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1. INTRODUCTION 

For a set K of integers, a t-(v, K, 1) design !!fi consists of a set X 
of pl'lints, together with certain proper subsets called blocks (or lines, 
if t = 2), satisfying: each t-set of points is in a unique block; and each 
block has cardinality belonging to K and at least t. We wish to study 
such geometries having many axial automorphisms, i.e., automorphisms 
whose sets of fixed points are blocks. The results are as follows. 

THEOREM 1. Let!?2 be a 3 - (v, K, 1) design, with K the set of even 
integers. Suppose G<Aut!!fi satisfies: for any three points x, y, z, their 
stabilizer GXYZ fixes all points of the block through them and has even 
order; and the set of fixed points of each involution in G is contained 
in a block. Then one of the following holds. 

(i) !!fi is a Miquelian inversive plane of order k, v = k2 + 1, and 
G ;;;;. PGL(2, k2 )<t) with t an inversion. 

(ii) !!fi is AG(3, 2), and G contains the set stabilizer of a plane. 
(iii) !!fi is AG(4, 2), G contains the translation group, and Gx r-.J A 7• 

THEOREM 2. Let!!fi be a 2-(v, K, 1) design, with K the set of odd 
integers. Suppose G<Aut!?2, and for all points xo#y, GXY fixes the line xy 
pointwise and has even order. Suppose further that no involution fixes 
three non-collinear points. Then one of the following holds. 

(i) O(G)L is transitive on L for each line L. (In particular, O(G) is transitive 
on points.) 

(ii) !!fi is PG(2, 2e), e;;;;. 1, and G fixes a line L, contains the translation 
group with respect to L, is solvable, and is flag-transitive on AG(2, 2e). 

(iii) !?J is PG(2, 2) and G is PSL(3, 2). 
(iv) !!fi is PG(3, 2) and G r-.J A 7• 

Here O(G) denotes, as usual, the largest normal subgroup of G having 
odd order. It is straightforward to deduce that the corresponding result 
for 4 - (v, K, 1) designs is vacuous, where K is the set of odd integers. 

*) This research was supported in part by NSF Grant GP·37982X. 
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The above results are similar to Theorem 2 and the Corollary to Theo­
rem 1 of [16]. In addition to dealing with 2- (v, K, 1) designs with IKI i= 1, 

Theorem 2 removes the hypotheses in [16] that no nontrivial element of 
G fixes three non-collinear points, and that G~L has at most one involution 
for x E L (cf. Section 5). The conclusions of Theorem 1 coincide with 
ones in [16]; those of Theorem 2 are less precise than ones found in [16]. 
There are, unfortunately, too many examples of Theorem 2 (i) to permit 
classification (Section 5), unless additional hypotheses are made (cf. 
Theorem 3.7). We have considered 2 - (v, K, 1) designs, instead of 2-designs, 
since the more general situation is needed in [6]; while this generality 
creates difficulties in some parts of the proof, in one case (Proposition 3.3) 
it greatly simplifies matters. 

Theorem 2 is proved in Section 3; Theorem 1 is then easily deduced 
(in Section 4) using some deep results on 2-transitive groups. While some 
of our arguments resemble ones in [16], the proof of Theorem 1 has been 
presented without reference to [16]. Most of the proof concerns the case 
O(G) i= 1, the situation O(G) = 1 being readily handled using the subgroup 
structure of the groups characterized in [1 J. 

The crucial hypotheses of Theorem 2 are that K consists of odd integers, 
GXY fixes xy pointwise, and GXY has an involution fixing no point outside 
of xy (for all points x and y). Partial results exist in this more general 
setting; we hope to return to this at a later time. 

2. PRELIMINARIES 

Throughout this paper, X will denote a set (usually the set of points 
of a t-(v, K, 1) design), and G a group of permutations of X. For x, yE X, 
Gx is the stabilizer of x, and GXY = (Gx )y. For LI ex, G LJ and G(L1) are 
the set and pointwise stabilizers of L1, and G1 ~ GLJ/G(L1) is the group 
induced by GLJ on L1. For S C G, Q(S) denotes the set of fixed points of S, 
and SG is the conjugacy class of S in G. 

If !?) is a 2 - (v, K, 1) design and x, yare distinct points, xy denotes 
the unique line (i.e., block) through x and y. The symbol Gxy will, however, 
always refer to Gx n Gy . 

Z*(G) is the subgroup of G such that Z*(G)> O(G) and Z*(G)/O(G) = 
=Z(G/O(G)). Also, G# denotes G- {I}. 

LEMMA 2.1. Let A <J G, A';;;;O(G), and L1=xA . 

(i) If t E Gx is an involution, then CA(t) is transitive on LI n Q(t). 
(ii) If K is a Klein group fixing only one point x E L1, then 

ILII = II ILl n Q(t)l· 
tEK# 

(iii) If K,;;;; Gx is a Klein group, and K LJ i= 1, then the three sets LI n Q(t), 

t E K #, cannot coincide. 
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PROOF. (i) Since <t) is Sylow in <t)A, and <t)A is transitive on ,1, 

necessarily N (t)A( <t») is transitive on ,1 n Q(t). 
(ii) By the Brauer-Wielandt theorem [20], 

IAIICA(K)12= II ICA(t)1 
tEK# 

and 
IAxIICA",(K)1 2 = II ICA",(t)l· 

tEK# 

By hypothesis, CA(K) fixes x. Hence, 

1,11 = IA : Axl = II ICA(t) : CA",(t) I 
tEK# 

= II 1,1 n Q(t)1 
tEK# 

by (i). 
(iii) If these coincide, they are fixed by A=<CA(t)ltEK*). Since A 

is transitive, all three sets must contain ,1, so KA = l. 
A subspace of a t-(v, K, 1) design is a set ,1 of points such that, for 

each t-set T C ,1, the block containing T is contained in ,1. If 1,11 > t, 
,1 inherits a natural structure as a t - (1,11, K, 1) design, which is also 
denoted by ,1. 

LEMMA 2.2. Let f$ be a 2-(v, K, 1) design, with K a set of odd 
numbers. Let t E Aut f$ be an involution. Then ,1t=,1 for every subspace 
,1 d Q(t) of f$. 

PROOF. Let x E ,1-Q(t). Then t fixes xxt, where Ixxtl is odd. Hence, 
t fixes some y E xxt. Thus, Y E Q(t) C,1 implies that xt E xxt=xy C ,1. 

3. PROOF OF THEOREM 2 

Let f$ and G be as in Theorem 2. Throughout our proof, t, u, and z 
will always denote involutions, x and y will always be points, and L 
will always be a line. 

The lines through x yield a partition of X - {x} into sets of even size. 
Hence, v= IXI is odd. 

By (2.1 i), it suffices to prove that either f$ is PG(2, 2e) or PG(3, 2), 

or O(G) is transitive. This will be proved by induction on v. 
We may assume that G is generated by its involutions. Since each line 

is the set of fixed points of an involution, G moves each point. 

LEMMA 3.1. Let S C G. 
(i) Q(S) is a subspace. 

(ii) If E is a subspace contained in no line, then Gf: satisfies the con­
ditions of the theorem. 

""" 
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PROOF. (i) If x, Y E Q(S) and x=I=y, then S C GXY fixes xy pointwise. 
Thus, xy C Q(S). 

(ii) Let L be a line, LeE. Let t E G(L). Then L=Q(t), so Et=E 
by (2.2). 

LEMMA 3.2. Let t E G be an involution such that Q(t) is a line L. 
Then the following hold. 

(i) If GL moves each point of L, then Gf has an orbit on which it acts 
faithfully as a Frobenius group having a complement of even order. 

(ii) If GL moves each point of L, then for x E L, G~L has at most one 
involution. 

(iii) {x E LIG(t)~ =1= I} is an orbit of G(t). 
(iv) Each point of X - L is on a unique fixed line of t, and each fixed line 

meets L. 
(v) If t fixes L' =l=L, then t centralizes an involution in G(L'). 

PROOF. Let y E X -L. Then t fixes yyt=L', where IL'I is odd, so t 
fixes a point of L'. This proves (iv). Moreover, t normalizes G(L'), and 
hence centralizes some involution u E G(L'), so (v) holds. Clearly, luLl = 2. 
If x, x' E L, x =1= x', then by hypothesis Gxx' = G(L). This implies (i)-(iii). 

PROPOSITION 3.3. If Gf is intransitive for some line L, then f!) is 
PG(2,2e), e> 1, and G fixes a line L*, contains the translation group 
with respect to L*, is solvable, and has order 22e+1(2e+ 1). 

PROOF. Choose x E L with IG~I odd, and set LI =xG• If an involution 
t E Gx fixes L, by (3.2 v) t E G(L), so t fixes only one line L on x. Then 
Gx moves L, and GXL is strongly embedded in Gx . If now u is any involution 
in Gx, it must fix some line in LG~, and hence Q(u) E LGx. This shows 
that Gx is transitive on the lines through x. Since ILl I > 1, it follows that 
LI is contained in no line, and G is transitive on the lines meeting LI. 
Then LI, together with these lines, forms a design f!)* with v* = IAI and 
k* = IL ('\ AI. Since G is transitive on the lines of f!)*, it is transitive on 
the points ([7], p. 78), and hence flag-transitive. Consequently, G4 is 
primitive (Higman-McLaughlin [15]). Since each line meeting A is in f!)*, 
each point of f!) is an intersection of lines of f!)*, so G '" GA. 

By (3.2 v), there is an involution in Gf, which then fixes no point of 
L ('\ LI. Thus, k* is even. We have seen r* = IGx : GxLI is odd. Hence, 
v* = (1 + r*(k* - 1» is even. In view of the primitivity of G, it follows 
that O(G) = l. 

Each line meets LI in an even number of points (namely, 0 or k*). 
Hence, X - LI is either a point, or is contained in a line, or else inherits 
a natural structure as a 2 - (v - v*, K, 1) design f!) * (where K is as in 
Theorem 2). 

Since G fixes no point, X -A is not a point. Suppose X -LI C L* for 
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some line L*. Then G(L*) <l G, so G(L*) is transitive on ,1. In particular, 
L* n ,1 = 0. Since each involution fixes L*, each line meets L* (by (3.2 iv)), 
so r*= IL*I. By (3.2 v), GL # is transitive on L*. Since G is generated by 
its involutions, by (3.2 i) IGfil = 2IL*I. Then IG(L)I = 2, and G has a 
normal subgroup H of index 2 such that H(L) = 1. Here, H is still flag­
transitive on ~*, and H xy = 1 for x, y E ,1, x#y. Thus, H ~ Hd is a 
primitive Frobenius group. Let K be the Frobenius kernel of H, so IKI =v* 
is even. Then K is an elementary abelian 2-group, and hence K < G(L*). 
Moreover, OK(t) is transitive on L-L* n L. Write v*=2e and k*=2/, so 
2/-112e_l and hence lie. On the other hand, t induces an involutory 
linear transformation of K (regarded as a GF(2)-space), and hence fixes 
at least VTKT = Vv* vectors. Thus, I"> e/2. This shows that fg* is a trans­
lation plane of order k*. That it is desarguesian is easy to check (alterna­
tively, see Foulser [9]). 

Now suppose X -,1 is the set of points of a 2-(v-v*, K, 1) design fg*. 
Then clearly IG(X-,1)1 is odd, and hence G(X-,1)=1 since O(G)=1. For 
the same reason, fg* must be PG(2, 2e) or PG(3, 2). 

Suppose fg* is PG(2, 2e), and that G fixes a line L* of fg*. Then we 
have just seen that G(L*) has an elementary abelian 2-subgroup K <l G; 
it must be regular on ,1 by primitivity. Also, t E G(L) fixes L*, so L 
meets L*. Proceeding as before, we find that fg* is an affine plane of 
order k*=VT1i1. fg* has the same order. However, x is on k*+ 1 lines, 
at least one of which meets X - (L* U ,1); hence, all do, and in the same 
number l of points. It follows that 22e = l(k* + 1) = l(2e + 1), which is absurd. 

Thus, ~* is PG(2, 2) and G is PSL(3, 2), or ~* is PG(3, 2) and G 

is A 7• In either case, all involutions are conjugate, so G(L) contains a 
normal Klein group. Since Gx is maximal in G, and has a strongly embedded 
subgroup G(L), this is impossible. 

REMARK. The preceding inductive proof should be compared with the 
more painful argument used in the corresponding part of [16] (Lemma 5.2). 

PROPOSITION 3.4. If IQ(t) 1= 1 for some involution z, then O( <tG») is 
transitive on X (and hence so is O(G)). 

PROOF. Let Q(z) = {x}. By (2.2), z fixes every line on x. By (3.3), 
GL is transitive for each L. Hence, by (3.2 i, iv), z is the only involution 
fixing just x. Thus, z E Z(Gx). 

If Z' E zG commutes with z, it fixes x, and hence equals z. Thus, 
z E Z*(G) (Glauberman [10]). By (3.3), it follows that <zG) = <z)O«zG») 
is transitive on X. 

PROPOSITION 3.5. Suppose Z*(G) > O(G), let Uo be a Sylow 2-subgroup 
of Z*(G) and U the group generated by the involutions in Uo. Then 
O«UG») is transitive on X (and in particular, so is O(G)). 
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PROOF. Set A = O«UG»), so <UG) = UA and UA/A <;Z(G/A). By (3.3), 
G is transitive on X, so each Gx contains a conjugate of U. By (3.4), we 
may assume Q(z) is a line for each z E U*. Fix such a z, and set L=Q(z). 
By (3.3), C(z) is transitive on L. 

By (3.2 v), C(z) contains an involution t ¢ G(L). Then Q(t) ¢ LG (as 
otherwise, z would centralize a conjugate of itself lying in G(Q(t))). For 
each x E Q(t), C(tlx n zG # 0, so <zG) n C(t) is transitive on Q(t). Similarly, 
<zG) n C(tz) is transitive on Q(tz). 

Let <t, z) <; Gx, and set Ll = xA • Then Ll contains the lines Q(t) and Q(tz). 
By (2.1 iii), G(L),1 contains no Klein group. Consequently, if lUI> 2 we 
may assume t E U, and then <tG) n C(z) will be transitive on Q(z); thus, 
(3.5) holds in this case, so we may assume U = <z). 

If now u is any involution in C(z) - {z}, then u commutes with some 
conjugate u' #u of itself (Glauberman [10]). Since G has 2-rank 2 by 
(3.2 i), necessarily u'u E zG. Now ILlI = IQ(u)1 IQ(u')IILl n LI by (2.1 ii), 
so IQ(u)1 =k is independent of u. Set l= ILl n L, so ILlI =k2l. 

G acts on 9" = Ll G as a transitive group, with z.'l' inducing a central 
element fixing Ll. Thus, z fixes each member of 9". Since ILlI is odd, z fixes 
a point of each member, so L=Q(z) meets each member of 9". Since 
C(z) is transitive on L, l=IL' n Ll'I is independent of L' ELG and Ll' E 9". 

Now suppose Ll #X, and let Ll' E 9" - {Ll}. There are exactly ILl'I/l=k2 

members of LG on x. As z E Z*(Gx), Ax«zGx) is transitive on zG n Gx, 
and hence on these k2 lines. Let p be a prime dividing k, and P a Sylow 
p-group of Ax. Then each orbit of P on Ll' has length >k~ (where kp 

is the p-share of k). Since P acts on Ll- {x}, it fixes some y E Ll- {x}, 
and hence P<;G(xy). Clearly, xynLl'=0, so Ixyl=k. Now P acts on 
Ll-xy, k(kl-I) points. We can thus find x' E Ll-xy with P x'# 1. Set 
L=Q(Px')' 

By (3.1), GE contains a Klein group, so we can find z' E GE n zG. By 
induction, O(GE ) is transitive on L. By (2.1 ii), ILl =k2ILI. 

However, L meets each member of 9" in 1 points, so 19"1 = ILI/1. Then 
v=(JLI/1)ILlI=ILlk2 =ILI, which is ridiculous. 

The proof of Theorem 1 will require the following variation on (3.5). 

LEMMA 3.5'. Suppose Z*(G) contains a Klein group U = {I, z, t, tz}. 
Assume further that IQ(t)1 and IQ(tz)1 are not relatively prime. Then 
O( < zG») is transitive on X. 

PROOF. Set A = O( <zG») and Ll = xG (where U <; Gx). As in the proof of 
(3.5), Q(t) u Q(tz) eLl and L=Q(z) meets each member of 9"=LlG. By 
(2.1 iii), G(L) contains no Klein group, so by (3.2 i) G has 2-rank 2. It 
follows that G=O(G)U. (Recall that G is generated by its involutions.) 
Also, ILl I = klk21, where 1 = ILl' n L'I is independent of Ll' E 9" and L' E LG, 

k1 = IQ(t)l, and k2= IQ(tz)l· 
Gx is again transitive on the ILl 1/1 = klk2 lines through x. Let p be a 
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prime dividing (kr, k2 ), and P a Sylow p-group of Gx . Then P moves all 
lines through x, P<,G(xy) for some YELl-{x}, and xyCLl. We may 
assume Ixyl =k1 . Then P acts on Ll-xy, kl(k2l-1) points. The transitivity 
of Gx implies that (klk2)P divides iFl, where (k1h)p> (k1)p. Hence, P 
cannot be semiregular on Ll - xy. This leads to the same contradiction 
as in (3.5). 

From now on we will assume that Z*(G) = O(G). 

LEMMA 3.6. One of the following holds. 
(i) A Sylow 2-subgroup S of G is dihedral, quasidihedral, wreathed 

Z2m I Z2, or Z2m X Z2m for some m. 
(ii) G has a proper normal subgroup K, with IG : KI a power of 2, such 

that the stabilizer KL of some line L is a strongly embedded 
subgroup of K. 

PROOF. ([16], (5.1)). Suppose (i) does not hold, and let K =02'(G). 
Let t E K, so t is in every normal subgroup having index 2 in G. Hence, 
by Harada [12], Theorem 2, t' E (tG_{t}) n C(t) implies that Q(t)=Q(t'). 

Now fix t E Z(S n K), and set L=Q(t). Then t cannot fix any L' E LG-{L} 
(as it would then centralize some t' E tG n G(L')). If tG consists of all 
involutions in K, this proves (ii). Let UK be a class of involutions of K 
disjoint from tG. 

By [10], we can find u, u' E S n UK with uu' = u' u # 1. We know 
Q(u) =Q(u'), so Q(u) =Q(uu'). Since <u, u') acts on Q(t) =L, it follows 
that Q(u)=L. Now let t' E tG with Q(t') #L. Then <t', u) contains an 
involution z. Since <z, u) fixes Q(u) = L, it centralizes some t" E tG n G(L), 
<u, t")<,G(L) acts on Q(z), and hence Q(z)=L. But now <u, z)<,G(L) 
acts on Q(t') = L' # L, so this is a contradiction. 

LEMMA 3.7. If N <l G, N<,O(G), and N fixes a line, then N=1. 

PROOF. Suppose N # I, and let N fix L. By (3.3), 2 =LG is an im­
primitivity system for G. In particular, G has at least two classes of 
involutions. 

Suppose (3.6 i) holds. Then (since Z*(G) = O(G)) K = 02'(G) has a singlc 
class of involutions. Since no involution in G(L) can fix a line of 2 - {L}, 
it follows that (3.6 ii) holds. 

Note that IG(2)1 is odd. For otherwise, Z*(G) = O(G) implies that G(2) 
contains a Klein group K. Then K fixes a point of each line in 2, so 
Q(K) is a line. Since K then acts faithfully on L, this contradicts (3.2 i). 

Consequently, G(2) <, O(G). In particular, Z*(G2') = O(G2'). By Bender 
[3], O(G2') = I, so G(2) = O(G). Moreover, G2' has a normal subgroup 
H '"'-' PSL(2, 2e), Sz(2e), or PSU(3,2e) for some e» 2, acting on 2 as 
usual. 

q 



433 

Let t be an involution with Q(t) ¢: .Y. Then t fixes IQ(t)1 members of .Y. 
By (3.2 i), CG(L)(t) has no Klein group. Thus, by considering t2' and 
using standard properties of H, we find that G2 is P TL(2, 4) and I.YI = 5. 
In particular, if ILI=k then v=5k. Moreover, IQ(t)I=3. 

Let L' E !l' and x E L i= L'. We claim that W = G(L'lz is 1. For suppose 
W i= 1. Then LI =Q(W) is a subspace, and induction applies to G1 (by (3.1)). 
G1 is transitive. (For otherwise, LI is PG(2, 2), k = 3, and W <. Gx fixes L, 
soL C Q(U) misses L'.) Thus, k liLli, so ILiI = 3k. However, W =G(L') n G(L) 
is normalized by GLL" where GLL, is transitive on .Y - {L, L'}. This 
contradiction proves our claim. 

Fix L' E .Y - {L} and x E L. For each x' E L', there is an involution in 
Gxx'L fixing only one point of L'. Hence, GxLL' is transitive on L'. 
Moreover, G~:'L is a Frobenius complement, so GxL' has a normal sub­
group A with AL' regular. Here, A,;;:;,G(L). (For otherwise, A has a non­
trivial p-subgroup P for some prime plk- 1, and then pL' = 1 implies 
that P,;;:;,G(L'lz=l.) Thus, IAI=k, and A=G(Lk. Set A'=G(L')L. Then 
AA' = A x A' <J G LL'. 

Let t fix Land L'. Since A is faithful on L', by considering «t)A)L' 
We see that t inverts A. Similarly, t inverts A'. Thus, t inverts AA'. 

We claim that AA' is semiregular on X - (L u L'). For suppose 
(AA')yi=I with y¢:LuL'. Let YEL"E.Y. Since (IAA'I,k-I)=I, 
(AA')y,;;:;,G(L"). However, t inverts (AA')y, and hence fixes L". Since t2' 
is any involution in 8 5 fixing Land L', this is a contradiction. 

Thus, k2 13k, so k=3 and v=15. It follows that I(AA')21=3 and 
10(G)1 =3. 

Let G [> G+>O(G) with G+2' =A5. Then CG+(O(G))2' =A5, so G+= 
= O( G) x U with U r-.J A 5. Set E = xu. Then lEI = 5, and U:E contains 
distinct involutions of the form tt = (x, x')(Yt) ... , i = 1,2. Both fix xx', so 
Ixx'i :> 4. This contradiction proves (3.7). 

THEOREM 3.8. Suppose Z*(G) = O{G) i= 1. Then $ is an affine space 
AG(3, k), and G=8L(3, k)T with T the translation group. (In particular, 
O(G) is transitive on X.) 

PROOF. Let N be any nontrivial normal subgroup of G with N,;;:;, O(G). 
Let x EX, and consider LI = xN . 

Since G is transitive, N fixes no point. By (3.7), LI is contained in no 
line. By (2.1 iii) (applied to G1), G(L) does not contain a Klein group 
for each line L. By (3.2 i), G has 2-rank 2 (cf. (3.6)). Moreover, C(t)D(t) 
is now transitive for each involution t. 

Consequently, if z is an involution central in a Sylow 2-group 8 of Gx , 

then a Klein group K,;;:;, 8 exists having all its involutions conjugate to 
z in G. By the transitivity of C(Z)D(Z), these involutions are all conjugate 
in Gx . Hence, by (2.1), ILlI=k3 , where k=ILI n Q(z)l. 

Now let t ¢: zG be any involution in 8. Then t commutes with some 
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t' E S n (tG- {t}) (by [10]). Since G has 2-rank 2 and <t, t') commutes 
with Z, necessarily tt' =Z. By (2.1 ii), [LI[ =k [LI n Q(t)[2, so [LI n Q(t)[ =k. 

Thus, each line meets LI in k points. The lines meeting LI turn LI into 
a design ~Ll, inheriting the hypotheses of Theorem 2. Moreover, as [G(LI)[ 
is odd and Gx acts on LI, the hypotheses of (3.8) are inherited. Finally, 
note that there are exactly (jLlj-l)/(k-l)=k2+k+l lines on x; this 
number is independent of N. Hence, LI =XO(G). 

CASE 1. O(G) is transitive on X. 

Choose N to be a minimal normal subgroup of G containcd in O(G). 
We have just seen that xN =xO(G) =X. Thus, N is regular on X, and can 
be regarded as a vector space over GF(p) for some prime p. Identify X 
with N, via xn _ n, x _ O. 

If t E Gx then 0 N(t) is regular on Q(t) (by (2.1 i)). We can thus regard 
the lines through x as subspaces of N. The remaining lines are obtained 
by applying elements of N, and hence are just the translates of the lines 
through O. The automorphism a= -1 of N fixes each subspace of N, 
and hence a E Aut~. (Clearly, a ~ G.) 

We have N=ON(t)EB[N,t], where [N,t]={nENjnt=-n}=Q(at) has 
order k2 and is normalized by O(t). If x E L=Lt=/=Q(t) then (at)L= 1, so 
L C Q(at). Since [N, t] is transitive on Q(at), it follows that Q(at) is a 
subspace having k2 points, i.e., an affine plane. 

This provides us with a set of affine planes through 0, cach of which 
is a subspace of both X and N. Consider two of these, say EI and E2• 

Since these are subspaces of N, JEI n E2 j >k. There is a unique line 
through 0 and a point =/= 0 of EI n E 2 , and this line must be in both 
EI and E2 (as both are subspaces of X). Since EI n E2 is certainly a 
subspace of each affine plane, clearly EI n E2 must be contained in a 
line. Hence, any two planes on 0 meet in a line. 

Let 3P(x) be the structure consisting of the lines and planes through x. 
Each such plane has k + 1 such lines, and two such planes have a unique 
common line. There are (v -1 )/(k - 1) = k2 + k + 1 lines. 

We next show that each line L on x is in k + 1 planes. Since the planes 
-:JL induce a partition of X-L, there are at most (v-k)/(k2-k)=k+l 
such planes. Conversely, let t E G(L). Then tQ(at) fixes each line L' of 
Q(at) on x, and centralizes an involution u E G(L'). Consider Q(atu) = 
= [N, tu]. This is fix~d by <t, u), and tu induces a dilatation, so 
Q(t) u Q(u) C Q(atu). However, Q(u) C Q(at) n Q(atu), Q(t) C Q(atu), and 
Q(t) rt Q(at). Thus, Q(at) n Q(atu) =Q(u) =L'. This means that each such 
line L' is in a plane containing L. There are k + 1 choices for L', and 
these produce k + 1 planes containing L. 

Thus, the dual of 3P(x) is a 2 - (k2 + k + 1, k + 1, 1) design. This proves 
that 3P(x) is a projective plane. 

In particular, any two concurrent lines are in one of our affine planes. 
By Sasaki [19] or Buekenhout [5], ~ is AG(3, k). Moreover, Gx induces 

Q 
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a collineation group of the desarguesian projective plane &(x) such that 
each line is fixed pointwise by an involution. (Namely, [N, t] is fixed 
pointwise by t, if it is regarded as a line of &(x).) Since Z*(Gx) = O(Gx), 
it follows that Gx induces at least PSL(3, k) on &(x) (see, e.g., [7], p. 196). 
We are assuming that G is generated by its involutions. This proves t3.7) 
in this case. 

CASE 2. O(G) is intransitive on X. 
Once again, Ll =xN =XO(G). We have seen that £0LJ and G1 inherit all the 

hypotheses of (3.8). Thus, by Case 1, £0LJ is AG(3, k) and G1 ~ SL(3, k). T. 
Now GXLJ is transitive on the lines through x. Since G is transitive on X 

(by (3.3)), it follows that £0 is a design and G is flag-transitive on £0. 
Hence, G is primitive on X (Higman-McLaughlin [15]). However, this 
contradicts the fact that O(G) is intransitive on X. 

PROPOSITION 3.9. If O(G) = I, then £0 is PG(2, 2) or PG(3, 2). 

PROOF. By (3.3), we may assume that Gf is transitive for all L. Then 
G is transitive, so 02(G) = 1 as IXI is odd. 

Suppose first that (3.6 ii) holds. Since O(K)= I, K acts on !e=LK as 
PSL(2, 2"), Sz(2"), or PSU(3, 2"), for some e;;, 2, in its usual 2-transitive 
representation (Bender [3]). Let t E (G - K) n S for a Sylow 2-group S 
of G. The proof of (3.6) shows that S n K <,K(L') for some L' E!e. We 
have G = SK, and hence G <, Aut (K). Thus, K is not Sz(2"); moreover 
ICZ(SnK)(t)1 is 2e/2 if K "" PSL(2, 2") and is 2" if K "" PSU(3, 2e). We, 
may assume that Q(t) ¢; !e. Then by (3.2 i), the elementary abelian group 
CZ(S nK)(t) has order 2. Thus, K is PSL(2,4), so G "" S5. £0 has 5 + 10 
lines, while IG : Gxl = v is odd. This easily yields a contradiction. 

Let M be a minimal normal subgroup of G. Then by (3.6 i), Brauer [4], 
and Alperin-Brauer-Gorenstein [I], M "" PSL(2, q), PSL(3, q), PSU(3, q), 
A 7 , or Mu , for some odd q. In particular, M has a single class of involutions. 

If t is any involution, then certainly C(t) <, GQ(t). In particular, if C M(t) 
is a maximal subgroup of M then CM(t)=MQ(t) and CM(t) has a homo­
morphic image as in (3.2 i). Similarly, if CG(t) <,H <G always implies 
that t E Z*(H), then t E Z*(GQ(t)), so C(t) has Gzm has a homomorphic 
image. 

This eliminates all but the following cases: M is A 7 , M u , PSL(3, 3), 
PSU(3, 3), or PSL(2, q). Moreover, these properties of C(t) show that 
G = M in the first two cases, that :;g is a 2 - (v, 3, 1) design in the first 
four, and that G is PSL(2, q) or PGL(2, q) in the last case. 

Suppose M(L) contains a Klein group (z, Zl), for some line L. Then 
(CM(z), CM(Zl)<,ML<M. It follows that M is A 7 , PSL(2, 7), PSL(2, 5), 
or PSL(2, 9) (Dickson [8]). The first two cases lead to PG(3, 2) and 
PG(2, 2). The last two cannot occur. 

Thus, for Z E M, we may assume Z E Z*(GQ(Z))' Then C(z) is transitive 
on Q(z) (by (3.3)), and hence Gx is transitive on zG n Gx if Z E Gx. 
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Now suppose M is A 7 , MIl, PSL(3, 3), or PSU(3, 3). Since all in­
volutions fix just 3 points, IG : Gxl =V = 3 (mod 4). Also, Mx has a single 
class of involutions, and contains a Sylow 2-group of M. Clearly, G is 
not 4-transitive on X. Consequently, these cases cannot arise. 

This leaves us with the possibilities G ,-o.v PSL(2, q) or PGL(2, q). Let 
z EM, and let t E G-M if GotM. Suppose q _ 13 (mod 4), where 13= ± 1. 
Then IQ(z)1 =k divides (q-e)/2 and IQ(t)1 =k' divides (q+e)/2. 

The case G ,-o.v PGL{2, q) can be eliminated as follows. Each involution 
If is the unique involution in G(Q(u)), and O(U)D(U) is transitive. By (3.2 v), 
O(u) yields a partition of X - Q(u) into sets of size k -1 and k' -1. Applied 
to u = z or t, this implies that 

v-k=!(q-e)(k-I)+!(q-e)(k'-I) 

v - k' = !(q+e)(k-l) + !(q+ e)(k' -1). 

Then k' - k = - e(k - 1 + k' -1), which is absurd. 
Thus, Gis PSL(2, q), all lines have k points, and v-k=!(q-e)(k-l). 

In particular, r-l=!(q-e); moreover, z fixes (r-l)/k blocks through 
each point of Q(z), so kl(v-k). On the other hand, there are vr/k= 
=IG: O(t)I=!q(q+e) lines. Thus, r=I+!(q-e) divides !q(q+e), so 13=1. 
Now k+!(q-l)(k-l)=v=qk, so (q-l)(k+ 1)=0, which is ridiculous. 

This completes the proof of Theorem 2. 

4. PROOF OF THEOREM 1 

Let !?2 and G be as in Theorem 1. For x E X, let !?2x consist of X - {x}, 
together with the blocks on x with x removed. Then Theorem 2 applies 
to !?2x and Gx . 

In cases (iii) and (iv), Gx is 2-transitive on X - {x}. Since G certainly 
moves x, G is 3-transitive, and the result follows readily. 

Suppose (ii) holds for some x. Then Gx fixes some block B on x, and 
G(B) has a normal elementary abelian 2-subgroup regular on X -B. 
Moreover, Gx is transitive on B - {x}. Once again, G moves x. 

Consider the possibility that G is transitive on X. Here, the transitivity 
of G(B) implies that Gx' fixes B whenever x' E B, so G~ is transitive. 
It follows that BG is an imprimitivity system for G. However, this implies 
that IBI=2e+2 divides IXI=22e +2e +2, so e=l and!?2 is AG(3,2). 

Thus, we may assume G is intransitive on X. We know G(B) is transitive 
on X-B. For YEX-B, we cannot have Gy transitive on X-{y}. Thus, 
(ii) must also hold for !?2y . Then Gy fixes some block 0; clearly B n 0 = 0. 
Then the transitivity of G(O) readily implies that of G. 

We are thus left with the possibility that (i) holds for every x E X. 
Here, G is 2-transitive on X. For each block B, G~ is also 2-transitive; 
also, all its involutions fix at most two points, while some fix two (see 
(3.2 v)). Thus, for each B, G~ ~ PSL(2, q) for some odd q, or G~ is A6 

, 
'! 
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(Hering [13]). We may assume that no involution of G fixes exactly two 
points (Kantor-Seitz [17], Theorem D). 

Let A be a minimal normal subgroup of Gx contained in O(Gx ). Then 
A is an elementary abelian p-group for some p. We may assume that A 
is intransitive on X - {x} (Hering-Kantor-Seitz [14]), semiregular on 
X - {x} (O'Nan [18]), and also that C(A) is semiregular on X - {x} (Asch-

bacher [2]). 
Let K<Gxy be a Klein group (see (3.2 v)). Let tEK*, and suppose 

CA(t)=r= 1. Set B=Q(t). By (2.1 iii), G(B) has no Klein group, so GB= 
= G(B)C(t). Hence, C(t)B [> PSL(2, q) and C(t)xy is irreducible on C A(t). 
Thus, CA(t) is transitive on B-{x}. 

If now CA(t)=r=1 for all tEK*, then two applications of (2.1 ii) yield 

IAI= II (IQ(t)I-I)=lyO(Gx)I=IXI-I, 
tEK# 

whereas we are assuming A is intransitive on X - {x}. Thus, C A(Z) = I 
for some zEK*. If CA(Z') = I for some z'EK-<z), then zz' centralizes 
A and fixes y, which we are assuming does not occur. Hence, if 
K*={z, t, t'}, then (2.1) yields IAI=(IQ(t)I-I)(IQ(t')I-I) and IXI-I= 

= IAI/(IQ(z)I-I). 
C(A) is semiregular on X - {x}; in particular it has odd order. IfC(A) >A, 

we can apply the preceding argument with C(A) in place of A, and 
deduce that C(A) is regular on X - {x}. We may thus assume that C(A) =A. 

Then <z)A <1 Gx . 

Now (3.5) and (3.5') imply that A = O( <zGx») is transitive on X - {x} 
This contradiction completes the proof of Theorem 1. 

5. CONCLUDING REMARKS 
The following consequence of Theorem 2 is a slight strengthening of 

[16], Theorem 2. 

COROLLARY. Let f!) be a 2-(v, k, I) design with k odd, and G<Autf!). 
Suppose that, for any distinct points x and y, GXY fixes the line xy point­
wise, has even order, and is semiregular off xy. Then f!) is PG(2, 2), 
PG(3, 2), or an affine translation plane. 

PROOF. By Theorem 2, we may assume that Gf is transitive for each 
line L. Then, for x E L, G~ is a Frobenius complement, and hence has 
a unique involution. Consequently, the corollary follows from [16], 

Theorem 2. 

We next present some examples which indicate the difficulties involved 
in obtaining a complete classification of all the occurrences of Theorem 2(i). 

EXAMPLE I. Let fJ}J be an affine semifield plane of odd order k (a 
desarguesian plane will suffice). Adjoin its line at infinity Loc. Let T be 
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the translation group, and U a group of k elations with center poo E Loo 
and affine axis L. Then g; admits an involutory (a, A)-homology whenever 
a = poo ¢= A or a E Loo - {Poo} and poo EA. Thus, g; satisfies the hypotheses 
of Theorem 2. 

We now diminish g; as follows. Let G be the group generated by the 
aforementioned involutions. Then G = (T U)K, with K a Klein group 
normalizing both T and U. (Thus, K has an involution with axis L.) 
Note that Z = [T, U] is the group of translations with center poo. Hence, 
U centralizes TjZ. Let T* be any proper subgroup of T, containing Z 
properly, and normalized by K. (Such a T* will exist provided k is not 
prime.) Set X =XT*, where x E L, and let !?2 have point set X and lines 
the intersections of size > 1 of lines of g; with X. 

We claim that !?2 meets our requirements. In fact, by construction 
T* <J G, so G induces a group on !?2 (namely, GxT*). The lines of !?2 
through x are the lines of g; through x, and each is fixed pointwise by 
an involution in Gx . This proves our claim. 

Note, however, that lines do not all have the same size. Moreover, if 
IT* : ZI =p is prime, most lines will have size p. (To see that T* can be 
chosen this way, let K = (z, t) with z a dilation and t a homology having 
center poo. Then z inverts T, while [T, t]=Z, so K normalizes every 
subgroup of TjZ.) 

EXAMPLE 2. Let d be AG(3, k), where k is odd and not a prime. 
Let T be its translation group. Single out a line L and a plane E>L. 
There is a group U <SL(3, k) of order k3 fixing L, E, and a point x E L. 
Here, U centralizes TjTE. Choose T>T*>TE normalized by K, a Klein 
group in SL(3, k) normalizing U. Now proceed as in Example 1. 

Note that Examples 1 and 2 are, respectively, instances of (3.4) and 
(3.5'). 

EXAMPLE 3. It seems likely that examples exist which are designs 
having V=k3 and r=k2+k+ 1, and which are not affine spaces. For 
example, I believe examples will exist having the following form. G has 
a regular normal subgroup N of order k3 . Also, G=NHK, with H a group 
of order k3 , K a Klein group normalizing H, and HK =Gx. The lines 
through x have a natural structure as a semifield plane g;(x), with the 
group H K playing the role of G in the first paragraph of Example 1. 
Gx fixes a unique plane E on x (corresponding to the line at infinity of 
g;(x)). E is itself a semifield plane, and G~ is again as in Example 1. 

If N is elementary abelian, it is not hard to show (as in (3.7)) that 
AG(3, k) is the only design of the above sort. However, it seems quite 
plausible that such a !?2 exists with N nonabelian. 

University of Oregon 
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