
Journal of Algebra 300 (2006) 256–288

www.elsevier.com/locate/jalgebra

Fast constructive recognition
of black box orthogonal groups ✩

Peter A. Brooksbank a,∗, William M. Kantor b

a Department of Mathematics, Bucknell University, Lewisburg, PA 17837, USA
b Department of Mathematics, University of Oregon, Eugene, OR 97403, USA

Received 12 July 2005

Available online 22 March 2006

Communicated by Derek Holt

Dedicated to Charles Leedham-Green on the occasion of his 65th birthday

Abstract

We present an algorithm that constructively recognises when a given black box group is a nontrivial
homomorphic image of the orthogonal group Ωε(d, q) for known ε, d and q. The algorithm runs in
polynomial time assuming oracles for handling SL(2, q) subgroups and discrete logarithms in F

∗
q .

© 2006 Elsevier Inc. All rights reserved.

1. Introduction

For more than ten years a “Matrix Group Project” has been underway, whose goal is to
produce algorithms to determine the structure of the group G = 〈S〉 generated by a set S
of invertible matrices over a finite field (cf. [L-G,KS3]). Ultimately this reduces to prob-
lems involving the composition factors of G: determine them and provide algorithms for
computing effectively within them. In order to handle quotient groups, this question has
been generalised to the setting of “black box” groups, in which we only have the ability to
calculate such things as products of elements of G = 〈S〉 within suitable time constraints.

✩ This research was supported in part by NSF Grant DMS 0242983.
* Corresponding author.

E-mail addresses: pbrooksb@bucknell.edu (P.A. Brooksbank), kantor@math.uoregon.edu (W.M. Kantor).
0021-8693/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2006.02.024

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 257
The present paper is one of a series [CFL,KS1,BK,Br2] that deal with algorithmic ques-
tions concerning simple black box groups. While the emphasis of all of these papers has
been on proving theoretical bounds on the timing and reliability of the algorithms they
contain, work is also underway to provide practically efficient implementations that can be
incorporated into the computer algebra systems MAGMA and GAP.

The algorithms presented in [KS1] solve the desired computational problems for all
classical black box groups G = 〈S〉, but they do not run in time polynomial in the input
length. The groups PSL(d, q), PSp(d, q) and PSU(d, q) were dealt with in [BK,Br2], in
polynomial time under additional computational assumptions. The present paper extends
this result to the remaining classical groups: the orthogonal groups PΩε(d, q). Conse-
quently, the class of “polynomial-time with oracle” constructive recognition algorithms
now includes all classical groups (cf. [KS3]). Ideally we would have liked to present a uni-
form treatment of the classical groups, along the same lines as [KS1,Br1]. However, while
the general architectures of the algorithms for the unitary and orthogonal groups are iden-
tical, the substantially different techniques used to handle various subproblems ultimately
led to both [Br2] and the present paper. Moreover, awkward aspects of orthogonal groups
make the solution of many subproblems more technical than their counterparts in the other
classical groups.

In order to give statements of our results, we need some terminology and notation.
A black box group is a group whose elements are encoded (not necessarily uniquely) using
0–1 strings of uniform length N , and which is equipped with an oracle (the “black box”)
that finds a string representing the product of two given elements, finds a string representing
the inverse of a given element, and tests whether a given string represents the identity
element of the group. If we are given G as G = 〈S〉 for some subset S of G, then the input
length is N |S|.

Let H be a concrete group (such as a group of matrices or permutations), and let
G = 〈S〉 be a given black box group. We say that a homomorphism Ψ :H → G is ef-
fective if there is a procedure (which may be deterministic or randomised) that computes
hΨ ∈ G for any given h ∈ H , and also a procedure that computes some preimage for any
given element of HΨ .

For a prime power q , an SL(2, q)-oracle is a deterministic algorithm which, for any
input black box group G isomorphic either to SL(2, q) or PSL(2, q), produces an effec-
tive epimorphism Ψ : SL(2, q) → G. A DLog(F∗

q)-oracle is a deterministic algorithm that
computes discrete logarithms in F

∗
q , given a generator of F

∗
q .

The following complexity parameters are used in our timing estimates:

μ: An upper bound on the time requirement for each group operation in G (i.e., the cost
of using the black box).

ξ : An upper bound on the time requirement, per element, for the construction of inde-
pendent, (nearly) uniformly distributed random elements of G. A fundamental result
of Babai [Ba] produces such elements in a black box group in time polynomial in the
input length. We assume that ξ � μ|S|.

χ : An upper bound on the time requirement for each application of either of the hypoth-
esised SL(2, q)- or DLog(F∗

q)-oracles.

258 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
Our main result is as follows:

Theorem 1.1. Suppose that a black box group G = 〈S〉 is a nontrivial homomorphic image
of Ωε(d, q) for known ε, d � 3 and q; exclude the cases Ω−(4, q) and Ω−(6, q). Suppose
further that SL(2, q)- and DLog(F∗

q)-oracles are available. Then there is an

O
(
d3 logd logq

{
d + log3 q

} + μd3 log2 d + ξd2 logd logq + χd2 logd log2 q
)

time Las Vegas algorithm which, with probability > 1/2, constructs an effective epi-
morphism Ψ :Ωε(d, q) → G. The routine finding the Ψ -image of any given element of
Ωε(d, q) is deterministic and runs in O(μd2 logq)-time. The routine finding a preimage of
any given element of G is Las Vegas, succeeding with probability > 1/2 in O(χd2 logq)-
time.

See Section 2.2 for the definition of Las Vegas algorithms. In the theorem we assume
that d is even if q is, as the odd-dimensional groups in characteristic 2 are symplec-
tic groups and hence were already handled in [BK]. The cases Ω−(4, q) ∼= PSL(2, q2)

and Ω−(6, q) were excluded from the statement of the theorem because they are most
easily handled as groups defined over Fq2 : the 4-dimensional group Ω−(4, q) using an
SL(2, q2)-oracle, and the 6-dimensional group Ω−(6, q) using the SU(4, q) algorithm
presented in [Br2, 6.2]. (The latter hypothesises a discrete log oracle for a cyclic group
of order q + 1 in addition to the oracles in the above theorem; see Section 5 for more about
these groups.) Other well-known isomorphisms deal with the remaining low-dimensional
cases: Ω(3, q) ∼= PSL(2, q) and Ω+(4, q) ∼= SL(2, q) ◦ SL(2, q) are both handled using
the SL(2, q)-oracle; and Ω(5, q) ∼= PSp(4, q) is handled using the algorithm presented
in [BK]. The group PΩ+(6, q) is recognised using the algorithm in [BK] for the isomor-
phic group PSL(4, q); see Section 2.2 below.

We prove somewhat more than is stated in the theorem, and thereby satisfy additional
requirements of the Matrix Group Project [L-G]. For example, we construct a new gener-
ating S∗ from the original generating set S having the property that, for any given g ∈ G,
we can produce a preimage of g by writing a straight-line program from S∗ to g and then
evaluating the resulting straight-line program in Ωε(d, q) starting from S∗Ψ −1. Keeping
track of the steps used to construct S∗ from S , we also obtain straight-line programs from
the set S to any given element g of G.

The paper is organised as follows. In Section 2 we summarise the elementary properties
of orthogonal groups needed for our algorithm, and also discuss the algorithmic back-
ground necessary for computation in black box groups. The main algorithm is presented
in Sections 3 and 4. Constructive recognition algorithms naturally consist of two phases:
a preprocessing algorithm that sets up a data structure defining a suitable epimorphism; and
an application algorithm that uses this data structure to compute images and preimages of
given elements. The preprocessing phase is handled in Section 3, and the application phase
in Section 4. Section 5 indicates extensions and variations of Theorem 1.1. For example, in
practice G is only probably a homomorphic image of the stated orthogonal group, but this
is readily dealt with merely by assuming that G is, indeed, a homomorphic image: if the
algorithm succeeds, then one checks that G satisfies a suitable presentation for the stated
orthogonal group (cf. Section 5).

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 259
2. Preliminaries

In this section we summarise the required orthogonal group and algorithmic background
(cf. [KS1,KL,Ta]).

2.1. Orthogonal groups

Let V be a vector space of dimension d � 6 over Fq , where q = pk , and let φ be a
nondegenerate quadratic form on V . For v,w ∈ V , (v,w) := φ(v + w) − φ(v) − φ(w) is
the associated symmetric bilinear form. A subspace W � V is said to be: totally singular
(t.s.) if φ(W) = 0; and nonsingular if the restriction of φ to W is nondegenerate. The
Witt index m of V is the dimension of a maximal t.s. subspace. A hyperbolic line is a
nonsingular 2-space of Witt index 1.

For odd q , the quadratic form φ can be recovered from (,) since φ(v) = (v, v)/2. If
d is odd, then (up to equivalence) φ is uniquely determined up to a scalar. We say that V

has type ε = 0,1 or −1 according as d is odd, d is even and V has maximal Witt index
m = d/2, or d is even and V has minimal Witt index m = (d − 2)/2, respectively.

Lemma 2.1. Let Λ0 be a fixed hyperbolic line of the orthogonal space V of dimension
d � 5. Then the following hold:

(a) With probability > 1/4, for a choice Λ of hyperbolic line 〈Λ0,Λ〉 is a nonsingular
4-space of Witt index 2.

(b) With probability > 1/4, for a choice Σ of t.s. line 〈Λ0,Σ〉 is a nondegenerate 4-space
of Witt index 2.

Proof. Let nε
d , hε

d and sε
d denote, respectively, the numbers of singular points, hyperbolic

lines and t.s. lines in an orthogonal space of dimension d and type ε. Note that the number
of nondegenerate 4-spaces of maximal Witt index that contain our fixed line Λ0 is hε

d−2
(the number of hyperbolic lines in the (d −2)-space Λ⊥

0). In (a), the number of suitable hy-
perbolic lines Λ in any such 4-space is h1

4 − (2q2 − 1). Hence, noting that hε
d = nε

dqd−2/2,
we have

Prob
(〈Λ0,Λ〉 is a 4-space of index 2

) = (
hε

d−2/hε
d

) · (h1
4 − 2q2 + 1

)
>

(
1/2q4) · (q4/2

) = 1/4.

In (b), the number suitable t.s. lines Σ in any such 4-space is s1
4 − 4 = 2(q − 1). Hence,

noting that sε
d = nε

d · nε
d−2/(q + 1), we have

Prob
(〈Λ0,Σ〉 is a 4-space of index 2

) = {
hε

d−2 · 2(q − 1)
}
/sε

d

= qd−4(q2 − 1
)
/nε

d

> qd−4(q − 1)
(
q2 − 1

)
/qd−1 > 1/4. �

260 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
The group of all isometries of V is denoted GOε(V), where ε is the type of V . It is often
convenient to represent elements of GOε(V) as matrices relative to a nice basis of V . Fix
a generator, ρ, of the multiplicative group F

∗
q . Then a standard basis of V is an ordered

basis of the form

B =
⎧⎨
⎩

e1, . . . , em, e−1, . . . , e−m if ε = 1,

e1, . . . , em, v1, e−1, . . . , e−m if ε = 0, or

e1, . . . , em, v1, v2, e−1, . . . , e−m if ε = −1,

(2.2)

where, for i, j ∈ {±1, . . . ,±m} and s = 1,2,

φ(ei) = 0 = (ei, vs) and (ei, ej) = δi,−j ,

(v1, v2) = 1 and φ(vs)
= 0 if p = 2,

(v1, v2) = 0 and (vs, vs) = 1 if q ≡ 3 (mod 4),

(v1, v2) = 0, (v1, v1) = 1 and (v2, v2) = ρ if q ≡ 1 (mod 4).

2.1.1. Point stabilisers and root groups
Let B be a standard basis for V and, for any i ∈ {±1, . . . ,±m}, let xi = 〈ei〉. Then the

point stabiliser Ωε(V)xi
is a semidirect product

Ωε(V)xi
= Q(xi) � Ωε(V)xi ,x−i

. (2.3)

Here Q(xi) = Op(Ωε(V)xi
), of order qd−2, is the natural module of the group

(Ωε(V)xi ,x−i
)′ ∼= Ωε(d − 2, q), and consists of all isometries of the form

ri(w) :u
→ u + (
u,w − φ(w)ei

)
ei − (u, ei)w, w ∈ 〈ei, e−i〉⊥. (2.4)

Moreover,

φxi

(
ri(w)

) := φ(w) (2.5)

defines a nondegenerate quadratic form on Q(xi); the map w
→ ri(w) is an isometry
〈ei, e−i〉⊥ → Q(xi), and

ri(w)g = ri
(
wg

)
whenever g ∈ (

Ωε(V)xi ,x−i

)′
. (2.6)

In particular,

ri(w)g = ri
(
ρ2w

)
if g = diag

(
ρ2,1, . . . ,1, ρ−2,1, . . . ,1

)
. (2.7)

The Ωε(V)-conjugates of ri(w) will be referred to generically in this paper as root ele-
ments; conjugates of the groups

R
(〈ei,w〉) := {

ri(λw) | λ ∈ Fq

}
, (2.8)

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 261
of order q , will be called root groups. Note that this is not quite in accordance with the
Lie-theoretic definition of root elements and root groups. For singular w
= 0, however,
conjugates of ri(w) are long root elements, and conjugates of R(〈ei,w〉) are long root
groups, as in the Lie-theoretic sense. In view of the isometry 〈ei, e−i〉⊥ → Q(xi), long
root groups correspond to singular points of V .

Lemma 2.9. Let V be an orthogonal space with d = dim(V) � 6. For any two distinct
singular points x, y ∈ V, put H := 〈Q(x),Q(y)〉 � Ωε(V).

(a) If x and y are not perpendicular, then H = Ωε(V).
(b) If x and y are perpendicular (so that Σ = 〈x, y〉 is totally singular), then the following

hold:
1. H = U � SL(Σ), where U = Op(H) is the subgroup of Ωε(V) that centralises

each of the spaces Σ , Σ⊥/Σ and V/Σ⊥; also |U | = q2d−7.
2. Z(U) = [U,U] is the root group R(Σ) = Q(x) ∩ Q(y).
3. With probability (1 − 1/q2d−6)(1 − 1/q) > 0.49, if u1, u2 ∈ U then 1
= [u1, u2] ∈

R(Σ).

Proof. (a) This is well known.
(b) Parts 1 and 2 follow from a matrix calculation; they may also be deduced using an

argument similar to [KS1, Lemma 4.7(ii)]. For part 3, note that a choice u1 is not in Z(U)

with probability at least 1 − 1/q2d−6. For such a u1, it is straightforward to check that
CU(u1) has order q2d−8; thus, with probability at least 1 −1/q , u2 does not commute with
u1. �
2.1.2. Homomorphisms and isometries

For n < d , a subgroup of Ωε(d, q) = Ωε(V) that induces Ωε′
(n, q) on some nondegen-

erate n-space of V , and the identity on the orthogonal complement of this n-space, will be
called a naturally embedded Ωε′

(n, q)-subgroup. For a homomorphic image G of Ωε(V),
we call a subgroup H ∼= Ωε′

(n, q) of G naturally embedded in G if HΨ −1 is naturally
embedded in Ωε(V) for some (not necessarily specified) epimorphism Ψ :Ωε(V) → G.

Suppose that d > 6, and let J be a naturally embedded Ω+(6, q)-subgroup of G.
Furthermore, let ΨJ :Ω+(VJ) → J be a fixed isomorphism, where VJ is a nondegen-
erate 6-space in V of Witt index 3. Let x+ ∈ VJ be any singular point, and put QJ :=
Op(Ωε(VJ)x+)ΨJ < J .

Consider any epimorphism Φ :Ωε(V) → G extending ΨJ . Let Q denote the group
Q(x+)Φ < G containing QJ , where Q(x+) = Op(Ωε(V)x+), and let L denote the group
(Ωε(V)x+,x−)′Φ < G, where x− ∈ VJ is not perpendicular to x+. (The groups Q and L

do not depend on the choice of Φ .) By (2.5),

φQ(u) := φx+
(
uΦ−1) for u ∈ Q (2.10)

defines a nondegenerate L-invariant quadratic form on Q, while

φΨ (u) := φx+
(
uΨ −1) for u ∈ QJ (2.11)
J J

262 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
defines a nondegenerate LJ := L ∩ J -invariant quadratic form on QJ = Q ∩ J . Up to
equivalence, any nondegenerate L-invariant quadratic form on Q is a scalar multiple of φQ,
so there is a unique such form extending φΨJ

. Thus, φQ does not depend on the choice of
Φ extending ΨJ .

Consequently, it makes sense to speak of an isometry from the orthogonal space Q(x+)

(relative to φx+) to the orthogonal space Q (relative to φQ) independent of the particular
choice of Φ used to define φQ.

Proposition 2.12. In the above notation, let f :Q(x+) → Q be an isometry that coin-
cides with ΨJ on Q(x+) ∩ Ω+(VJ). Then there is a unique epimorphism Ψ :Ωε(V) → G

extending both f and ΨJ .

Proof. Uniqueness: Let l′ be any element of Ω+(VJ) that interchanges Q(x+) and Q(x−).
Since Ωε(V) = 〈Q(x+) = Q(x−)〉, any epimorphism Ωε(V) → G is determined by the
image of the set Q(x+) ∪ {l′}. The uniqueness of Ψ now follows from the fact that f

determines the image of Q(x+), while ΨJ determines the image of l′.
Existence: First let Φ denote any epimorphism extending ΨJ . Then Φ restricts on

Q(x+) to an isometry fΦ :Q(x+) → Q agreeing with ΨJ (and hence also f) on Q(x+) ∩
Ω+(VJ). If w1, . . . ,wd−6 is a standard basis of V ⊥

J , then the ff −1
Φ -image of the set

{r1(wi) | 1 � i � d − 6} ⊂ Q(x+) is a set {r1(w
′
i) | 1 � i � d − 6} ⊂ Q(x+), where

w′
1, . . . ,w

′
d−6 is another standard basis of V ⊥

J . Hence there is a matrix C ∈ GOε(d, q)

inducing the identity on VJ and sending w′
i
→ wi for 1 � i � d − 6.

We claim that the epimorphism Ψ :Ωε(V) → G sending g′
→ (Cg′C−1)Φ extends
both ΨJ and f , as desired. For g′ ∈ Ω+(VJ), since C is the identity on VJ , we have
Cg′C−1Φ = g′ΨJ (since Φ extends ΨJ). Next,

r1(wi)f Ψ −1 = C−1(r1(wi)f Φ−1)C = r1
(
w′

i

)C = r1
(
w′

iC
) = r1(wi).

Hence the restriction of Ψ to Q(x+) agrees with f . It follows that Ψ extends both ΨJ

and f , as claimed. �
2.2. Algorithmic preliminaries

We now summarise the relevant notions and procedures needed for computing with
black box groups. The reader is referred to chapters 1 and 2 of [Se] for a detailed treatment
of this topic.

2.2.1. Monte Carlo and Las Vegas algorithms
We will consider randomised algorithms. Such an algorithm is called Monte Carlo if the

output may be incorrect, but an upper bound on the probability of that can be prescribed by
the user; thus, there is always an output, but there is also an uncomfortable possibility of
error. A randomised algorithm is called Las Vegas if the output is always correct, but there
is a possibility that “failure” is output, and an upper bound on the probability of that can
be prescribed by the user; no errors can occur, so this is more comforting.

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 263
2.2.2. Straight-line programs
Let X be a list of elements of a group G, and let g ∈ G. Informally, a straight-line

program (SLP) of length m from X to g is a sequence (g1, . . . , gm) of group elements such
that gm = g and, for each i, one of the following holds: gi ∈ X; or gi = g−1

j for some j < i;
or gi = gjgk for some j, k < i. SLPs can be thought of as space-efficient words. Since we
do not always want to compute or store each of the group elements gi , we more formally
define an SLP from X to g to be a sequence (w1, . . . ,wm) such that, for each i, either wi

is a positive integer (representing the wi th element of X), or wi = (j,−1) for some j < i

(representing w−1
j), or wi = (j, k) for some j, k < i (representing wjwk), such that if each

expression in the sequence is evaluated in the obvious way, then the value of wm is g. This
more abstract definition enables us to construct SLPs inside one group and evaluate them
in another.

2.2.3. Order properties
By a fundamental theorem of Zsigmondy [Zs], if p is a prime and n � 2, then there is a

prime r dividing pn − 1 but not pi − 1 for 1 � i < n, except when either p = 2 and n = 6,
or n = 2 and p is a Mersenne prime. Such a prime r is called a primitive prime divisor
(ppd) of pn − 1. For n > 1, we call an integer j > 1 dividing pn − 1 a ppd#(p;n) if n = 6,
p = 2 and 21 | j ; if n = 2, p is Mersenne and 4 | j ; or if j is divisible by a ppd of pn − 1.
If p is not a Fermat prime, we say that j is a ppd#(p;1) if j is not a power of 2; if p is
a Fermat prime, we say that j is a ppd#(p;1) if 4 | j . We call an element g of a group a
ppd#(p;n)-element if |g| is a ppd#(p;n).

Computing the exact order of a given element g of a black box group G will not be
necessary but, as was the case in [Br1,Br2,KS1], we will need to test whether g is a
ppd#(p;n)-element for a given prime p and integer n:

Lemma 2.13. ([NP]; cf. [Br1, Lemma 3.1]) Following a preprocessing computation re-
quiring time O(n3 logn log4 p), one can test whether or not a given element of a black-box
group G has ppd#(p;n)-order in time O(μn logp).

2.2.4. The SL(2, q)-oracle
Our algorithm assumes the availability of an oracle which, for any given black

box group G isomorphic to SL(2, q) for known q , returns an effective isomorphism
Ψ : SL(2, q) → G. In particular, the oracle constructs a new generating set S∗ for G, and
provides a procedure which, for any given g ∈ G, writes an SLP from S∗ to g. We assume
that χ � μ logq (the time required to evaluate an SLP of length logq within G).

Remark 2.14. All SLP procedures in fact take as input a string representing some element
the black box group G (recall that the elements of G are not necessarily uniquely encoded).
We assume that the SLPs output by the SL(2, q)-oracle for strings representing the same
element of G are identical.

Remark 2.15. There will be situations in which the SL(2, q)-oracle is called for a group G,
which is only probably isomorphic to SL(2, q). If it happens that G
∼= SL(2, q), then we
assume the oracle returns false.

264 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
2.2.5. Applying the oracle to quotient groups
We will need to handle the following situation. Let G be the given black box orthogonal

group, and suppose we have (generators for) a black box subgroup H of G such that, for
some N � H , we have H/N ∼= SL(2, q). We do not have generators for N , but there is an
efficient deterministic test for membership in this subgroup. This is sufficient to enable us
to compute with H/N as a black box group: the elements of H/N are the elements of H ;
group operations are performed exactly as they are in H ; but the test for whether or not a
given string represents the identity is performed instead using the membership test for N .

Thus, in this setting, we may apply the SL(2, q)-oracle to the quotient group H/N . (For
more about practical aspects of such applications in our specific setting, see Remark 4.7.)
In particular, we obtain a set S∗

H ⊂ H such that 〈S∗
H 〉N/N = H/N , having the property

that, for any given h ∈ H , an SLP can be obtained from S∗
H to an element h0 ∈ H such

that hN = h0N .
In the situation described above, we shall wish to use the SL(2, q)-oracle to con-

struct (nearly) uniformly distributed random elements of the normal subgroup N . This
is achieved as follows. Using the given generators for H , construct (nearly) uniformly dis-
tributed random elements h ∈ H . For each such element, the SL(2, q)-oracle is then called
within the quotient group H/N to write an SLP from S∗

H to h0 ∈ H with hN = h0N .
The elements h−1h0 are now (nearly) uniformly distributed random elements of N . (For,
by Remark 2.14, SLPs returned by the SL(2, q)-oracle to elements of the same coset are
identical.)

2.2.6. Algorithms for Ω+(6, q)

Our general algorithm makes essential use of subgroups isomorphic to Ω+(6, q), and
requires that we be able to recognise them constructively as 6-dimensional groups. The
following is a version of Theorem 1.1 for the single case d = 6, ε = 1.

Lemma 2.16. There is an O(logq{ξ + χ logq + μ log2 q})-time Las Vegas algorithm
which, with probability > 3/4, when given a black box group G = 〈S〉, known to be a non-
trivial homomorphic image of Ω+(6, q), and having available SL(2, q)- and DLog(F∗

q)-
oracles, constructs an effective epimorphism Ψ :Ω+(6, q) → G. Moreover,

(a) there is an O(μ logq)-time deterministic algorithm that finds the image of any given
element of Ω+(6, q); and

(b) there is an O(ξ + χ logq + μ log2 q)-time Las Vegas algorithm that finds a preimage
of any given element of G, succeeding with probability � 1 − 1/128.

Proof. Since PΩ+(6, q) ∼= PSL(4, q), we use the algorithm in [BK] to obtain an effective
epimorphism Φ :G → PSL(4, q) = PSL(W). Straightforward linear algebra provides an
isomorphism θ : PSL(W) → PΩ+(W ∧ W) = Ω+(6, q), where W = F

4
q . Although com-

puting the θ -image of any given element of PSL(W) is elementary, computing preimages
requires a few comments.

Let ⊥ refer to perpendicularity with respect to the usual dot product relative to the usual
basis w1, w2, w3, w4 of W . For 1 � i
= j � 4, the group of (〈wi〉,w⊥

j)-transvections of

PSL(W) maps, under θ , to the long root group R(wi ∧ w⊥) of PΩ+(6, q). Let T be the
j

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 265
union of O(k)-size generating sets for the 12 long root groups R(wi ∧ w⊥
j), obtained as

the θ -images of generating sets of the 12 groups of (〈wi〉,w⊥
j)-transvections of W . To find

hθ−1 for a given h ∈ PΩ+(6, q), we write an SLP from T to h using the deterministic
algorithm in [Br1, Theorem 1.1], and then evaluate it from T θ−1.

The map Φθ :G → PΩ+(6, q) is thus an effective epimorphism. The centre of G may
now be constructed as follows using a standard short presentation for PΩ+(6, q) arising
from elementary matrices [BGKLP]. Evaluate all of the relators from the appropriate el-
ements of G. If the identity of G is obtained for all of them, then G is isomorphic to
PΩ+(6, q); else at least one of the relations evaluates to a generator of Z(G), namely to
the element corresponding to −1 ∈ Ω+(6, q). Now modify Φθ to produce an effective
epimorphism Ψ :Ω+(6, q) → G, in accordance with Theorem 1.1.

The stated complexity arises from the call to [BK, Theorem 1.1] (with d = 4 and
q > 17) to construct an isomorphism Φ :G → PSL(4, q), which dominates the timing.
That algorithm also accounts for the reliability stated in the lemma, and provides the rou-
tine for computing preimages. The routine for computing images is in [Br1, Theorem 1.1]
(also see Section 4.1). �

3. Constructing an isomorphism

This section contains the heart of our algorithm: the preprocessing phase that sets up a
data structure for an effective epimorphism from a concrete matrix group to a given black
box group. Let G = 〈S〉 be the given black box group, known to be a nontrivial homomor-
phic image of Ωε(d, q) for known d, q = pk and ε ∈ {−1,0,1}. In view of Lemma 2.16,
and the discussion following Theorem 1.1, we may assume that d � 7. Our data structure
will consist of the following components:

(a) A generating set T for the group of matrices Ωε(d, q).
(b) A new generating set S∗ for G, whose elements are constructed using SLPs from the

original generating set S .
(c) A bijection T → S∗ that extends to an epimorphism Ωε(d, q) → G. (This epimor-

phism will be our effective epimorphism; its effectiveness will be established following
the application phase in Section 4.)

(d) A naturally embedded Ω+(6, q)-subgroup J of G.
(e) Several useful elements of J together with their preimages in Ωε(d, q).

3.1. Preliminary constructions for “large” fields

Throughout this subsection we will assume that q � 16. Analogous constructions for
smaller field sizes will be given in Section 3.2.

Our first goal is to obtain generators for a naturally embedded Ω+(6, q)-subgroup J

of G, together with an effective isomorphism ΨJ :Ω+(6, q) → J (cf. (d) above). The iso-
morphism ΨJ will be important for two reasons. First, it will allow us to construct useful
elements of J to be used later in our algorithm (cf. (e)). Second, our target epimorphism
Ωε(d, q) → G will be constructed so as to extend ΨJ .

266 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
Our other preliminary task is to construct a subgroup Q of G, of order qd−2, corre-
sponding to some subgroup Q(xi) of Ωε(d, q), as well as a certain complement to Q in
NG(Q)′ (cf. Section 2.1.1).

3.1.1. The elements σ and a

We begin by giving a Las Vegas procedure that takes as input the given black box group
G and returns elements a,σ ∈ G that act on the underlying module in a special manner.
(Note that all ppd#(p;)-tests in the following procedure are performed using Lemma 2.13.)

Procedure 3.1. Put n := d − 3 − ε. For up 96n choices τ ∈ G, proceed as follows.

1. Test whether σ := τq2−1 has ppd#(p;nk)-order. If so, set b := τqn/2+1.
2. If ε = 1, test whether b has ppd#(p;2k)-order; if so, set a := bq+1. If ε
= 1, set a := b.
3. Test whether a has ppd#(p; k)-order.

If, for some choice τ , all of the tests performed in steps 1–3 are in the affirmative, then
return the pair (σ, a). Report failure if all 96n choices fail at least one of the tests.

Lemma 3.2. Procedure 3.1 is a Las Vegas algorithm that returns a ppd#(p;nk) element σ ,
and a ppd#(p; k)-element a whose support in the natural module underlying G is a hy-
perbolic line upon which σ induces the identity. The procedure succeeds with probability
> 1 − 1/e3 > 7/8 and runs in O(d3 logd log4 q + d{ξ + μd logq})-time.

Proof. The routine is extracted from [Br1, Section 4.3.1], where such a procedure is given
more generally for all classical groups: the correctness, timing and reliability estimates are
taken directly from there. �
3.1.2. Constructing J

The following is a Las Vegas subroutine that takes as input the element a just con-
structed, together with the group G, and returns a (constructively recognised) naturally
embedded Ω+(6, q)-subgroup.

Procedure 3.3. For up to 216 choices (g1, g2) ∈ G × G, proceed as follows:

1. Set J := 〈a, ag1, ag2〉.
2. Use Lemma 2.16 to test, constructively, whether J ∼= Ω+(6, q).

If we obtain a suitable J for some g1, g2, then return the effective isomorphism
ΨJ :Ω+(6, q) → J constructed in step 2. Report failure if none of the choices give
rise to a suitable J .

Lemma 3.4. Procedure 3.3 is a Las Vegas algorithm that returns a naturally embedded
Ω+(6, q)-subgroup J, and effective isomorphism ΨJ :Ω+(6, q) → J, with probability
> 1 − 1/e3 > 7/8, in O(logq{ξ + χ logq + μ log2 q})-time.

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 267
Proof. For a fixed pair g1, g2, 〈a, ag1, ag2〉 is a naturally embedded Ω+(6, q)-subgroup
of G with probability > 1/214 [KS1, Lemma 4.12(ii)]. For a pair behaving in this manner,
Lemma 2.16 produces a suitable isomorphism with probability > 3/4 (using a Las Vegas
algorithm). Hence, all of our 216 choices fail with probability < (1 − 3/216)216

< 1/e3, as
claimed. The stated timing arises from the O(1) calls to Lemma 2.16. �
Remark 3.5. Note that the requirement q � 16 is used for the first time in the proof of the
lemma: [KS1, Lemma 4.12(ii)] applies only for such q .

3.1.3. Some elements of J

From now on, Fq will denote the field constructed along with the effective isomorphism
ΨJ :Ω+(6, q) = Ω+(VJ) → J ; ρ will denote a fixed generator of F

∗
q . Define a nondegen-

erate quadratic form φ, and associated symmetric form (,), on the row space V := F
d
q

such that the usual basis of V is a standard basis B (see (2.2)). Matrices in Ω+(6, q) will
always be written relative to the standard basis {e1, e2, e3, e−1, e−2, e−3} of VJ . We may
also assume that x+ := 〈e1〉 and x− := 〈e−1〉 are the 1-dimensional eigenspaces of aΨ −1

J .
The subgroups Q(x±) of Ωε(d, q) consist of the transformations r±1(w) given in (2.4).
We identify these transformations with their corresponding matrices relative to B.

Use Lemma 2.16(a) to construct all of the following elements of J in O(logq(μ logq))-
time:

(i) For 1 � j � k, r1j := r1(ρ
j−1e2)ΨJ , r2j := r1(ρ

j−1e3)ΨJ , r3j := r1(ρ
j−1e−2)ΨJ

and r4j := r1(ρ
j−1e−3)ΨJ .

(ii) l := l′ΨJ , where l′ ∈ Ω+(VJ) sends e±i
→ e∓i (i = 1,2) and e±3
→ e±3.
(iii) h := h′ΨJ , where h′ ∈ Ω+(VJ) sends e1
→ ρ2e1, e−1
→ ρ−2e−1 and v
→ v for v ∈

〈e1, e−1〉⊥. (N.B. h is an analogue of the element s used in [KS1, 4.4.2(v)]; by (2.7),
h has order (q − 1)/(2, q − 1), acting on Q as the scalar ρ2.)

(iv) h+ := (h+)′ΨJ , where (h+)′ ∈ Ω+(VJ) induces an element of order q − 1 on x+.
(N.B. h+ is an analogue of the element s+ used in [KS1, 4.4.2(vi)].)

(v) A four-element generating set for J0 := Ω+(〈e±1, e±2〉)ΨJ .
(vi) A four-element generating set for DJ = Ω+(〈e±2, e±3〉)ΨJ .

Here rij are long root elements of G, which for a fixed i generate a long root group
(cf. (3.9)). Let

QJ := 〈rij | 1 � i � 4, 1 � j � k〉 = [
Q(x+) ∩ Ω+(VJ)

]
ΨJ . (3.6)

Since r1(e±2)
l′ = r−1(e∓2) and r1(e±3)

l′ = r−1(e±3) by matrix calculations,

Ql
J = [

Q(x−) ∩ Ω+(VJ)
]
ΨJ . (3.7)

Finally, since Ω+(〈e±2, e±3〉) is the identity on 〈e1, e−1〉,

NJ (QJ)′ = QJ � DJ , and DJ normalises Q l
J . (3.8)

268 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
3.1.4. Constructing Q and NG(Q)′ = Q � L

We now proceed to the second stage of our preliminary constructions. Set

rij := rσ i−4

1j (5 � i � d − 2 and 1 � j � k),

Ri := 〈rij | 1 � j � k〉 (1 � i � d − 2),

Q := 〈R1, . . . ,Rd−2〉,
L := 〈

Dσi

J | 0 � i � d − 2
〉
. (3.9)

All of the elements rij , and the generators for L, are constructed in O(μd logq)-time.
Let Φ be any epimorphism Ωε(V) → G that extends ΨJ , let Q̇ = Q(x+)Φ , and let L̇ =
Ωε(V)e1,e−1Φ (as in Section 2.1.2, Q̇ and L̇ do not depend on the choice of Φ). Then we
have the following result.

Lemma 3.10. With probability at least 7/8, Q = Q̇ and L = L̇.

Proof. Let V ′ denote the orthogonal module underlying G, and recall the elements a and
σ found by Procedure 3.1. Then [V ′, a] is a hyperbolic line with singular points x′+ and
x′− such that Q̇ = Q(x′+) and Q̇l = Q(x′−). Furthermore, σ is the identity on [V ′, a], and
hence induces on the (d − 2)-space Q̇ a transformation of ppd#(p;nk)-order. Therefore,
exactly as in [Br1, Section 4.4.2], Q = Q̇ with the stated probability.

We assume now that Q = Q̇, and turn to the proof of [KS1, Lemma 4.14] from the
third paragraph onward. In that proof it is shown that a certain group G′

α (generators for
which were obtained in a manner analogous to our construction of generators for the group
〈Q,L〉) is equal to NG(Q)′ = (Ωε(V ′)x+)′. Since each group Dσi

J normalises both Q

and Ql , so does L, and hence 〈Q,L〉 = Q � L. We now use L in place of the quotient
group H = G′

α/Q in the proof of [KS1, Lemma 4.14] (which is shown there to be iso-
morphic to Ω(Q) ∼= Ωε(d − 2, q)) to see that L is indeed the desired complement to Q in
NG(Q)′. �
Remark 3.11. The “prime” notation in the previous proof is used to distinguish between
the vector space V ′ underlying the black box group G and the concrete space V that we
constructed in Section 3.1.3. The space V ′ is used only within proofs; see also the proofs
of Lemmas 3.22 and 4.9.

Remark 3.12. In the preceding lemma we see a fundamental difference between [KS1] and
the present paper: since we did not have to handle some of the small field cases that caused
a great deal of annoyance in [KS1], we were able to obtain a complement L without using
the “effective transitivity” of the subgroup Q (cf. [KS1, Lemma 4.17]). This simplification
is facilitated by the nature of the element σ we employ here, which, in its action on the
module underlying G, induces the identity on the 2-dimensional support of a; the singular
points of this hyperbolic line correspond to the groups Q̇ and Q̇l . Hence, the σ -conjugates
of DJ all normalise Q̇ and Q̇l , unlike their counterparts in [KS1], which had to be modified

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 269
in order to have this property (cf. [KS1, Corollary 4.18]). Nevertheless, in Section 4 we will
present a faster, randomised version of “effective transitivity.”

Remark 3.13. At this stage of the algorithm, there appears to be no easy way to verify
that Q and L are the desired subgroups Q̇ and L̇. Thus the main algorithm to date is
Monte Carlo rather than Las Vegas. However, the uneasiness this causes will be removed
following the execution of Procedure 3.21 in 3.3.3; that routine provides, as a by-product,
a “correctness check” for our construction of Q̇. Thus we will henceforth assume that
Q = Q̇ and dispense with the “dot” notation.

3.1.5. Total timing and reliability for Section 3.1 (“large” fields)
By Lemmas 3.2, 3.4 and 3.10, we see that all of the preliminary constructions are ob-

tained with probability > 1 − (1/e3 + 1/e3 + 1/8) in O(d3 logd log4 q + ξ{d + logq} +
χ log2 q + μ logq{d + log2 q})-time.

3.2. Preliminary constructions for “small” fields

We next consider the case q < 16. Although timing considerations prevent us from
using the entire algorithm in [KS1, Section 4] to handle these small fields, we can make
use of some of its key subroutines to obtain analogues of the preliminary constructions in
Section 3.1. We may assume that d � 9, since otherwise q < 16 and d � 8 so we can use
brute force.

Remark 3.14. Due to the use of recursion, the reliability estimates of most of the ran-
domised subroutines in [KS1] depend upon d . Our approach avoids recursion and hence
this dependence on d : we are usually able to improve (by a factor of logd) the timing of
subroutines from [KS1]. In addition, the timing for any call to the SL(2, q)-oracle reduces,
in this setting, to O(μ).

3.2.1. The elements t and σ

In Section 3.1, the commuting elements a and σ were fundamental to our preliminary
constructions. For small q the situation is not quite so straightforward, but the hard work
has already been done in [KS1, Section 4.2.1]. In each of the nine cases considered therein,
a long root element t is constructed, together with an element τ fixing some point x+ in the
support of t . This is achieved using up to c1 choices of element from G, and possibly up
to c2 constructive isomorphism tests for either Ω+(4, q) or Ω+(6, q). The integers c1 and
c2 in each of the nine cases considered in [KS1, Section 4.2.1] are stated explicitly below,
where we also indicate how to use τ to construct an element σ fixing the point x+.

Case 1. [Ωε(d, q), q � 13 odd]: c1 := 8q2d ; σ := τp(q+1).
Case 2. [Ω+(2n,2k), n � 5 odd, k = 1,2,3]: c1 := 16qd ; σ := τp(q+1).
Case 3. [Ω−(2n,2k), n � 6 even, k = 1,2,3]: c1 := 16qd ; σ := τp(q+1).
Case 4. [Ω+(2n,8), n � 6 even]: c1 := 8q2d ; c2 := 212; σ := τ (q−1)(q2+1) = τ 455.
Case 5. [Ω−(2n,8), n � 5 odd]: c1 := 32d ; c2 := 212; σ := τq−1 = τ 7.
Case 6. [Ω+(2n,4), n � 6 even]: c1 := 256d ; c2 := 214; σ := τ 51.

270 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
Case 7. [Ω−(2n,4), n � 5 odd]: c1 := 32d ; c2 := 214; σ := τ 3.
Case 8. [Ω+(2n,2), n � 6 even]: c1 := 8d ; c2 := 32; σ := τ 5.
Case 9. [Ω−(2n,2), n � 5 odd]: c1 := 40d ; c2 := 32; σ := τ 5.

The required element t is constructed from τ and σ in [KS1, Section 4.2.1].

Timing. The timing in each case is dominated by the c1 = O(d) choices of element
from G (together with primitive prime divisor tests for each), and the c2 = O(1) construc-
tive isomorphism tests. Hence, the elements σ , τ and t are obtained in O(ξd + μd3)-time
(cf. [KS1, Section 4.2.1] and Remark 3.14 above).

Reliability. In [KS1, Section 4.2.1], c1 and c2 were chosen so that success is ensured
with probability � 1 − 1/8d2; here we crudely modified c1 and c2 so that we succeed with
probability � 1 − 1/8 (cf. Remark 3.14).

3.2.2. Constructing J

As in [KS1, Section 4.2.2], choose up to 221 triples f1, f2, f3 ∈ G in order to find,
and constructively recognise, at least 26 subgroups Ji = 〈t, tf1 , tf2 , tf3〉 ∼= Ω−(8, q) with
probability � 1 − 1/16. (Note that |Ω−(8, q)| is bounded.) For each i, use the resulting
isomorphism Ψi :Ω−(Vi) → Ji to construct subgroups Q8i , G8i and Di , where G8i =
(Ω−(Vi)xi

)′Ψi , Q8i = Op(G8i) and

G8i = Q8i � Di, (3.15)

for some singular point xi ∈ Vi . Furthermore, as in [KS1, Section 4.2.2], choose the xi so
that they all correspond to the same point x+, fixed by σ , within the support of t . Finally,
fix any i, and restrict Ψi to a suitable naturally embedded Ω+(6, q) subgroup J of Ji

containing t in order to obtain an isomorphism ΨJ :Ω+(6, q) → J .

Timing and reliability. The requisite number of groups Q8i and G8i , together with the
distinguished isomorphism ΨJ , are constructed, with probability > 1−1/16, in O(ξ +μ)-
time (cf. [KS1, Section 4.2.2] and Remark 3.14).

3.2.3. Some elements of J

We may again assume that elements of Ω+(6, q) are written relative to a standard basis
e1, e2, e3, e−1, e−2, e−3, and construct all of the elements and subgroups obtained in
Section 3.1.3. We may further assume that t is contained in the long root group R1.

3.2.4. Constructing Q̇ and L̇

Exactly as in [KS1, Section 4.3.1], use the 26 groups Q8i and G8i , together with the
element τ , to (probably) construct the groups Q and NG(Q)′. Use [KS1, Section 4.3.2] to
(probably) construct a complement L to Q in NG(Q)′. Then modify the generating set for
Q to consist of L-conjugates of generators of R1.

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 271
Timing and reliability. As in Section 3.1.4, with probability > 1 − 1/8, Q is the target
group Q̇ of order qd−2, and L is the complement L̇ to Q̇ in NG(Q̇)′ that normalises Q̇l .
The constructions require O(μd3 log2 d)-time (cf. [KS1, Section 4.3.2] and Remark 3.14
again).

Remark 3.16. Observe that [KS1, Section 43.2] uses the effective transitivity of Q [KS1,
Lemma 4.17]. However, in the present setting there is no problem with the timing (cf.
Remark 3.12) since q is bounded. Once again, as in Remark 3.13, we assume that Q = Q̇

and dispense with the “dot” notation.

3.2.5. Total timing and reliability for Section 3.2
We obtain all of the elements and subgroups in Section 3.2 with probability > 1 −

(1/8 + 1/16 + 1/8) in O(ξd + μd3 log2 d)-time.

3.3. Algorithms for Q

Let ΨJ :Ω+(VJ) → J be the isomorphism constructed by Procedure 3.3 or Sec-
tion 3.2.2, and let Q and L be the groups constructed in (3.9) or Section 3.2.4. Recall that
(with high probability) Q is the natural orthogonal module for L, where L corresponds to
the group Ωε(V)e1,e−1

∼= Ωε(d − 2, q). However, since we do not have the action of Fq

on Q, we cannot yet regard Q algorithmically as an Fq -module. The main construction
in this section constitutes a step in this direction: in Section 3.3.3 we obtain a matrix AQ

representing a nondegenerate L-invariant quadratic form on Q.

3.3.1. Evaluating forms
In this subsection and the next we present two technical subroutines involving

Ω+(6, q)-subgroups that are needed for our construction of the matrix AQ.
Let K = 〈SK 〉 be any given black box group isomorphic to Ω+(6, q), and let

ΨK :Ω+(6, q) → K be an effective isomorphism. Denote the invariant quadratic form
on the underlying 6-space VK by φ, fix a standard basis of VK relative to φ, and let f1, f−1
be a hyperbolic pair in this basis. Let QK denote the subgroup Op(Ω+(6, q)〈f1〉)ΨK , and
let LK := Ω+(6, q)f1,f−1ΨK

∼= Ω+(4, q). Then, as in (2.11), the natural Ω+(6, q)f1,f−1 -
invariant quadratic form φ〈f1〉 on Op(Ω+(6, q)〈f1〉), together with the isomorphism ΨK ,
can be used to define a corresponding LK -invariant form φΨK

effectively on QK .
Specifically, the following subroutine takes, as input, the effective isomorphism ΨK

and any element u ∈ QK , and outputs the scalar φΨK
(u) ∈ Fq . (Of course the subroutine

can then also compute values for the associated bilinear form (,)ΨK
via the equation

(u1, u2)ΨK
= φΨK

(u1u2) − φΨK
(u1) − φΨK

(u2).)

Subroutine A. Use Lemma 2.16 to compute the preimage

u′ := uΨ −1
K ∈ Op

(
Ω+(6, q)f1

)
.

Compute the vector f−1u
′ relative to our standard basis, and return the f1-component of

this vector.

272 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
Lemma 3.17. Subroutine A is a Las Vegas routine that returns ΨK(u), with probability
> 1 − 1/128, in O(ξ + χ logq + μ log2 q)-time.

Proof. By definition, φΨK
(u) = φ〈f1〉(u′) = φ(w), where r1(w) = u′ (see Eqs. (2.5)

and (2.11)). The proof now follows from (2.4) by noting that f−1r1(w) = f−1 + w +
φ(w)f1. The stated timing and reliability estimates are precisely those for Lemma 2.16. �
3.3.2. Matching forms

In the next section we will need to consider a second naturally embedded Ω+(6, q)-
subgroup K of G such that J0 = J ∩ K ∼= Ω+(4, q); here K is given together with an
effective isomorphism ΨK :Ω+(6, q) → K . By Section 3.3.1, ΨJ induces a nondegenerate
L∩J -invariant quadratic form φΨJ

on QJ = Q∩J , while ΨK induces an L∩K-invariant
form on QK = Q ∩ K . Then QJ ∩ J0 is a hyperbolic line of QJ (as well as of QK);
nonsingular elements of QK are meaningful in terms of φΨK

.
In this setting the following subroutine takes as input J , K , ΨJ , ΨK and a nonsingular

element u0 ∈ Q ∩ J0, and returns a scalar λ ∈ Fq .

Subroutine B. Using Subroutine A in Section 3.3.1 twice (once with input ΨJ and u0,
and once with input ΨK and u0), compute α1 := φΨJ

(u0) and α2 := φΨK
(u0). Return λ :=

α1/α2 ∈ Fq .

Lemma 3.18. Subroutine B is a Las Vegas routine which, with probability at least 1−1/64,
in O(ξ + χ logq + μ log2 q)-time returns a scalar λ such that

φQ = λφ′
Q, (3.19)

where φQ and φ′
Q are L-invariant quadratic forms on Q that extend φΨJ

and φΨK
, respec-

tively.

Proof. Since any two nondegenerate L-invariant quadratic forms on Q differ only by a
scalar, there is a scalar behaving as in (3.19). Now use Lemma 3.17. �
3.3.3. The matrix AQ

We do not yet know that Q is the correct group Q̇, nor have we constructed an ac-
tion of Fq turning Q into an Fq -space. Thus, although there is a unique nondegenerate
L-invariant quadratic form φQ on Q that extends the nondegenerate LJ -invariant quadratic
form φΨJ

on QJ (defined, effectively, by Subroutine A), we do not yet have φQ available
to work with. Nevertheless, we can now construct a lower triangular ((d − 2) × (d − 2))-
matrix AQ = �αij �, with entries in Fq , that will allow us to specify the bilinear form (,)Q
associated with φQ. Namely, we will have

αij = (ri , rj)Q for 1 � i < j � d − 2, (3.20)

where ri := ri1, 1 � i � d − 2 (cf. (3.9)), will be a basis of Q once we know that Q = Q̇

is an Fq -space of dimension d − 2. More precisely, in the notation of 3.1.3 and (3.9), the
following procedure takes as input

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 273
(1) the effective isomorphism ΨJ :Ω+(VJ) → J ,
(2) the subgroup J0 � J (isomorphic to Ω+(4, q)) and Q0 := Q ∩ J0,
(3) the elements ri and u0 := r1(e2 + e−2)ΨJ ∈ Q0, and
(4) the subgroup L,

and returns one of the following outputs:

(a) A matrix AQ = �αij � together with the report “Q = Q̇” (this is the desired output);

(b) The report “Q �= Q̇” (this output occurs if the procedure runs as expected, but we
failed to generate Q̇ in Section 3.1.4 or 3.2.4); or

(c) The report “failure” (this output occurs if the procedure encounters bad luck with its
random choices).

Procedure 3.21 (construction of AQ).

1. Initialise αij := 0 for all i � j . Next, for 1 � i < j � 4, use Subroutine A to compute
αij := (ri , rj)ΨJ

.
2. For all other pairs 1 � i < j � d − 2, proceed as follows:

i For at most �12 log(4d)� choices c ∈ L, set

K = Kij (c) := 〈
J0,R

c
i ,R

c
j

〉
for J0 ∼= Ω+(4, q) in Section 3.1.3(v); use Lemma 2.16 to test whether K ∼=
Ω+(6, q); if so, let ΨK :Ω+(6, q) → K denote the resulting effective isomor-
phism, and move to step iii.

ii If no ΨK is found in step i, report “failure” and stop.
iii Repeat Subroutine B at most �2 log(8d)/7� times (with input ΨJ , ΨK , u0) to find

a scalar λ = λij (c).
iv Repeat Subroutine A at most �log(8d)/3� times to find βij := (rc

i , rc
j)ΨK

. Put
αij := λβij .

3. Let AQ := �αij �.
If AQ + Atr

Q is nonsingular, return AQ together with the report “Q = Q̇”.

If AQ + Atr
Q is singular, report “Q �= Q̇” and stop.

Lemma 3.22. Procedure 3.21 is a Las Vegas algorithm which, with probability at least
15/16, in O(d2 logd · logq{ξ + χ logq + μ log2 q} + d3 logq)-time returns an output of
type (a) or (b). Moreover, if one of these outputs is returned, then it is guaranteed to be
correct in the following sense:

for a type (a) output, Q = Q̇ with probability 1 and (3.20) holds; and
for a type (b) output, Q
= Q̇ with probability 1.

Proof. We consider correctness, reliability and timing of Procedure 3.21 separately. Recall
that, since Remarks 3.13 and 3.16, we have been assuming that Q is the desired group Q̇.

274 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
Correctness. This principally involves showing that the scalars αij satisfy (3.20). This
holds when i = j since ri is a long root element (cf. (2.8)). Since we want AQ to be lower
triangular, there is nothing to prove concerning the remaining αij initialised in step 1.
Consider a fixed pair 1 � i < j � d − 2 in step 2, and suppose that the procedure succeeds
in producing the following:

2.i an isomorphism ΨK :Ω+(6, q) → K = 〈J0,R
c
i ,R

c
j 〉 for some c ∈ L;

2.iii a scalar λ; and
2.iv a scalar αij .

In Lemma 3.18 we use the element u0, which is nonsingular with respect to φQ (since Q0
is isometric to the hyperbolic line 〈e2, e−2〉): λ in step 2.iii satisfies φ′

Q = λφQ. Hence,
αij = λβij = λ(rc

i , rc
j)′Q = λ(ri, rj)

′
Q = (ri , rj)Q, as required.

Thus, we have obtained the correct values (ri , rj)Q for 1 � i < j � d − 2. Moreover,
AQ+Atr

Q is the matrix of (,)Q with respect to the Fq -basis r1, . . . , rd−2 of Q. In particular,
this matrix is nonsingular.

It remains to show that, if Q is not the desired group Q̇, then AQ + Atr
Q is singular.

By 3.1.3(i), Ri , 1 � i � 4, are Fq -subspaces of the Fq -space Q̇, and hence so is Q by (3.9).
Thus, AQ +Atr

Q is the matrix of a symmetric bilinear form defined using linearly dependent
vectors r1, . . . , rd−2 of that Fq -space, and hence is, indeed, singular.

Thus, Q is the desired group Q̇ precisely as the test in step 3 decides.

Reliability. Observe that Lemma 2.16, Subroutines A and B are Las Vegas algorithms, so
the present procedure is also Las Vegas.

Since an upper bound on the probability that Q
= Q̇ was already obtained in 3.1.4
and 3.2.4, and was included in the reliability estimates for Sections 3.1 and 3.2, we may
once again assume from now on that Q = Q̇.

Claim 1. For a fixed pair 1 � i < j � d − 2, a choice c ∈ L produces K = Kij (c) ∼=
Ω+(6, q) with probability at least 1/4.

Let V ′ denote the Fq -space underlying G. The group J0 acts on V ′ with nondegenerate
4-dimensional support [V ′, J0], and Q0 fixes a singular point x′+ of [V ′, J0]. Similarly,
Ql

0 fixes the singular point x′− = (x′+)l /∈ (x′+)⊥ of [V ′, J0]. Consider V ′
K = [V ′,K] and

QK = 〈Q0,R
c
i ,R

c
j 〉. Since V ′

K is spanned by the spaces [V ′, 〈J0,R
c
i 〉] and [V ′, 〈J0,R

c
j 〉],

each of dimension at most 5 (since x+ is in the supports of J0, Ri and Rc
i), we have

dimV ′
K � 6.

By Lemma 2.1(a) or (b), with probability at least 1/4, QK is a 4-space of Q of Witt
index 2. In that case, by the definition of Q(x+) in Section 2.3, [V ′,QK] is a 5-space
with radical x′+ and not containing x′−. It follows that V ′

K contains the distinct 5-spaces
[V ′,QK] and [V ′,Ql

K], so that dimV ′
K � 6. For such QK , moreover, since V ′

K contains
the hyperbolic line 〈x′+, x′−〉, and since QK is isometric to V ′

K/〈x′+, x′−〉, it follows that V ′
K

is nondegenerate of (maximal) Witt index 3.

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 275
Thus, with the stated probability, for a fixed choice c ∈ L the group K is isomorphic to
a subgroup of Ω+(6, q). Claim 1 now follows by noting that, for such a c, the groups QK

and Ql
K generate a subgroup of K isomorphic to Ω+(6, q).

Claim 2. For a fixed pair 1 � i < j � d − 2, steps 2.i–2.iv produce αij with probability at
least 1 − 1/8d2.

For, if c ∈ L gives rise to K ∼= Ω+(6, q), then Lemma 2.16 produces an effective iso-
morphism ΨK :Ω+(6, q) → K with probability > 1/2. Hence, by Claim 1, c produces a
suitable ΨK with probability > (1/4) · (1/2). The probability that none of the �12 log(4d)�
choices c produces a suitable ΨK is therefore at most (7/8)12 log(4d) < 1/(4d)2.

On the other hand, the repetitions of Subroutines A and B in steps 2.iii and 2.iv ensure
that each of the scalars λ and αij is obtained with probability > 1 − 1/(8d)2 − 1/(8d)2.
For, a single call to Lemma 3.17 succeeds with probability � 1−1/128; thus all of the calls
fail with probability � (1/27)log(8d)/3 < (1/8d)2. Similarly, all of the calls to Lemma 3.18
fail with probability � (1/8d)2.

Hence, steps 2.i–iv compute the desired scalar αij with probability > 1 − (1/16d2 +
1/64d2 + 1/64d2) > 1 − 1/8d2, as claimed.

It now follows that the probability that at least one of the at most d2/2 iterations of step
2 fails to produce the corresponding scalar αij for some i, j is less than (d2/2)(1/8d2) =
1/16. Thus the procedure computes all of the scalars αij with probability > 15/16.

Timing. The timing of each iteration of the main loop is dominated by step 2.i, in which
O(logd) calls to Lemma 2.16 are made. There are O(d2) iterations, so the procedure takes
O(d2 logd · logq{ξ + χ logq + μ log2 q} + d3 logq)-time, as stated. (The d3 logq term is
the time required to test whether AQ + Atr

Q is nonsingular in step 3.) �
3.3.4. Defining Ψ on Q(x+)

The following procedure takes as input the matrix AQ returned by Procedure 3.21,
and returns a bijection, f ∗, between generating sets for the matrix group Q(x+) and the
black box group Q. (Recall the definition of the elements rij : see (3.9) for q � 16, and
Section 3.2.4 for q < 16.)

Procedure 3.23.

1. Initialise w1 := e2, w2 := e−2, w3 := e3, w4 := e−3.
2. Using linear algebra in the (d − 6)-dimensional orthogonal space V ⊥

J ⊂ V = F
d
q , find

a basis w5, . . . ,wd−2 of singular vectors having the property that (wi,wj) = αij for
all 5 � i < j � d − 2.

3. For 1 � i � d − 2, 1 � j � k, let r ′
ij := r1(ρ

j−1wi), and set

T (x+) := {
r ′
ij | 1 � i � d − 2, 1 � j � k

}
,

(3.24)
S∗

Q := {
rij | 1 � i � d − 2, 1 � j � k

}
.

4. Return the bijection f ∗ :T (x+) → S∗
Q sending r ′

ij
→ rij for 1 � i � d − 2, 1 � j � k.

276 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
Only linear algebra and bookkeeping are required for the construction of T (x+). The
timing for Procedure 3.23 is therefore dominated by that of our earlier constructions. The
following result demonstrates that the bijection f ∗ output by the procedure is induced
by an epimorphism Ωε(V) → G upon restriction; note, however, that the homomorphism
Q(x+) → Q defined by f ∗ is not yet an effective homomorphism.

Lemma 3.25. Let f ∗ :T (x+) → S∗
Q be the bijection output by Procedure 3.23 and let

f ∗ ∪ΨJ denote the obvious bijection T (x+)∪Ω+(VJ) → S∗
Q ∪ J . Then there is a unique

epimorphism Ψ :Ωε(V) → G that restricts to f ∗ ∪ ΨJ .

Proof. We will show that f ∗ extends (uniquely) to an isometry f :Q(x+) → Q that co-
incides with ΨJ on Q(x+) ∩ Ω+(VJ); the result will then follow from Proposition 2.12.
(Note that the quadratic form on Q(x+) is φx+ , defined as in (2.5) via the assignment
φx+(r1(w)) := φ(w) for w ∈ 〈x+, x−〉⊥, and the quadratic form on Q is φQ, whose matrix
was constructed in Procedure 3.21.)

By construction, the basis w1, . . . ,wd−2 satisfies (wi,wj) = (ri , rj)Q for 1 � i < j �
d − 2 (cf. (3.20)). Since the wi are singular, and the ri are long root elements, we also
have φ(wi) = φQ(ri) = 0. As the wi and ri are Fq -bases of 〈x+, x−〉⊥ and Q respectively,
it follows that wi
→ ri extends uniquely to an isometry 〈x+, x−〉⊥ → Q. Thus the map
r1(wi)
→ ri extends uniquely to an isometry f :Q(x+) → Q. Furthermore, the vectors
w1, . . . ,w4 were selected so that r1(ρ

j−1wi)ΨJ = rij (1 � i � 4,1 � j � k), so f co-
incides with ΨJ on Q(x+) ∩ Ω+(VJ). It now follows from Proposition 2.12 that there is
a unique epimorphism Ψ :Ωε(V) → G extending both ΨJ and the map r1(wi)
→ ri , for
1 � i � d − 2.

It remains to show that r ′
ijΨ = rij for 1 � i � d − 2, 1 � j � k (that is, we must verify

that the bijection f ∗ is consistent with the action of the field). This is clear for 1 � i � 4,
since f ∗ was constructed to agree with ΨJ on T (x+)∩Ω+(VJ). For i � 5, by construction
of the rij , there exists σi ∈ L such that rij = r

σi

1j (5 � i � d − 2). Let σ ′
i denote the unique

element of the preimage σiΨ
−1 that fixes the two vectors e1, e−1 ∈ V . Then

r1(wi) = ri1Ψ
−1 = r

σi

11Ψ
−1 = (

r11Ψ
−1)σ ′

i = r1(w1)
σ ′

i = r1
(
w

σ ′
i

1

)
,

so that w
σ ′

i

1 = wi . Now

r ′
ijΨ = r1

(
ρj−1wi

)
Ψ = r1

(
ρj−1w1

)σ ′
i Ψ = r1

(
ρj−1w1

)
Ψ σ ′

i Ψ = r
σi

1j = rij , (3.26)

as desired. �
3.4. The data structure for Ψ

We are finally in a position to describe our data structure.

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 277
3.4.1. Algorithms for the natural representation
Our strategy is to follow the algorithm presented in [Br1] for orthogonal groups in their

natural representation. We therefore provide a brief commentary of the relevant parts of that
algorithm, and indicate the modifications needed to make use of it in the present setting.

In [Br1, 4.4] a generating set, T (x+), consisting of long root elements, is constructed
for the group Q(x+). As the notation suggests, this generating set is an analogue of the one
in (3.24), and has all of the properties of the latter set.

Then, in [Br1, 4.5], the set T (x+) is replaced by a standard generating set Δ(x+).
More precisely, each element of a fixed, prescribed set Δ(x+) is constructed using a short
SLP from T (x+). The routine to construct Δ(x+) takes, in fact, any generating set T ′ for
Q(x+), and produces SLPs of length O(d logq) from T ′ to the elements of Δ(x+). Thus,
although the set T (x+) obtained here may differ from its analogue in [Br1], we can still
construct exactly the same set Δ(x+) obtained in [Br1, 4.5].

Finally, in [Br1, 4.6], O(kd2) elements of a “canonical” generating set T for Ωε(V)

are constructed using short SLPs from the set Δ(x+)∪Δ(x+)l
′
. In our setting, by using the

subroutines in [Br1, 4.4 through 4.6] we can construct an SLP of length O(d logq) from
T (x+) ∪ {l′} to each element of the analogous set T constructed in [Br1].

Timing. The total timing for Sections 4.5 and 4.6 of [Br1] is O(d3 log2 q), and hence is
dominated by the timing for our previous constructions.

3.4.2. New generators for G

By Lemma 3.25, the obvious bijection T (x+) ∪ {l′} → S∗
Q ∪ {l} is the restriction of a

unique epimorphism Ψ :Ωε(V) → G. In 3.4.1, an SLP was constructed from T (x+)∪ {l′}
to each t ′ ∈ T ; use the above bijection to find the image t ′Ψ , and set

S∗ := {t ′Ψ | t ′ ∈ T }. (3.27)

Timing. In fact we do not evaluate each SLP from scratch: this would require O(μd logq ·
kd2) = O(μd3 log2 q)-time. Instead, we construct the image of Δ(x+) in G in O(μkd ·
d logq) = O(μd2 logq)-time. Then additional O(μkd2)-time is required to construct all
of the elements of S∗. Hence, we construct S∗ in O(μd2 logq)-time.

3.4.3. The data structure
The data structure returned by the preprocessing phase of the algorithm contains the

following information (compare with the summary at the start of Section 3):

(a) The generating set T for Ωε(V).
(b) The subset S∗ of G.
(c) The obvious bijection T → S∗ (extending to the target epimorphism Ψ).
(d) The effective isomorphism ΨJ :Ω+(VJ) → J (also extending to Ψ).
(e) The elements l, h,h+ ∈ J constructed in Section 3.1.3, together with their preimages

l′, (h+)′ ∈ Ω+(VJ).

278 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
3.5. Total timing and reliability for Section 3

The failure probabilities of the subroutines in this section sum to less than 1/2. The
timing is dominated by Sections 3.1.1 and 3.3.3. Hence, our algorithm returns a suitable
data structure, with probability > 1/2, in O(d3 logd logq{d + log3 q} + ξd2 logd logq +
χd2 logd log2 q)-time, as stated in Theorem 1.1.

4. Straight-line programs

The previous section dealt with the preprocessing phase of the algorithm: we produced
a data structure that specifies an epimorphism, Ψ , from a matrix group Ωε(V) to our given
black box group G = 〈S〉. This section deals with the application phase of the algorithm:
we present routines that compute images and preimages under Ψ . It suffices to give algo-
rithms to solve each of the following problems:

(SLP1) Given g′ ∈ Ωε(V), write an SLP of length O(d2 logq) from T to g′.
(SLP2) Given g ∈ G, write an SLP of length O(d2 logq) from S∗ to g.

For example, given g′ ∈ Ωε(V), we take the SLP returned by (SLP1) and evaluate it from
the set S∗ (via the bijection T → S∗) to obtain the image g′Ψ in G.

4.1. An algorithm for (SLP1)

In [Br1, Section 5], a deterministic O(d3 logq)-time algorithm is presented, which
writes an SLP of length O(d2 logq) from essentially the same generating set T as the
one constructed here to any given element of Ωε(d, q). This yields an O(μd2 logq)-time
algorithm to find the Ψ -image of any given element of Ωε(d, q), as stated in Theorem 1.1.

4.1.1. Constructing Z(G)

Until now, we have assumed only that G is a homomorphic image of a known orthog-
onal group: we do not yet know whether G is Ωε(d, q) or PΩε(d, q). Using (SLP1), we
can now decide which of those groups G is, by constructing Z(G):

Note that Z(Ωε(d, q))
= 1 if and only if d ≡ 0 (mod 4) and ε = 1, or if d ≡ 2 (mod 4)

and q ≡ ε (mod 4). In each of these cases, write an SLP from T to the matrix z′ = −Id ,
where Id is the d × d identity matrix. Evaluate that SLP from S∗ to obtain an element
z ∈ G; then Z(G) = 〈z〉. If z = 1 then G ∼= PΩε(d, q). If z
= 1 then, for convenience later
on, replace T by T ∪ {−Id}, S∗ by S∗ ∪ {z}, and extend the bijection accordingly.

Timing. (SLP1) writes an SLP of length O(d2 logq) from T to −Id in O(d3 logq)-
time; the evaluation of this SLP is then carried out in O(μd2 logq)-time. We consider the
construction of Z(G) to be part of the preprocessing phase, and its timing is dominated by
that of Section 3.

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 279
Table 1

[KS1] algorithm Present algorithm

VL 〈e1, e−1〉⊥
“Q” Q(x+)

“L” Ωε(V)e1,e−1
∼= Ωε(〈e1, e−1〉⊥)

λ−1
L

:Ωε(VL) → L Ψ |Ωε(V)e1,e−1
:Ωε(〈e1, e−1〉⊥) → L

[λ• :QL → “Q”“L”] [(Ψ |Ωε(V)e1
)−1 :QL → Ωε(V)e1]

4.2. An algorithm for (SLP2)

As in [KS1,Br2], it is much more difficult to write SLPs within the black box group G,
so that significantly different techniques are required for problem (SLP2). The algorithm
we give is a modification of that in [KS1, Proposition 4.23]. Indeed, most of the work in this
subsection involves adapting various subroutines from [KS1] so that they can be used in
our setting, often refining them in order to satisfy our more stringent timing requirements.

4.2.1. Linear algebra in Q

It now becomes essential to regard Q algorithmically both as an Fq - and Fp-space.
(Recall that we were able to finesse this issue in the preprocessing phase; notably in Sec-
tion 3.3.4.) It is possible to approach this problem in a manner similar to that in which the
unitary case was handled in [Br2, Section 4.4.3]. However, the more complicated structure
of orthogonal groups and, ironically, the fact that Q is abelian here, renders this method
rather involved. In the interests of exposition, we prefer to adapt routines from [KS1] that
handle such computations. To do so we will need analogues of the following constructions.

(a) A subgroup L ∼= Ωε(d − 2, q) of G, that is a complement to Q in NG(Q)′ (cf. [KS1,
Corollary 4.18]).

(b) An effective isomorphism λL :L → Ωε(VL), where VL is an Fq -space of dimension
d − 2 (unfortunately this was obtained recursively in [KS1, 4.3.3]).

(c) The existence of an isomorphism λ• :QL → “Q”“L” extending λL, for suitable matrix
groups “Q” and “L” (cf. [KS1, Section 4.3.3] again).

Table 1 serves as a “dictionary,” enabling the reader to pass back and forth between [KS1]
and the present paper. We constructed generators for Q and a suitable complement L in
Section 3.1.4. Although we do not yet have an isomorphism λL :L → Ωε(d − 2, q) which
is effective in both directions, in view of (SLP1) the restriction of Ψ to the subgroup
Ωε(V)e1,e−1 is effective in one direction; fortunately this is all we will need. Finally, the
restriction of Ψ to Ωε(V)e1 confirms the existence of λ• in (c). (The map λ• and its ana-
logue here are listed in square brackets in Table 1 because we only require their existence
to have been established: we have not yet constructed an effective analogue of λ•.)

Lemma 4.1. In deterministic O(μd2 logq)-time, a generating set

Bp := {tij | 1 � i � d − 2, 1 � j � k} (4.2)

280 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
for Q can be found such that the following hold:

(i) For 1 � i � d − 2, if Ai := 〈tij | 1 � j � k〉, then |Ai | = q and Q = A1 ×· · ·×Ad−2.
(ii) In deterministic O(μd)-time, any given u ∈ Q can be expressed in the form u =∏d−2

i=1 ai with ai ∈ Ai .
(iii) In deterministic O(χd)-time, any given u ∈ Q can be expressed in the form u =∏d−2

i=1
∏k

j=1 t
nij

ij , where 0 � nij < p. (We say that this expresses u “as an Fp-vector
relative to Bp .”)

(iv) In deterministic O(χd)-time, one can write an SLP of length O(d logq) from Bp to
any given u ∈ Q.

Proof. The groups Ai in (i) are precisely those constructed in [KS1, Lemma 4.19], where
(ii) was also proved. We now describe how the specific generating sets {tij | 1 � j � k} for
the Ai are constructed. We consider two cases, and refer to the corresponding cases in the
proof of [KS1, Lemma 4.19] for the notation W1,W2, . . . that we use.

Case p > 2. Choose the 1-space W1 so that it lies in the 4-space 〈e2, e3, e−2, e−3〉 =
VJ ∩ 〈e1, e−1〉⊥ (recall that 〈e1, e−1〉⊥ plays the role of VL). Find a matrix c′

d−2 ∈
Ωε(〈e1, e−1〉⊥) moving Wd−2 to a 1-space Yd−2 within 〈e2, e3, e−2, e−3〉. Use (SLP1)
to construct cd−2 := c′

d−2Ψ ∈ L. Fix vectors v1 ∈ W1 and y ∈ Yd−2, and, for 1 � j � k,
use (SLP1) again to find each of the following elements of J :

t1j := r1
(
ρj−1v1

)
Ψ ∈ A1 and sd−2,j := r1

(
ρj−1y

)
Ψ.

Put td−2,j := s
c−1
d−2

d−2,j ∈ Ad−2 and vd−2 := yc′
d−2 . Finally, for 2 � i � d − 3, put tij :=

tc
i−1

1j ∈ Aj , and vi := vc′i−1

1 where c ∈ L and c′ are as defined in the proof of [KS1,
Lemma 4.19].

Case p = 2. Write d = 2n (in the present paper the letter “m” used in [KS1, Lemma 4.19]
has been reserved for the Witt index of V). This time W1 is a nondegenerate 2-space,
which we choose so that it lies in the 4-space 〈e2, e3, e−2, e−3〉. Find a matrix c′

n−1 ∈
Ωε(〈e1, e−1〉⊥) moving the nondegenerate 2-space Wn−1 to a 2-space Yn−1 within
〈e2, e3, e−2, e−3〉. Use (SLP1) to construct cn−1 := c′

n−1Ψ ∈ L. Relabel the groups con-
structed in [KS1, Lemma 4.19]: for 1 � l � n − 1, put A2l−1 := Alx , and A2l := Aly . Fix
vectors v1, v2 ∈ W1, y1, y2 ∈ Yn−1, and, for 1 � j � k, use (SLP1) to find each of the
following elements of J :

t1j := r1
(
ρj−1v1

)
Ψ ∈ A1, t2j := r1

(
ρj−1v2

)
Ψ ∈ A2,

sd−3,j := r1
(
ρj−1y1

)
Ψ, sd−2,j := r1

(
ρj−1y2

)
Ψ.

Put td−3,j := s
cn−1
d−3,j ∈ Ad−3, td−2,j := s

cn−1
d−2,j ∈ Ad−2, vd−3 := y

c′
n−1

1 and vd−2 := y
c′
n−1

2 .

Finally, for 2 � l � n − 2, put t2l−1,j := tc
l−1

1j ∈ A2l−1, t2l,j := tc
l−1

2j ∈ A2l , v2l−1 := vc′l−1

1

and v2l := vc′l−1
, where, once again, c ∈ L and c′ are as in [KS1, Lemma 4.19].
2

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 281
We can now prove (iii) of the lemma when p > 2, the case p = 2 being very similar.
Let u be the given element of Q. Use (ii) to find elements ai ∈ Ai (1 � i � d − 2) such
that u = a1 . . . ad−2. For each 1 � i < d − 2, use Lemma 2.16 (with ΨJ) to write ac1−i

i ∈ J

as ac1−i

i

∏k
j=1 t

nij

1j . Then, for 1 � i < d − 2,

ai = (
ac1−i

i

)ci−1 =
(

k∏
j=1

t
nij

1j

)ci−1

=
k∏

j=1

(
tc

i−1

1j

)nij =
k∏

j=1

t
nij

ij ,

as claimed. An Fp-vector for ad−2 is computed similarly.
As presented above, the algorithm computes O(d) preimages of elements of J using

Lemma 2.16. However, all such computations are performed with elements that lie inside
1-dimensional subspaces of QJ ; hence each occurs within some Ω+(4, q) subgroup of J .
In view of the isomorphism Ω+(4, q) ∼= SL(2, q) ◦ SL(2, q), ΨJ can be restricted to a
suitable Ω+(4, q) subgroup, and then each Fp-vector may be found using the SL(2, q)-
oracle in O(χ)-time. The stated timing is that required for O(d) such uses of the SL(2, q)-
oracle.

Now (iv) follows immediately from (iii). �
Parts (iii) and (iv) of the previous lemma permit us to compute effectively within Q both

as an Fp-space and an abstract group, respectively; our next lemma gives the algorithms
necessary for computing with Q as Fq -space.

Remark 4.3. In the above proof we constructed a basis v1, . . . , vd−2 of 〈x+, x−〉⊥ such
that

r1(vi)Ψ = bi := ti1 for 1 � i � d − 2.

If we set

B := {bi | 1 � i � d − 2}, (4.4)

then the expression “write u ∈ Q as an Fq -vector relative to B” will mean “find
(λ1, . . . , λd−2) ∈ F

d−2
q such that uΨ −1 = ∏d−2

i=1 r1(λivi).”

Lemma 4.5. There are deterministic algorithms for each of the following.

(i) Given any u ∈ Q, write u as an Fq -vector relative to B in O(χd)-time.
(ii) Given g ∈ NG(Q), find the (d − 2) × (d − 2) matrix g̃ representing the linear trans-

formation induced by g on the Fq -space Q in O(χd2)-time.
(iii) Given any u ∈ Q, find φQ(u) in O(χd)-time, where φQ is the L-invariant quadratic

form on Q represented by the matrix AQ, constructed in Procedure 3.21.

Proof. (i) Use Lemma 4.1(iii) to write u as an Fp-vector relative to Bp using some
nij ∈ Fp . For 1 � i � d − 2, put λi := ∑k

nij ρ
j−1. Return (λ1, . . . , λd−2) ∈ F

d−2
q .
j=1

282 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
To see that this output is correct, note that each tij ∈ Bp was constructed in the
proof of Lemma 4.1 either as the image under ΨJ of an element r1(ρ

j−1w) for some
w ∈ 〈e1, e−1〉⊥, or else as an explicit L-conjugate of such an element. Hence, just as
in (3.26), if biΨ

−1 = ti1Ψ
−1 = r1(vi) for fixed 1 � i � d − 2, then tijΨ

−1 = r1(ρ
j−1vi)

for 1 � j � k.
(ii) This follows immediately from (i) (cf. [KS1, 4.4.3(5)]).
(iii) Recall that φQ can be evaluated via the φQ(u) = φx+(uΨ −1) (cf. (2.10)). It follows

that φQ(u) can easily be computed from the vector returned in (i) since we know all of the
scalars φ(vi) and (vi, vj). �
4.2.2. Exploiting geometry

We have seen in Section 2.1.1 that each singular point x in an orthogonal module de-
termines a subgroup Q(x) of the corresponding orthogonal group. Thus the conjugates
of the subgroup Q provide us with models of singular points within the given black box
group G. The ability to distinguish between given points, determine whether two points are
“perpendicular” and, under certain geometric constraints, conjugate one point to another,
are fundamental tasks that are crucial to our algorithm.

Lemma 4.6. There is an O(μd)-time deterministic algorithm, that decides whether or not
two given “points” are equal.

Proof. See [KS1, p. 72] (noting that the timing of this algorithm is O(μd) rather than
O(μd logd), since our group Q was generated using only O(d) long root groups). �

Although perpendicularity testing and conjugacy are also dealt with in [KS1, Sec-
tion 4.3.2], we need new algorithms to bring these problems into polynomial time. Our
methods will make essential use of the SL(2, q)-oracle, often giving rise to randomised
(rather than deterministic) algorithms. We begin by describing a special use for the
SL(2, q)-oracle.

Let H = 〈SH 〉 be a given subgroup of G such that Op(H) is a class 2 nilpotent group
and H/Op(H) is isomorphic to SL(2, q). Then there is a deterministic membership test
for Op(H): for a ∈ H , we have a ∈ Op(H) if and only if [a, at] commutes with a for
all t ∈ SH . The membership test requires at most 6|SH | group operations in H . The next
observation follows from the discussion in Section 2.2 concerning the use of the SL(2, q)-
oracle with quotient groups.

(p-Core) For any given black box group H = 〈SH 〉 such that Op(H) is a class 2 nilpotent
group and H/Op(H) ∼= SL(2, q), in O(χ)-time one can use the SL(2, q)-oracle
to construct an effective isomorphism SL(2, q) → H/Op(H). Moreover, once
such an effective isomorphism has been constructed, the oracle may be used to
construct (nearly) uniformly distributed random elements of Op(H) in time O(χ)

per element.

Remark 4.7. In practice (for example, in the context of the Matrix Group Project) the
SL(2, q)-oracle uses a vector space of characteristic p upon which the group SL(2, q) acts;

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 283
see [CLO]. Assuming that G < GL(W) for a vector space W of characteristic p, a suitable
module for H/Op(H) in application (p-Core) is obtained as follows: Find a section W0

of W upon which H acts nontrivially and irreducibly; then Op(H) acts trivially on W0, so
that H acts as SL(2, q) on W0 (cf. [KS3]).

We are now ready for our analogue of [KS1, Lemma 4.15]. We begin with a procedure
that takes as input generators for two (distinct) groups Qg1 and Qg2 and decides whether
or not they are perpendicular.

Procedure 4.8 (perpendicularity test).

1. Find a long root subgroup R1 of Qg1 that does not normalise Qg2 .
2. Selecting one generator, r , from each of d −2 long root groups generating Qg2 , use the

SL(2, q)-oracle to test whether 〈R1, r〉 ∼= SL(2, q). When some choice r produces such
a subgroup, use the SL(2, q)-oracle to find an element t ∈ 〈R1, r〉 such that r ∈ R t

1 .
3. Pick a generator u of Qg1 not in R1. Test whether [ut ,Qg2] = 1 by selecting one

generator from each long root group generating Qg2 . If so, report that Qg1 and Qg2

are perpendicular; else report that they are not perpendicular.

Lemma 4.9. Procedure 4.8 is an O(χd + μd2)-time deterministic algorithm, that decides
whether or not two given distinct “points” Qg1 and Qg2 are perpendicular.

Proof. As in the proofs of Lemmas 3.10 and 3.22, let V ′ denote the orthogonal space
underlying G. For i = 1,2, let x′

i denote the singular point of V ′ corresponding to Qgi ,

and let Σ ′
1 = [V ′,R1] be the t.s. line (containing x′

1) corresponding to R1. Then x′
2 /∈ Σ ′

1
⊥

since R1 does not normalise Qg2 . One of the long root elements r generating Qg2 satisfies
Σ ′

2 ∩ Σ ′
1
⊥ = 0, where Σ ′

2 = [V, r]. (For, if not, then each t.s. line corresponding to a

generating long root group of Qg2 contains a point in Σ ′
1
⊥. Those points then span a

subspace of the degenerate (d − 2)-space Σ ′
1
⊥, whereas they also project onto a spanning

subset of the nondegenerate (d − 2)-space x′
2
⊥
/x′

2.)
Then D := 〈R1, r〉 ∼= SL(2, q) for such an element r (cf. [KS1, 4.1.2(v)]). Here [V ′,D]

is a nondegenerate 4-space of Witt index 2; D fixes each of q + 1 t.s. lines and acts transi-
tively on the remaining q + 1 t.s. lines of this 4-space, with Σ ′

1 and Σ ′
2 distinct members

of the latter collection. An element t ∈ D conjugating R1 to the root group (in D) con-
taining r moves Σ ′

1 to Σ ′
2. Thus, if x′

1 and x′
2 are perpendicular, then t fixes the t.s. line

Σ = 〈x′ t
1 , x′

2〉 and hence sends x′
1 = Σ ∩ Σ ′

1 to x′
2 = Σ ∩ Σ ′

2; while if these points are
not perpendicular then x′ t

1 is point of Σ ′
2 distinct from x′

2. The commutator test in step 3
distinguishes between those two possibilities.

Timing. A suitable R1 not normalising Qg2 is found in O(μd2)-time by testing the equal-
ity of Qg2 and Qg2v for one generator v from each generating long root group of Qg1 ; R1 is
the long root group containing such a v. Finding a generator r such that 〈R1, r〉 ∼= SL(2, q)

requires at most d − 2 calls to the SL(2, q)-oracle. �

284 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
The next procedure finds generators for the long root group Qg1 ∩ Qg2 when Qg1 and
Qg2 are distinct and perpendicular. Recall that the element h in S∗, introduced in 3.1.3(iii),
acts on Q as a scalar that generates Fq as Fp-space (by (2.7), its preimage h′ in Ω+(VJ)

has this property with respect to Q(x+)). In particular, if r is any root element of Q, then
the normal closure 〈r〉〈h〉 is the root group containing r .

Procedure 4.10 (intersection).

1. Put H := 〈Qg1 ,Qg2〉.
2. Use (p-Core) to recognise constructively H/Op(H) ∼= SL(2, q), and to produce two

random elements u1, u2 ∈ Op(H).

3. Put z := [u1, u2]: if z
= 1, put h1 := hg1 and return 〈zhi
1 | 0 � i < k〉; else report

failure and stop.

Lemma 4.11. Procedure 4.10 is an O(χ)-time Las Vegas algorithm that returns Qg1 ∩Qg2

with probability > 0.49.

Proof. It follows from Lemma 2.9(b) that H = U � D with U = Op(H) of order q2d−7

and U ′ = Z(U) the desired intersection Qg1 ∩ Qg2 (here D ∼= SL(2, q)). The correct-
ness and stated reliability now follow directly from Lemma 2.9. (Note that if z
= 1, then
〈z〉〈h1〉 = 〈zhi

1 | 0 � i < k〉 is the root group containing z.) �
The following is a simple modification of [KS1, Lemma 4.16], bringing it into polyno-

mial time.

Lemma 4.12. In deterministic O(μd + χ)-time, given a long root element u not normal-
ising Qg , a point Qw can be found containing u and perpendicular to Qg .

Proof. Proceed exactly as in the proof of [KS1, Lemma 4.16]: test at most one element
from each member of a generating set of long root groups for Qg to find a ∈ Qg such
that [[a,u], u]
= 1; and let A denote the long root group containing a. Rather than list A,
we instead use the fact that 〈A,u〉 ∼= SL(2, q), together with the SL(2, q)-oracle, to find
b ∈ Au such that [u,ab] = 1. Now return Qw := Qgb . �

If x is a singular point of an orthogonal space V , then the group Q(x) < Ωε(V) acts
regularly on the set of singular points not perpendicular to x. The final procedure of this
subsection is an algorithmic analogue of this transitivity within our black box group G.
It takes as input generators for Q, and elements g1, g2 ∈ G such that neither Qg1 nor
Qg2 is perpendicular to Q, and outputs the unique element of Q conjugating Qg1 to Qg2

(cf. [KS1, Lemma 4.17]).

Procedure 4.13 (transitivity of Q). First test whether Qg1 = Qg2 and, if so, return
u := 1 ∈ Q. If Qg1 and Qg2 are distinct points, run Procedure 4.8 to decide whether or
not Qg1 and Qg2 are perpendicular and go to the appropriate case below. (Recall that Pro-

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 285
cedure 4.8 constructs long root groups Ri < Qgi with 〈R1,R2〉 ∼= SL(2, q).) All calls to
Procedure 4.10 should be repeated up to 3 times.

• (Qg1 and Qg2 are not perpendicular) Proceed exactly as in the proof of [KS1,
Lemma 4.17] to reduce to the perpendicular case. (Note that Procedure 4.10 should
be used in place of [KS1, Lemma 4.15(ii)], and that Lemma 4.12 should be used in
place of [KS1, Lemma 4.16].)

• (Qg1 and Qg2 are perpendicular) Use Procedure 4.10 to find Z := Qg1 ∩ Qg2 , and
fix a generator 1
= z ∈ Z. Use Procedure 4.10 again to find Y := Q ∩ Qz, and put
K := 〈R1,R2, Y 〉. Use (p-Core) to recognise constructively K/Op(K) ∼= SL(2, q),
and then to find u ∈ Y conjugating R1 to R2 mod Op(K). Return u.

Lemma 4.14. Procedure 4.13 is an O(χd + μd2)-time Las Vegas algorithm that finds the
unique u ∈ Q such that Qg1u = Qg2 with probability at least 1/2.

Proof. Let x′, x′
1, x′

2 denote the singular points of V ′ corresponding to Q, Qg1 , Qg2 re-
spectively. The reduction to the perpendicular case is proved in [KS1, Lemma 4.17]. We
may therefore assume that Qg1 and Qg2 are perpendicular, and hence that 〈x′

1, x
′
2〉 is to-

tally singular. Then z ∈ Z = Qg1 ∩ Qg2 moves x′ to a point of the 3-space 〈x′, x′
1, x

′
2〉

perpendicular to x′, and w′ = 〈x′, x′z〉 ∩ 〈x′
1, x

′
2〉 is the radical of this 3-space. Now

Y = Q∩Qz = R(〈x′,w′〉), R1 and R2 induce three distinct transvection groups on 〈x′
1, x

′
2〉,

fixing δ′, x′
1 and x′

2 respectively. Hence there exists a unique u ∈ Y moving R1 to R2 mod-
ulo Op(K); such u evidently moves x′

1 to x′
2, as desired.

There are at most three calls to Procedure 4.10, each of which is repeated up to three
times in order to ensure success with probability at least 1 − (0.51)3 > 0.867. Hence the
procedure finds the unique u ∈ Q with probability at least 0.8673 > 1/2. The timing is
dominated by that of Procedure 4.8. �
4.2.3. Straight-line programs from S∗

We are finally in position to give our algorithm for (SLP2). In fact, we merely give a
commentary on the proof of [KS1, Proposition 4.23], indicating where subroutines given
here are substituted for ones in [KS1], and giving a correspondingly revised timing esti-
mate.

We are given g ∈ G. Find y ∈ {1, l} ∪ Bl such that Qgy and Q are not perpendicular.
(Our element l and generating set B for Q are suitable analogues of j (γ) and S∗(2) ap-
pearing in [KS1, 4.2.2(iii)] and [KS1, 4.3.3], respectively.) Using Procedure 4.13 instead
of [KS1, Lemma 4.17], find u,v ∈ Q such that gyul−1v normalises both Q and Ql , and
replace g by gyul−1v. (Repeat the randomised Procedure 4.13 twice, if necessary, for each
of u and v.)

We have now reduced to the case where g normalises Q and Ql . Fix a nonsingu-
lar vector w ∈ Q and use Lemma 4.5(iii) to compute φQ(w), φQ(wg) and φQ(wh+

),
where h+ ∈ S∗ is the element constructed in 3.1.3(iv). Then, as in [KS1, Lemma 4.6(a)],
φQ(wg) = λ2φQ(w) and φQ(wh+

) = ζ 2φQ(w) for nonzero scalars λ, ζ with ζ of order
q − 1. Use DLog(F∗

q) to find i such that (ζ 2)i = λ2, and replace g by gh−i .

286 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
Now g induces an isometry of Q. Use Lemma 4.5(ii) to find the matrix g̃ representing
this isometry. If necessary, use Wall forms and the element h+ once again to modify g so
that g̃ ∈ Ωε(Q).

Finally, write the unique matrix g′ ∈ Ωε(V)e1,e−1 whose restriction to 〈e1, e−1〉⊥ is g̃.
Use (SLP1) to write an SLP of length O(d2 logq) from T to g′, and evaluate this SLP
from S∗ to obtain an element g0 ∈ G such that gg−1

0 ∈ Z(G). In the cases where G is not
simple, S∗ contains a generator for Z(G); hence the SLP is easily modified to give one
to g, as required.

Timing. The timing is dominated by the call to Lemma 4.5(ii) and the evaluation of
an SLP of length O(d2 logq) inside G. Hence, we obtain the desired SLP in O(χd2 +
μd2 logq) = O(χd2)-time, as stated in Theorem 1.1.

Reliability. Randomisation occurs only in finding the elements u,v ∈ Q using Proce-
dure 4.13. Repeating each such call ensures success with probability at least (3/4) ·
(3/4) > 1/2.

5. Concluding remarks

5.1. Verifying a presentation

Our assumption in Theorem 1.1 was that the given black box group G = 〈S〉 is known
to be a homomorphic image of Ωε(d, q). Our constructive recognition algorithm is a Las
Vegas algorithm only under this assumption.

In practice, however, it is unlikely that a user will know with certainty that a given
G = 〈S〉 is the image of a certain orthogonal group. There are two methods in print to
determine that G is probably a homomorphic image of Ωε(d, q) for known ε, d and q

([KS2,BKPS]; compare [KS1, Section 7.2.1]). We make no claim as to what our algorithm
will output if G is not what we think it is (although it can safely be stated that it will almost
always fail). In such a situation, in order to be certain that a positive output Ψ from our
procedure really is an epimorphism, one must construct and verify a suitable presentation
for G. (There are additional reasons why a presentation for G is desirable; see [L-G].)

Thus, we will assume that G is indeed an epimorphic image of Ωε(V). Let
Ψ :Ωε(V) → G be an alleged epimorphism returned by the preprocessing phase of our
algorithm. A presentation for G can be constructed and verified as follows (cf. [KS1,
Section 7.2.1]).

Use [BGKLP] to write a “short” presentation 〈X | R〉 of Ωε(d, q) in O(d4 log2 q)

time: a map ϕ :X → Ωε(d, q) such that, if F(X) is the free group with X and if N =
〈RF(X)〉, then ϕ induces an isomorphism ϕ̂ :F(X)/N → Ωε(d, q). Use (SLP1) to find
S∗∗ := XϕΨ ⊆ G. For each word w(x1, . . .) ∈ R (where x1, . . . ∈ X), find w(x1ϕΨ, . . .)

and test whether this is 1 in G; if so, then 〈S∗∗〉 is a homomorphic image of Ωε(V),
otherwise it is not a homomorphic image.

Finally, test that G = 〈S∗∗〉 by verifying that S ⊆ 〈S∗∗〉 as follows. Use (SLP2) to find
SΨ −1 ⊆ Ωε(V). Use (SLP1) to write short SLPs from Xϕ to SΨ −1, and evaluate these

P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288 287
SLPs from XϕΨ = S∗∗ in order to (try to) obtain S . (Of course, if S ⊆ 〈S∗∗〉 is false then
G is not a homomorphic image of Ωε(V).)

The timing for such a verification is dominated by the construction of S∗∗, which is
obtained in O(d2 logq · μd2 logq) = O(μd4 log2 q)-time.

5.2. Other perfect central extensions of PΩε(V)

We have focused on epimorphic images of Ωε(V). However, our algorithm applies
with almost no change to homomorphic images of the corresponding spin group, or, more
precisely, to all perfect central extensions G of PΩε(V). The only slight change has to do
with finding Z(G), but this is accomplished in almost the same manner as before.

5.3. Alternative algorithm for Ω−(6, q)

The case Ω−(6, q) was excluded in Theorem 1.1. Recall that, for this group, we could
simply switch to the equivalent case SU(4, q) and use [Br2]; but then we would need an
additional discrete log oracle for cyclic groups of order q + 1. However, such an oracle can
be sidestepped; essentially the same situation arose in [KS1, Section 4.6.3]. The algorithm
presented there can be used here, replacing [KS1, Lemmas 4.15–4.17] by Procedure 4.8,
Lemma 4.12 and Procedure 4.13, respectively. This allows us to obtain a data structure
behaving as in Section 3. Then straight-line programs can be found as in Section 4.

Acknowledgment

The authors are very grateful to Ákos Seress for his many helpful suggestions on various
aspects of this paper.

References

[Ba] L. Babai, Local expansion of vertex-transitive graphs and random generation in finite groups, in: Proc.
ACM Symp. on Theory of Computing, 1991, pp. 164–174.

[BGKLP] L. Babai, A.J. Goodman, W.M. Kantor, E.M. Luks, P.P. Pálfy, Short presentations for finite groups,
J. Algebra 194 (1997) 79–112.

[BKPS] L. Babai, W.M. Kantor, P.P. Pálfy, Á. Seress, Black-box recognition of finite simple groups of Lie type
by statistics of element orders, J. Group Theory 5 (2002) 383–401.

[Br1] P.A. Brooksbank, Constructive recognition of classical groups in their natural representation, J. Symbolic
Comput. 35 (2003).

[Br2] P.A. Brooksbank, Fast constructive recognition of black box unitary groups, LMS J. Comput. Math. 6
(2003) 162–197.

[BK] P.A. Brooksbank, W.M. Kantor, On constructive recognition of a black box PSL(d, q), in: W.M. Kantor,
Á. Seress (Eds.), Groups and Computation III, in: Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de
Gruyter, Berlin, 2001, pp. 95–111.

[CFL] G. Cooperman, L. Finkelstein, S. Linton, Recognizing GLn(2) in non-standard representation, in:
L. Finkelstein, W.M. Kantor (Eds.), Groups and Computation II, Proceedings of a DIMACS Workshop,
Amer. Math. Soc., 1997, pp. 85–100.

288 P.A. Brooksbank, W.M. Kantor / Journal of Algebra 300 (2006) 256–288
[CLO] M.D.E. Conder, C.R. Leedham-Green, E.A. O’Brien, Constructive recognition of PSL(2, q), Trans. Amer.
Math. Soc. 358 (3) (2006) 1203–1221.

[KS1] W.M. Kantor, Á. Seress, Black box classical groups, Mem. Amer. Math. Soc. 149 (708) (2001).
[KS2] W.M. Kantor, Á. Seress, Prime power graphs for groups of Lie type, J. Algebra 247 (2002) 370–434.
[KS3] W.M. Kantor, Á. Seress, Computing with matrix groups, in: Groups, Combinatorics and Geometry,

Durham, 2001, World Scientific, River Edge, NJ, 2003.
[KL] P. Kleidman, M. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc.

Lecture Note Ser., vol. 129, Cambridge Univ. Press, 1990.
[L-G] C.R. Leedham-Green, The computational matrix group project, in: W.M. Kantor, Á. Seress (Eds.), Groups

and Computation III, in: Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 229–
247.

[NP] P.M. Neumann, C.E. Praeger, A recognition algorithm for special linear groups, Proc. London Math. Soc.
(3) 65 (1992) 555–603.

[Se] Á. Seress, Permutation Group Algorithms, Cambridge Univ. Press, 2002.
[Ta] D.E. Taylor, The Geometry of the Classical Groups, Heldermann, Berlin, 1992.
[Zs] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892) 265–284.

