(P n IV) is abelian (Huppert [51]). 

LVe have N(R,P,) = (I’, C(R,P,), u, with ZI an involution in X(R1) n C,,(P,& 
inverting X, . Also, C(R,P,) =: (C(R,) n C,,(P,))WPxo . Thus, 

and LV(R,P,) has a normal subgroup of index 3, which is a contradiction. 

Therefore, RIP, is not weakly closed in P. Then, some conjugate P;’ 

of P, lies in P but not in RIP, . 
Yote that no conjugate P,v of P, can lit in C,(P,) =: RF’,, but not in R,P, . 

For otherwise, (PI”)” -1; R” and (RP,,,J 3 is nonabelian and metacyclic. 

Therefore there is an element Y E R such that Pi’ is in P,, but not in P n TV. 

Then P, , Pir are conjugate in G but not in G,, , which contradicts Lemma 4.3. 

We thus have [PI, PI,“] f  1. Also O(P,) n O(P,,f) = +, since an element 

of (P;~)” conjugates P, to a subgroup of RIP, having no fixed points on d. 

Rlorcover, C(P,) n C(PIT) contains no conjugate P3 of P, , since otherwise 

P,lcLP, , PI”) = P3 v  (P, , P/> would be conjugate to a subgroup of C,(P,), 

and this is impossible. The proof of Theorem 15. I will be complete once we 

prove the following fact. 

LEMRM 15.6. 1f x E G, [P1 , P/l + I anrl d(P,) n d(P,“) = 4, then 

there is a conjugate of I’, lying in C(P,) (\I C(P,,‘). 

Proof. Let P, , P, , Pt3 , P4 denote distinct conjugates of P, . Since RPa, 
contains no conjugate of P, outside of R,P, , if [P, , P3] = 1, then 

I’:? .‘* C,,(P,)P, . Moreover, P, x P3 then contains precisely one conjugate 
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#PI > P, of P, Consequently, C(P,) contains precisely 2 $~(q ~- I) 

conjugates ~i/P, of P, . 
Nat, note that there are q’(y? ~ y  ‘- I) conjugates of P, in G, q’ of which 

lie in G,, . The number of conjugates P, / C(P,) with A(Pl) n O(P,) 7 4 is 
thus&‘--q- l)~IL2.;q(q~I)- A (+I) ~mq(q-I)(+9~ 2). 

The lemma asserts that whenever [P, , P,] ti- I there is a P:S in 

C:(P,) n C(P,). 1V’e first show that there is at most one such P:, For let 

PC, , Pa C’(P,) n c’(P,). Then we have seen that j I’:{ , Pd C’,,(P,)P, . 

Here, : P:, , P4 is not a 3-group, as otherwise ‘I-‘, , I’, , Pd j wvould he conju- 

gate to a subgroup of RP,;, , so that PI \ p:, 3 pa _ C(P,), which is not 

the case. Since 3 r q, iP:, , Pa J(pl) or :P:, , P4 J(“2) contains a Klein group 

(Dickson [9, pp. 285-2861). Now P, , P, is even and A(P,) A A(P,) o’,, 

so that q must be odd. Since C’(I’,)-““l’ and C,‘(P?) 3”‘s) have no quaternion 

sulYpups, ‘P:, , C; contains a Klcin group U, 7% ‘IYicn ‘PI , I-‘, 

C,,(~)ll’,~ n C(7.) (I)> the first paragraph), whereas the latter group has a 

normal abelian 3-Sylou; subgroup. This is a contradiction. 

\Yc nolv fix I’, and count in tn’o \vays the ordered pail-s (Pz , I’:%) with 

I’, , P, , P,, distinct and conjugate, [P, , P,] ,+- I, 3(P,) n d(P,) +, and 

[P, , I’:,] [P2 , P:J ~~ I. On the oni: hand, we have just seen that each P, 
determines at most one P, , so that there are at most q(q I)($ - q ~~ 2) 

such pairs. On the other hand, each I’:, determines 2 Ar/(q I) -- 2 groups 

Pz in C(P:,) not in C(P,). Since there arc 2 iq(q ~~ I) R,‘s, the number of 

pairs (P, , I’:]) is ($ q)($ q 3). It follows that rach I’, does in fact 

determine a P, , and this proves the lemma. 

As already noted, the preceding lernnla pro\ ides ttic contradiction ncedcd 

to complete the proof of Theorem 15, I 

Remark. ‘I’hc proof of Thcorcm 15, I could ha\-c been completed without 

I.emma 15.6 by using an involved fusion argument. The preceding lemma 

shows that an cntixlv different kind of structure is available than we have 

needed before. It is clear that this lemma will hold in other situations: it 

could have been deduced earlier in Section 15, and was implicitly arailablc, 

though seemingly not needed. in the work of Suzuki [34, Sections 21 ~24, 

and 351, O’Nan- [24], and Kantol-, O’Nan and Seitz [22] (following their 

Txmma Ij.5). 
Lye note that l,emma 15.6 represents the bulk of the construction of a 

projective plane of order 9” on xvhich G acts. ‘The same is true of the analogucs 

of this lemma available in the ahovc references. 

\Ve now return to the second situation described in Section 12. In this 
case we wish to prove: 
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THEOREM 16.1. G is of Ree type. 

\Vhat WC will in fact show is that IZ :- q3 + I, W It; :,I Z(G,,,), 

C(t) =: (t) x L with L a subgroup of PrL(2, q) containing PSL(2, q) as a 

subgroup of odd index f, / G i 7: (q3 + l)q3(q - I)f, and each prime 

divisor off divides qz ~ y  + 1. As in Walter’s work [53], it is hard to eliminate 

field automorphisms of order a power of a prime p / q’ - q I- I, and we 

have not been able to do so even in our permutation group situation. The 

difficulty is due to the fact that a p-Sl;low subgroup of a group of Ree type is 

not known to be cyclic. However, we remark that Walter’s argument is made 

simpler once one knows G 1 and the existence of a character of degree 

?l ~ I -7:: y3 in the principal 2-block 122, Lemma 3.61. 

\Ye first show that t E %(G,,). I f  this is not so let s E G,!, .-~ <t; with 

,Y/ = .Y l. As in the proof of Lemma 13.2(i), CU(.r) :T I. Then C,,(X).““) is 

as in Lemma 4.4. However, ~ C,(S),~, is odd and a 2-Sylow subgroup of C(s) 

has order 4 and can be assumed to be centralized by t. This is impossible for 

the group ,\‘(<,Y;)““). 

Let t’ = (a/3) ... be an involution. Since ;t, is the 2-Sylow subgroup of 

G llii , b!- Lemma 4.3 f’ centralizes IV. .%s in Lemma 13.5 it follows that 

n ~~ y” f  1. Then i G mm h(q” + 1)q”(q - 1) II’ .f, where 

f = i C(t)-l : Cn(t)3 1. 

As in Section 13, C,(t),l,jW is semiregular on Q - d. Since IV <Y C(t’), 

1 II’ 1 1 q + 1. Also, W is cyclic since 1 W j2 == 2. If  f  ~ 1, then G,, is cyclic 
and the theorem follows from [22, Section 5, Case U]. We may thus assume 

thatf c/m I. 

As in Section 15, each prime p 1 f  divides yL3 - q -t 1 or ~ IV ~. Suppose 

that p 1 ~ W 1. If  ap-Syl ow subgroup of G,, is cydic, then G is not simple by 

a result of Huppert [51]. Thus, a p-Sylow subgroup of G,, is noncyclic and 

C;,, contains a subgroup I’,, of order p such that CO(PO)A(p~) is of Ree type. 

As Wis cyclic, it follows that C,(P,J : (t?. This contradicts the supposition 

thatp 1 j WI. 

Thus, each prime divisor of f  divides q* - q + I. Since W < C(t’) it 

’ follows that IJV~(~” < C,(t ) 3(t’). I f  (t’, U> is a 2-Sylow subgroup of C,(t) then 

u-I(~‘) centralizes WA(t’), which has even order. This is only possible if 
, WA(Y) ( _ 2. Thus W = (t). 

Clearly, C(t) m= (t) x C,,(t)O(G,,) with C’,(t)O(GJ x (C,,(t)O(G,,B))d. 
At this point it seems to be necessary to invoke \Valter’s work [53] in order 

to conclude thatf = I. 
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17. IhTOHI(‘AL ;t;OTE 

The proof of Theorem 1. I clearly depends on the classification of 

Xassenhaus groups [IO, 20, 33, and 431. \\:hen ?z : Q / is odd, results of 

Suzuki [34], Bender [45] and Shult [30] . dte required, and these depend in 

turn upon the Feit--‘l’hompson Theorem [I 11. 

iYhen II is even wc haw used results of Bender [4], Hering [ 171, Suzuki [35], 

O’Nan [24] and Kantor, O’Kan, and Seitz [22], together with the end of 

IValter [53]. Of these, only Hering’s resuh and that of [22] in\olve the 

Gorenstcin--W&r Theorem [49]. 13 owcvt‘r, we have used only the even 

degree cast of [22], and then the Gorcnstein~L\‘alter ‘rheorem is not needed. 

Since we have sho\vn ho\v to prow Theorem I. 1 without losing the results of 

Alpcrin, I%rauer and Gorenstein [I, 21, it seems fitting to point out that the 

Gorenstein-\;l.alter Theorem can also bc- dispensed with in the proof. 

Thus, \ve will prove the special cast’ of Hering’s result [17] which ~vas 

used in Lemma 4. I(v). ‘l’hc following situation will he considered. 

(11) G is a group 2-transitive on a finite set B with w ~-- V ~ even, some 

involution t fixes two points II, j3, but no involution fixes more than two 

points. 

Using very elementary arguments, Hcl-ing [ 171 observed that (H) implies the 

following: (a) a 2-S\-low subgroup S of G is dihedral or quasidihedral; 

(1~) if 5’ is quasidiheiral then G is 3-transitive; and (c) C,,, has at most two 

orbits on Q ~- [a, pi. 

LEM~IA 17.1. !f (H) holds and G, has a normal &group Q regular on 

Q a, then G has a normal suhgwup acting 011 SL, 0s PSL(2, q) in its usual 

2-tyansitize representation. 

Proof. Clearly, t inverts $I, 0 is abelian, and t is the unique involution in 

G&, . I f  ?I -_ 0 (mod 4), then t is an odd permutation, so G has a normal 

subgroup of index 2 all of whose involutions are regular. In this case Bender’s 

result [4] completes the proof. 

IVe now assume that ?z 2 (mod 4). AI oreover RX may assume that no 

proper normal subgroup of G satisfies (H) in its action on Q. Then all 

involutions in G are conjugate and we can choose S so that S,, is a 2-@low 

subgroup of G,, 

IfytQp (01, PI, then t centralizes the involution u in (;,.,,, , and u inter- 

changes 01 and /3. There are thus (7~ ~~ 2)12 involutions (c$) .“. C’onsequently, 

K z {x E G,, j .v” -- 5’j contains precisely (n - 2)/2 elements. 

5ext note that L, is a p-group. I:or otherwise we can write 0 : A x U 

with .+I + 1 and B + 1 Hall subgroups of Q. Then 8” and /Y’ are nontrivial 
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imprimitivity classes of G, having different sizes, so that GzB leaves /?” - /3 

and p8 - /3 invariant, which contradicts (c). 

We now distinguish between the cases S,,, cyclic or noncyclic. 

(i) Suppose that A’,, is cyclic. Here G,, has a normal 2-complement and 

K n O(G,,)j : (II - 2),, . By a lemma of Bender [26, Lemma I.21 and the 

minimality of G, GfiB m= (K’. It suffices to show that GaB is scmiregular on 

52 - (z, p:. 
\I;ritc j 0 : =- pp. Herep? z I(mod 4). Ifp’ is not the square of a Merscnne 

prime then by [5] there is a prime Y dividing p’ ~- 1 but not dividing p’ -- 1 

for 1 -. i < e. Then Y / 1 K 1 and hence 0 is elementary abelian. IIy an 

elementary result of Passman [52, Proposition 4.21, G, can bc regarded as a 

group of certain mappings of the form x -+ ax” + b on GF(p’), where 1~ f  0 

and b are in GF(py) while y  t aut GF(p’). Since G,, :m K>, G,,j = KG:;). I f  

ZL == ($7) “.is an involution normalizing Sti,j then C(U)~,~ .< Lxt,\G$’ n (t)O(G,,). 

However, GLi) is semiregular on Q - {a, p> whereas O(C(u),J fixes each of 

the fixed points of u. Thus, C(U),,, -7 /t: and G,, K is cyclic and scmi- 

regular on Q --~ {oc, /3J, as required. 

If  p” = py with p a Mersenne prime, then Q is elementary ahelian, and 

G,,, c;Ln be regarded as a subgroup of GL(2, p) containing the central involution 

of GL(2, p). Since L S,>, is cyclic, O(G,,) is abelian (Dickson [9, pp. 285-2861) 

and since we may assume that (p -t- l)8 > 4 the image of G,, in PGL(2, p) is 

cyclic. ‘I’hus, G,, is abelian and metacyclic, and as before this impiies that 

K :- G,, is cyclic. Using Lemma 4.3 we find that G,,,j is scmiregular on 

i2 --- (a, pj. 

(ii) Kow suppose that S,?,< is noncyclic. Then kS,,li is generalized 

quatcrnion and S is quasidihedral. G has no subgroup of index 2. The 

permutation character 0 of odd degree n -- 1 is in R,,(2, G) [22, Lemma 3.61. 

In the notation of Lemma 1 1.3, 0 x, , ; - I, 2, or 3, and 8, H(s) ::- ~ 1 

since s I$ G, for an!* y. Clearly, e(i) 1. 

Since .z‘, ~1: -m :- ~ I(mod 4) 8 ,‘- ,v~. Suppose that H x1. Then 

1 .. xl(t) --= S,m -~ -m, whereas U/ m-m l(mod 4). Thus, 0 x.. Since 

8, -~ 1, either 6, or 6, is I and Lemma 11.3(viii) applies. Then n -- 1 =m 

(m2 .- h)(m2 - h - 1)/h. However, II ~ 1 -: : Q 1 is a prime power by, (1~). 

Thus, h : m2 ~- h or m2 - lz - I. Since VL is odd WC must have 
]f :-: 112’) .- ]l - 1, so that 1112 -.. h -= II -- 1 i l(mod 5’ S I). However, 
,I .-- Jl z xl or xz . I f  6, ~~~ ~- 1 then 1 ,x1 e --2 -I- m(mod ,Ai S i), 

whcreasnL ~~~ 1 t- 11 S i(mod 1 S i). If& -: -1 then 1 = .rz --m(mod ii S;). 
These contradictions prove the lemma. 
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