

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Automorphism groups of designs with $\lambda = 1$

University of Oregon, Eugene, OR 97403, United States Northeastern University, Boston, MA 02115, United States

ARTICLE INFO

Article history: Received 4 April 2018 Accepted 30 January 2019 Available online 9 March 2019

Keywords: Automorphism group Design

ABSTRACT

If G is a finite group and k=q>2 or k=q+1 for a prime power q then, for infinitely many integers v, there is a 2-(v, k, 1)-design $\mathbf D$ for which $\mathrm{Aut}\mathbf D\cong G$.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Starting with Frucht's theorem on graphs [7], there have been many papers proving that any finite group is isomorphic to the full automorphism group of some specific type of combinatorial object. Babai surveyed this topic [3], and in [3, p. 8] stated that in [1] he had proved that 2-designs with $\lambda = 1$ are such objects when k = q > 2 or k = q + 1 for a prime power q. (The case of Steiner triple systems was handled in [13].) The purpose of this note is to provide a proof of Babai's result 1 :

Theorem 1.1. *Let G be a finite group and q a prime power.*

- (i) There are infinitely many integers v such that there is a 2-(v, q+1, 1)-design **D** for which Aut**D** \cong G.
- (ii) If q > 2 then there are infinitely many integers v such that there is a 2-(v, q, 1)-design **D** for which Aut**D** \cong G.

Parts of our proof mimic [5, Sec. 5] and [9, Sec. 4], but the present situation is much simpler. We modify a small number of subspaces of a projective or affine space in such a way that the projective or affine space can be recovered from the resulting design by elementary geometric arguments. Further geometric arguments determine the automorphism group.

Section 7 contains further properties of the design **D** in the theorem, some of which are needed in future research [6].

Notation: We use standard permutation group notation, such as x^{π} for the image of a point x under a permutation π and $g^h = h^{-1}gh$ for conjugation. The group of automorphisms of a projective space Y = PG(V) defined by a vector space V is denoted by $P\Gamma L(V) = P\Gamma L(Y)$; this is induced by the group $\Gamma L(V)$ of invertible semilinear transformations on V. Also $A\Gamma L(V)$ denotes the group of automorphisms of the affine space AG(V) defined by V.

2. A simple projective construction

Let *G* be a finite group. Let Γ be a simple, undirected, connected graph on $\{1, \ldots, n\}$ such that $\operatorname{Aut}\Gamma \cong G$ and *G* acts semiregularly on the vertices. There is such a graph for each $n \geq 6|G|$ that is a multiple of |G| (using [2]).

^{*} Correspondence to: University of Oregon, Eugene, OR 97403, United States. E-mail address: kantor@uoregon.edu.

¹ This theorem was proved before I knew of Babai's result.

Let $K = \mathbf{F}_q \subset F = \mathbf{F}_{q^4}$, and let θ generate F^* . Let V_F be an n-dimensional vector space over F, with basis v_1, \ldots, v_n . View G as acting on V_F , permuting $\{v_1, \ldots, v_n\}$ as it does $\{1, \ldots, n\}$. View V_F as a vector space V over K. If Y is a set of points of $\mathbf{P} = \mathrm{PG}(V)$ then $\langle Y \rangle$ denotes the smallest subspace of \mathbf{P} containing Y.

We will modify the point-line design $PG_1(V)$ of **P**, using nonisomorphic designs Δ_1 and Δ_2 whose parameters are those of $PG_1(K^4) = PG_1(3, q)$ but are not isomorphic to that design, chosen so that $Aut\Delta_1$ fixes a point (Proposition 3.5).

Our design **D** has the set $\mathfrak P$ of points of **P** as its set of points. Most blocks of **D** are lines of **P**, with the following exceptions involving some of the subspaces Fv, $0 \neq v \in V$, viewed as subsets of $\mathfrak P$. For orbit representatives i and ij of G on the vertices and ordered edges of Γ ,

- (I) replace the set of lines of $PG_1(Fv_i)$ by a copy of the set of blocks of Δ_1 , subject only to the condition
 - (#) there are distinct blocks, neither of which is a line of **P**, whose span in **P** is $PG_1(Fv_i)$,

and then apply all $g \in G$ to these sets of blocks in order to obtain the blocks in PG₁($(Fv_i)^g$), $g \in G$; and

(II) replace the set of lines of $PG_1(F(v_i + \theta v_j))$ by a copy of the set of blocks of Δ_2 , subject only to (#), and then apply all $g \in G$ to these sets of blocks in order to obtain the blocks in $PG_1(F(v_i + \theta v_j)^g)$, $g \in G$.

We need to check that these requirements can be met.

- (i) Satisfying (#): Let $\bar{\Delta}_s$ be an isomorphic copy of Δ_s , s=1 or 2, whose set of points is that of $PG_1(Fv)=PG_1(Fv_i)$ or $PG_1(F(v_i+\theta v_j))$. Let B_1 and B_2 be any distinct blocks of $\bar{\Delta}_s$. Choose any permutation π of the points of $PG_1(Fv)$ such that the sets B_1^{π} and B_2^{π} are not lines of $PG_1(Fv)$ and together span $PG_1(Fv)$. Using $\bar{\Delta}_s^{\pi}$ in place of $\bar{\Delta}_s$ satisfies (#). (If $q+1 \geq 4$ then B_2 is not needed.)
- (ii) These replacements are well-defined: For (II), if $F(v_i + \theta v_j)^g \cap F(v_i + \theta v_j)^{g'} \neq 0$ for some $g, g' \in G$, then $v_{ig'} + \theta v_{jg'} \in F(v_{ig} + \theta v_{jg})$. Then either $v_{ig'} = v_{ig}$ and $v_{jg'} = v_{ig}$, or $v_{ig'} = \alpha \theta v_{jg}$ and $\theta v_{jg'} = \alpha v_{ig}$ for some $\alpha \in F^*$; but in the latter case we obtain $1 = \alpha \theta$ and $\theta = \alpha$, whereas θ generates F^* . Thus, $v_{ig'} = v_{ig}$, so the semiregularity of G on $\{1, \ldots, n\}$ implies that g' = g, as required.

It is trivial to see that **D** is a design having the same parameters as $PG_1(V)$. Clearly G acts on the collection of subsets of \mathfrak{P} occurring in (I) or (II): we can view G as a subgroup of both $Aut\mathbf{D}$ and PGL(V).

We emphasize that the sets in (I) and (II) occupy a tiny portion of the underlying projective space: most sets Fv are unchanged. More precisely, in view of the definition of **D**:

Nevertheless, we will distinguish between the *lines of* **P** and the *blocks of* **D**, even when the blocks happen to be lines. A *subspace* of **D** is a set of points that contains the block joining any pair of its points. (Examples: (I) and (II) involve subspaces of **D**.) A *hyperplane* of **D** is a subspace of **D** that meets every block but does not contain every point. We need further notation:

Distinct
$$y, z \in \mathfrak{P}$$
 determine a block yz of **D** and a line $\langle y, z \rangle$ of **P**. (2.2)

For distinct
$$y, z \in \mathfrak{P}$$
 and $x \in \mathfrak{P} - yz$,

$$\langle x|y, z \rangle = \bigcup \{ xp \mid p \in y'z', y' \in xy - \{x\}, z' \in xz - \{x\}, \{y, z\} \neq \{y', z'\} \}.$$
(2.3)

Here (2.3) depends only on **D** not on **P**, which will allow us to recover **P** from **D**.

Lemma 2.4. If $y, z \in \mathfrak{P}$ are distinct, then there are more than $\frac{1}{2}|\mathfrak{P}|$ points $x \in \mathfrak{P} - yz$ such that

- (1) $\langle x, y, z \rangle$ is a plane of **P** every line of which, except possibly $\langle y, z \rangle$, is a block of **D**,
- (2) $\langle x|y,z\rangle = \langle x,y,z\rangle$,
- (3) if $yz \subseteq \langle x|y,z\rangle$ then $\langle y,z\rangle = yz$, and

set Fv in (I) or (II), so $x \in \langle y, z, L \rangle \subseteq \langle y, z, Fv \rangle$ contradicts (2.5).

(4) if $yz \not\subseteq \langle x|y,z \rangle$ then $\langle y,z \rangle$ is the union of the pairs $\{y_1,z_1\} \subset \langle x|y,z \rangle$ such that $y_1z_1 \not\subseteq \langle x|y,z \rangle$.

Proof. Let

$$x \notin yz \cup \left\{ \left| \left\{ \left\langle y, z, Fv \right\rangle \mid Fv \text{ in (I) or (II)} \right. \right\} \right\}. \tag{2.5}$$

There are more than $(q^{4n}-1)/(q-1)-n^2(q^6-1)/(q-1)-(q+1)>\frac{1}{2}|\mathfrak{P}|$ such points x. Clearly $\langle x,y,z\rangle$ is a plane of \mathbf{P} . (1) Let $L\neq \langle y,z\rangle$ be a line of $\langle x,y,z\rangle$, so $\langle x,y,z\rangle=\langle y,z,L\rangle$. If L is not a block of \mathbf{D} then, by (2.1), L is contained in some

- (2) By (1), $\langle x, y \rangle$ and $\langle x, z \rangle$ are blocks of **D**. Let $\{y', z'\}$ be as in (2.3). Then $\{y', z'\} \subset \langle x, y, z \rangle$ and $\langle y', z' \rangle \neq \langle y, z \rangle$. By (1), $y'z' = \langle y', z' \rangle \subseteq \langle x, y, z \rangle$ and $xp = \langle x, p \rangle \subseteq \langle x, y, z \rangle$ for each point p of $\langle y', z' \rangle$. Then $\langle x|y, z \rangle \subseteq \langle x, y, z \rangle$. Each point of $\langle x, y, z \rangle$ lies in such a line $\langle x, p \rangle$; since that line is a block by (1), $\langle x, y, z \rangle \subseteq \langle x|y, z \rangle$.
- (3) If $yz \neq \langle y, z \rangle$ then, by (2.1), yz lies in some set Fv in (I) or (II). By hypothesis and (2), $yz \subseteq \langle x|y, z \rangle \cap Fv = \langle x, y, z \rangle \cap Fv = \langle y, z \rangle$. Thus, $yz = \langle y, z \rangle$.

(4) We have $yz \neq \langle y, z \rangle$ since $\langle y, z \rangle \subseteq \langle x, y, z \rangle = \langle x|y, z \rangle$ by (2). By (2.1), since $\langle y, z \rangle$ is not a block it is contained in some set Fv in (1) or (II).

For any $\{y_1, z_1\}$ in (4) we have $\{y_1, z_1\} \subseteq \langle x|y, z\rangle = \langle x, y, z\rangle$ by (2), and $y_1z_1 \not\subseteq \langle x, y, z\rangle$, so $\langle y_1, z_1\rangle$ is not a block of **D** and hence $\langle y_1, z_1\rangle = \langle y, z\rangle$ by (1).

On the other hand, consider an arbitrary pair $\{y_1, z_1\} \subset \langle y, z \rangle \subset Fv$. Then $y_1z_1 \subset Fv$ by the definition of **D**. Since $\langle y, z \rangle$ is not a block, $y_1z_1 \not\subseteq \langle y, z \rangle = \langle x|y, z \rangle \cap Fv$ by (2), so $y_1z_1 \not\subseteq \langle x|y, z \rangle$. Thus, $\langle y, z \rangle$ is the union of the pairs $\{y_1, z_1\}$ in (4). \Box

Proof of Theorem 1.1(i). We first recover the lines of **P** from **D**. For distinct $y, z \in \mathfrak{P}$, use each $x \notin yz$ in Lemma 2.4(3) or (4) in order to obtain, more than $\frac{1}{2}|\mathfrak{P}|$ times, the same set of points that must be $\langle y, z \rangle$.

We have now reconstructed all lines of **P** as subsets of \mathfrak{P} . Then we have also recovered **P**, V, $\Gamma L(V)$ and $\Gamma L(V)$, so that $\Gamma L(V)$ is induced by a subgroup of $\Gamma L(V)$, and hence by a subgroup $\Gamma L(V)$ such that $\Gamma L(V)$ such that $\Gamma L(V)$ is induced by a subgroup $\Gamma L(V)$.

Any block of **D** that is not a line of **P** spans a 2-space or 3-space of **P** occurring in some 3-space $PG_1(Fv)$ in (I) or (II), and spans at least a 4-space of **P** together with any block in any $PG_1(Fv') \neq PG_1(Fv)$. Any two blocks of **D** that are not lines of **P** and lie in the same set in (I) or (II) span at most a 3-space of **P**; by (#) each set in (I) or (II) is spanned by two such blocks.

This recovers all subsets (I) and (II) of \mathfrak{P} from **D** and **P**. Moreover, the fact that $\Delta_1 \ncong \Delta_2$ specifies which of these subspaces of **D** have type (I) (or (II)).

We next determine the F-structure of V using \mathbf{D} . We claim that the subgroup of $\mathrm{GL}(V)$ fixing each set in (1) or (II) consists of scalar multiplications by members of F^* . Clearly such scalar multiplications behave this way. Let $h \in \mathrm{GL}(V)$ behave as stated. Then $h: xv_i \mapsto (xA_i)v_i$ for each $x \in F$, each i and a 4×4 invertible matrix A_i over K. If ij is an ordered edge of Γ and $x \in F$, then $(x(v_i + \theta v_j))^h = (xA_i)v_i + ((x\theta)A_j)v_j$ is in $F(v_i + \theta v_j)$, so $(xA_i)\theta = (x\theta)A_j$. Since ji is an ordered edge, also $(xA_j)\theta = (x\theta)A_i$, so $(x\theta\theta)A_i = ((x\theta)A_j)\theta = (xA_i)\theta\theta$, and A_i commutes with multiplication by θ^2 . By Schur's Lemma, $xA_i = xa_i$ for all $x \in F$ and some $a_i \in F^*$. Then $xa_i\theta = x\theta a_i$, so $a_i = a_i$. Since Γ is connected, all a_i are equal, proving our claim.

In particular, the field F and the F-space V_F can be reconstructed from \mathbf{D} . Then $H \leq \Gamma L(V_F)$ since H normalizes F^* , while G lies in H. Since the sets in (II) correspond to (ordered) edges of Γ , H induces $\operatorname{Aut}\Gamma\cong G$ on the collection of sets in (I). It remains to show that the kernel of this action is K^* .

Let $h \in H \leq \Gamma \mathsf{L}(V_F)$. Multiply h by an element of G in order to have h fix all Fv_i . Let $\sigma \in \mathsf{Aut}F$ be the field automorphism associated with h. For each i we have $v_i^h = a_i v_i$ for some $a_i \in F^*$. Let ij be an ordered edge of Γ and write $b = a_j/a_i$. As above, $F(v_i + \theta v_j)^h = F(a_i v_i + \theta^\sigma a_j v_j) = F(v_i + \theta^\sigma b v_j)$ and $F(\theta v_i + v_j)^h = F(\theta^\sigma a_i v_i + a_j v_j) = F(v_i + \theta^{-\sigma} b v_j)$ both have type (II), so $\theta^\sigma b = \theta^{\pm 1}$ and $\theta^{-\sigma} b = \theta^{\pm 1}$. Then $b^2 = 1$, $\theta^\sigma = \pm \theta^{\pm 1}$, and hence $\sigma = 1$ and b = 1 since θ generates F^* . The connectedness of Γ implies that all a_i are equal: h is scalar multiplication by $a_1 \in F^*$.

Since h fixes Fv_1 it induces an automorphism of the subspace of \mathbf{D} determined by Fv_1 . By (I) and our condition on Δ_1 , h fixes a point Kcv_1 of Fv_1 , where $c \in F^*$. Then $Kcv_1 = (Kcv_1)^h = Kca_1v_1$, so $a_1 \in K$. Thus, $h \in K^*$ and $Aut\mathbf{D} \cong G$. \square

3. A simpler projective construction

We need a fairly weak result (Proposition 3.5) concerning designs with the parameters of $PG_1(3, q)$. We know of two published constructions for designs having those parameters, due to Skolem [15, p. 268] and Lorimer [12]. However, isomorphism questions seem difficult using their descriptions. Instead, we will use a method that imitates [9,14] (but which was hinted at by Skolem's idea).

Consider a hyperplane X of $\mathbf{P} = \mathrm{PG}(d,q)$, $d \geq 3$; we identify \mathbf{P} with $\mathrm{PG}_1(d,q)$. Let π be any permutation of the points of X. Define a geometry \mathbf{D}_{π} as follows:

the set \mathfrak{P} of points is the set of points of **P**, and blocks are of two sorts: the lines of **P** not in X, and the sets L^{π} for lines $L \subset X$.

Once again it is trivial to see that \mathbf{D}_{π} is a design having the same parameters as \mathbf{P} . Note that π has nothing to do with the incidences between points and the blocks not in X.

We have a hyperplane X of \mathbf{D}_{π} such that the blocks of \mathbf{D}_{π} not in X are lines of a projective space \mathbf{P} for which \mathfrak{P} is the set of points. We claim that the lines of this projective space can be recovered from \mathbf{D}_{π} and X. Namely, we have all points and lines of \mathbf{P} not in X. For distinct $y, z \in X$ and $x \notin X$, the set $\langle x|y,z\rangle$ in (2.3) consists of the points of the plane $\langle x,y,z\rangle$ of \mathbf{P} , and $\langle x|y,z\rangle \cap X$ is the line $\langle y,z\rangle$. We have now obtained all lines of the original projective space \mathbf{P} , as claimed. It follows that

$$Aut \mathbf{D}_{\pi} \leq Aut \mathbf{P}. \tag{3.1}$$

The symbol X is ambiguous: it will now mean either a set of points or a hyperplane of the underlying *projective space* (as in the next result). It will not refer to X together with a different set of lines produced by a permutation π .

Proposition 3.2. The designs \mathbf{D}_{π} and $\mathbf{D}_{\pi'}$ are isomorphic by an isomorphism sending X to itself if and only if π and π' are in the same $P\Gamma L(X)$, $P\Gamma L(X)$ double coset in Sym(X).

Moreover, the pointwise stabilizer of X in $\operatorname{Aut} \mathbf{D}_{\pi}$ is transitive on the points outside of X, and the stabilizer $(\operatorname{Aut} \mathbf{D}_{\pi})_X$ of X induces $\operatorname{P}\Gamma\mathsf{L}(X) \cap \operatorname{P}\Gamma\mathsf{L}(X)^{\pi}$ on X.

Proof. Let $g: \mathbf{D}_{\pi} \to \mathbf{D}_{\pi'}$ be such an isomorphism. We just saw that \mathbf{P} is naturally reconstructible from either design. It follows that g is a collineation of \mathbf{P} ; its restriction \bar{g} to X is in $P\Gamma L(X)$.

If $L \subset X$ is a line of **P** then g sends the block $L^{\pi} \subset X$ of \mathbf{D}_{π} to a block $L^{\pi g} \subset X$ of $\mathbf{D}_{\pi'}$. Then $L^{\pi g \pi'^{-1}}$ is a line of **P**, so that $\pi \bar{g} \pi'^{-1}$ is a permutation of the points of the hyperplane X of **P** sending lines to lines, and hence is an element $h \in \mathrm{P}\Gamma L(X)$. Thus, π and π' are in the same $\mathrm{P}\Gamma L(X)$, $\mathrm{P}\Gamma L(X)$ double coset.

Conversely, if π and π' are in the same $\mathrm{P}\Gamma\mathrm{L}(X)$, $\mathrm{P}\Gamma\mathrm{L}(X)$ double coset let \bar{g} , $h\in\mathrm{P}\Gamma\mathrm{L}(X)$ with $\pi\bar{g}\pi'^{-1}=h$. Extend \bar{g} to $g\in\mathrm{Aut}\mathbf{P}$ in any way. We claim that g is an isomorphism $\mathbf{D}_{\pi}\to\mathbf{D}_{\pi'}$. It preserves incidences between blocks not in X and points of \mathbf{P} since $g\in\mathrm{Aut}\mathbf{P}$ and those incidences have nothing to do with π and π' . Consider an incidence $x\in B\subset X$ for a block B of \mathbf{D}_{π} . Then $B=L^{\pi}$ for a line $L\subset X$. Since $g\in\mathrm{Aut}\mathbf{P}$, $x^g\in B^g=B^{\bar{g}}=L^{\pi\bar{g}}=(L^h)^{\pi'}$, which is a block of $\mathbf{D}_{\pi'}$, as required.

For the final assertion, the pointwise stabilizer of X in $\operatorname{Aut} \mathbf{P}$ is in $\operatorname{Aut} \mathbf{D}_{\pi}$ by the definition of \mathbf{D}_{π} . We have seen that the group induced on X by $\operatorname{Aut} \mathbf{D}_{\pi}$ corresponds to the pairs $(\bar{g}, h) \in \operatorname{P}\Gamma L(X) \times \operatorname{P}\Gamma L(X)$ satisfying $\pi \bar{g} \pi^{-1} = h$. \square

Note that there are many extensions g of \bar{g} since the designs \mathbf{D}_{π} have many automorphisms inducing the identity on X. Double cosets arise naturally in this type of result; compare [9, Theorem 4.4].

Let $v_i = (q^i - 1)/(q - 1)$.

Corollary 3.3. There are at least $v_d!/(v_{d+1}|\Gamma\Gamma(d,q)|^2)$ pairwise nonisomorphic designs having the same parameters as **P**.

Proof. Fix π in the proposition. There are at most v_{d+1} hyperplanes Y of \mathbf{D}_{π} (as in [8, Theorem 2.2]). By the proposition there are then at most $|P\Gamma L(X)|^2$ choices for π' such that $\mathbf{D}_{\pi} \cong \mathbf{D}_{\pi'}$ by an isomorphism sending Y to X. Since there are v_d ! choices for π we obtain the stated lower bound. \square

Remark 3.4. We describe a useful trick. A transposition σ and a 3-cycle τ are in different $P\Gamma L(d,q)$, $P\Gamma L(d,q)$ double cosets in Sym(N), $N=(q^d-1)/(q-1)$, if $d\geq 3$ and we exclude the case d=3, q=2. For, if $\sigma g=h\tau$ with $g,h\in P\Gamma L(d,q)$ then $g^{-1}h=g^{-1}\cdot\sigma g\tau^{-1}=\sigma^g\tau^{-1}\in P\Gamma L(d,q)$ fixes at least N-5 points, and hence is 1 by our restriction on d, whereas $\sigma^g\neq\tau$.

Proposition 3.5. For any q there are two designs having the parameters of $P = PG_1(3, q)$ and not isomorphic to one another or to P, for one of which the automorphism group fixes a point.

Proof. If q = 2 then there are even such designs with trivial automorphism group [4]. (Undoubtedly such designs exist for all q.)

Assume that q > 2. The preceding corollary and remark provide us with two nonisomorphic designs. It remains to deal with the final assertion constructively.

Let π be a transposition (x_1, x_2) of X. We will show that \mathbf{D}_{π} behaves as stated.

First note that each $g \in \operatorname{Aut} \mathbf{D}_{\pi}$ fixes X. For, suppose that $Y = X^g \neq X$ for some g, where $g \in \operatorname{Aut} \mathbf{P}$ by (3.1). The blocks in Y not in X are lines of \mathbf{P} . Then the same is true of the blocks in $Y^{g^{-1}} = X$ not in $X^{g^{-1}}$. This contradicts the fact that π sends all lines $\neq \langle x_1, x_2 \rangle$ of \mathbf{P} inside X and on X to sets that are not lines of \mathbf{P} .

By Proposition 3.2, $\operatorname{Aut} \mathbf{D}_{\pi} = (\operatorname{Aut} \mathbf{D}_{\pi})_X$ induces $\operatorname{P}\Gamma L(X) \cap \operatorname{P}\Gamma L(X)^{\pi}$ on X. Let $\pi \bar{g} \pi^{-1} = h$ for $\bar{g}, h \in \operatorname{P}\Gamma L(X)$. Then $\bar{g}^{-1}h = \pi^{\bar{g}}\pi^{-1}$ is a collineation of X that moves at most $2 \cdot 2$ points of X and hence fixes at least $(q^2 + q + 1) - 2 \cdot 2 > q + \sqrt{q} + 1$ points. By elementary (semi)linear algebra, the only such collineation is 1, so that $\bar{g} = h$ commutes with π and hence fixes the line $\langle x_1, x_2 \rangle$. Then \bar{g} also fixes a point of X and hence of \mathbf{D}_{π} . \square

Remark 3.6. By excluding the possibilities $q \le 8$ and q prime in the previous section we could have used nondesarguesian projective planes (and [F:K] = 3).

4. A simple affine construction

We now consider Theorem 1.1(ii). The proof is similar to that of Theorem 1.1(i). That result handles the cases q = 3, 4 or 5, but we ignore this and only assume that q > 2.

Let G and Γ be as in Section 2. This time we use $K = \mathbf{F}_q \subset F = \mathbf{F}_{q^3}$; once again θ generates F^* . Let V_F be an n-dimensional vector space over F, with basis v_1, \ldots, v_n . View V_F as a vector space V over K. If Y is a set of points of \mathbf{A} then $\langle Y \rangle$ denotes the smallest affine subspace containing Y.

We will modify the point-line design $AG_1(V)$ of $\mathbf{A} = AG(V)$, using nonisomorphic designs Δ_1 , Δ_2 whose parameters are those of $AG_1(3, q)$ but are not isomorphic to that design, chosen so that $Aut\Delta_1$ fixes at least two points (Proposition 5.2).

Our design **D** has V as its set of points. Most blocks of **D** are lines of **A**, with exceptions involving the sets Fv, $0 \neq v \in V$, in Section 2(I, II), where now Fv is viewed as a 3-dimensional affine space.

As before, the set of lines of $AG_1(Fv_i)$ or $AG_1(F(v_i + \theta v_j))$ is replaced by a copy of the set of blocks of Δ_1 or Δ_2 . This time, for each of these we require

(#') there are distinct blocks, each of which spans a plane of **A**, such that the intersection of those planes is a line.

Clearly, these two blocks span a 3-space. (When q > 3 it would be marginally easier to require that there is a single block that spans a 3-space.) Condition (#') can be satisfied exactly as in *Satisfying* (#) in Section 2. Since different sets Fv meet only in a single point, the modifications made inside them are unrelated. Once again it is easy to check that this produces a design **D** with the desired parameters for which $G \le \text{Aut}\mathbf{D}$.

As in Section 2, most sets Fv are unchanged. In view of the definition of **D**, the analogue of (2.1) holds. We use the natural analogues of definitions (2.2) and (2.3), using **A** in place of **P** and V in place of \mathfrak{P} .

Lemma 4.1. If $y, z \in V$ are distinct, then there are more than $\frac{1}{2}|V|$ points $x \in V - yz$ such that

- (1) every line of the plane $\langle x, y, z \rangle$ of **A**, except possibly $\langle y, z \rangle$, is a block of **D**,
- (2) $\langle x|y,z\rangle = \langle x,y,z\rangle$,
- (3) if $yz \subseteq \langle x|y,z\rangle$ then $\langle y,z\rangle = yz$, and
- (4) if $yz \not\subseteq \langle x|y,z\rangle$ then $\langle y,z\rangle$ is the union of the pairs $\{y_1,z_1\}\subset \langle x|y,z\rangle$ such that $y_1z_1\not\subseteq \langle x|y,z\rangle$.

Proof. Using x in (2.5), this is proved exactly as in Lemma 2.4 except for (2), where we need to consider parallel lines using blocks that are lines by (1). Clearly $\langle x|y,z\rangle\subseteq\langle x,y,z\rangle$; we must show that $\langle x,y,z\rangle\subseteq\langle x|y,z\rangle$. In (2.3), for p in the line $y'z'=\langle y',z'\rangle$ of $\langle x,y,z\rangle$ parallel to $\langle y,z\rangle$, the blocks $xp\subset\langle x|y,z\rangle$ cover all points of the plane $\langle x,y,z\rangle$ except for those in the line L on X parallel to L0, L1, L2, L3, so L4, L5, so L5, so L5, so L6, so L7, so L8, so L9, so

Proof of Theorem 1.1(ii). First recover all lines of **A** from **D** exactly as in the proof of Theorem 1.1(i). This also produces both the K-space V and $A\Gamma L(V)$ from **D**.

We recover all subsets (I) and (II) essentially as before. Consider a pair B, B' of blocks of **D** behaving as in (#'): $\langle B \rangle$ and $\langle B' \rangle$ are planes and $\langle B \rangle \cap \langle B' \rangle$ is a line. Since distinct subsets in (I) or (II) do not have a common line, each such pair B, B' spans a subset in (I) or (II). Thus, by (#') we have obtained each subset in (I) or (II) from **D** and **A** using some pair B, B'. Once again, the fact that $\Delta_1 \ncong \Delta_2$ specifies which of these subspaces of **D** have type (I) (or (II)).

The subsets (I) all contain 0, and Aut**D** fixes their intersection, so Aut**D** is induced by a subgroup of $A\Gamma L(V)_0 = \Gamma L(V)$.

Recover the field F exactly as in the proof of Theorem 1.1(i). Once again, $Aut\mathbf{D}$ is a subgroup of $\Gamma L(V_F)$ that induces $Aut\Gamma \cong G$ on the collection of sets in (I).

By repeating the argument at the end of the proof of Theorem 1.1(i) we reduce to the case of $h \in \operatorname{Aut} \mathbf{D}$ fixing all sets in (I) and acting on V as $v \mapsto av$ for some $a \in F^*$. We chose Δ_1 so that $\operatorname{Aut} \Delta_1$ fixes at least two of its points. It follows that a = 1, so that h = 1 and $\operatorname{Aut} \mathbf{D} \cong G$. \Box

5. A simpler affine construction

Consider a plane X of $\mathbf{A} = \mathsf{AG}(3,q) = \mathsf{AG}(V)$, q > 2; we identify \mathbf{A} with $\mathsf{AG}_1(3,q)$. Let π be any permutation of the points of X. Define a geometry \mathbf{D}_{π} as follows:

the set V of points is the set of points of A, and blocks are of two sorts: the lines of A not in X, and the sets L^{π} for lines $L \subset X$.

Once again it is trivial to see that \mathbf{D}_{π} is a design having the same parameters as \mathbf{A} .

As in Section 3, the blocks of \mathbf{D}_{π} not in X are lines of an affine space \mathbf{A} for which V is the set of points. As in Sections 3 and 4, the lines of this affine space can be recovered from \mathbf{D}_{π} using the analogue of (2.3).

Proposition 5.1. The designs \mathbf{D}_{π} and $\mathbf{D}_{\pi'}$ are isomorphic by an isomorphism sending X to itself if and only if π and π' are in the same $\mathrm{A}\Gamma\mathrm{L}(X)$, $\mathrm{A}\Gamma\mathrm{L}(X)$ double coset in $\mathrm{Sym}(X)$. This produces at least $q^2!/(q(q^2+q+1)|\mathrm{A}\Gamma\mathrm{L}(2,q)|^2)$ pairwise nonisomorphic designs having the same parameters as $\mathrm{A}\mathrm{G}_1(3,q)$.

Moreover, the pointwise stabilizer of X in $\operatorname{Aut}\mathbf{D}_{\pi}$ is transitive on the points outside of X, and $(\operatorname{Aut}\mathbf{D}_{\pi})_{X}$ induces $\operatorname{A}\Gamma\operatorname{L}(X)\cap\operatorname{A}\Gamma\operatorname{L}(X)^{\pi}$ on X.

Proof. This is the same as for Proposition 3.2 and Corollary 3.3. □

Proposition 5.2. For any $q \ge 3$ there are at least two designs having the parameters of $\mathbf{A} = \mathsf{AG}_1(3,q)$, not isomorphic to one another or to \mathbf{A} , such that the automorphism group of one of them fixes at least two points.

Proof. The bound in the preceding proposition provides us with many nonisomorphic designs. We need to deal with the requirement concerning automorphism groups. By [11] we may assume that $q \ge 4$.

Let $\pi \in \text{Sym}(X)$ be a 4-cycle (x, x_1, x_2, x_3) , where x_1, x_2, x_3 are on a line not containing x. We will show that \mathbf{D}_{π} behaves as required.

Let $g \in \operatorname{Aut}\mathbf{D}_{\pi}$. As in the proof of Proposition 3.5, g fixes X and induces a collineation \bar{g} of the subspace X of \mathbf{A} . By Proposition 5.1, $\pi \bar{g} = h\pi$ with $\bar{g}, h \in \operatorname{A}\Gamma\operatorname{L}(X)$. As before, $\bar{g}^{-1}h = \pi^{\bar{g}}\pi^{-1}$ is a collineation of X that fixes at least $q^2 - 2 \cdot 4 > q$ points as $q \geq 4$. Then $\bar{g} = h$ and $\pi^{\bar{g}} = \pi$. Since the collineation \bar{g} commutes with π it fixes $\{x, x_1, x_2, x_3\}$ and hence also x, and so is the identity on the support of π . Thus, $\operatorname{Aut}\mathbf{D}_{\pi}$ is the identity on that support. \square

6. Steiner quadruple systems

We have avoided AG(d, 2) in the preceding two sections. Here we briefly comment about those spaces in the context of 3-(v, 4, 1)-designs (Steiner quadruple systems), outlining a proof of the following result in [13].

Theorem 6.1. If G is a finite group then there are infinitely many integers v such that there is a 3-(v, 4, 1)-design **D** for which Aut**D** \cong G.

Proof. Let $K = \mathbf{F}_2 \subset F = \mathbf{F}_{16}$ and Γ be as in Section 2, with θ a generator of F^* . Let V_F be a vector space over F with basis v_1, \ldots, v_n , viewed as a K-space V. This time we modify the 3-design $AG_2(V)$ of points and (affine) planes of V. We use nonisomorphic designs Δ_1, Δ_2 having the parameters of $AG_2(4, 2)$ but not isomorphic to that design, and such that $Aut\Delta_1 = 1$ [10].

Once again our design **D** has V as its set of points. Most blocks of **D** are planes of **A**, with exceptions involving the sets Fv, $0 \neq v \in V$, in Section 2(I, II), where now Fv is viewed as a 4-dimensional affine space. As before, the set of planes of $AG_2(Fv_i)$ or $AG_2(F(v_i + \theta v_i))$ is replaced by a copy of the set of blocks of Δ_1 or Δ_2 . This time, for each of these we require

(#") there are distinct blocks, each of which spans a 3-space of **A**, such that the intersection of those 3-spaces is a plane.

Once again it is easy to check that this produces a design **D** with the desired parameters for which $G < \text{Aut} \mathbf{D}$.

Distinct $x, y, z \in V$ determine a block xyz of **D** and a plane $\langle x, y, z \rangle$ of **A**. For distinct x, y, z and $w \notin xyz$, instead of (2.3) we use $\langle w | x, y, z \rangle = \{ \} \{ abc \mid a \in wxy - \{w\}, b \in wxz - \{w\}, c \in wyz - \{w\}, with a, b, c distinct and not all in <math>\{x, y, z\} \}$.

As before, all planes of **A** can be recovered from **D**, this time using various sets $\langle w|x, y, z\rangle$. Also the sets in (I) and (II) can be recovered, as can *F*, and the argument at the end of Section 4 goes through as before.

7. Concluding remarks

Remark 7.1. When considering possible consequences of this paper it became clear that additional properties of our designs should also be mentioned.

- (1) Additional properties of the design **D** in Theorem 1.1(i).
 - (a) PG(3, q)-connectedness. The following graph is connected: the vertices are the subspaces of **D** isomorphic to PG₁(3, q), with two joined when they meet.
 - (b) PG(n-1,q) generation. **D** is generated by its subspaces isomorphic to $PG_1(n-1,q)$.
 - (c) Every point of **D** is in a subspace isomorphic to $PG_1(n-1,q)$ (in fact, many of these).
 - (d) More than q^n points are moved by every nontrivial automorphism of **D**.
- (2) Additional properties of the design **D** in Theorem 1.1(ii).
 - (a) AG(3, q)-connectedness. The following graph is connected: the vertices are the subspaces of **D** isomorphic to AG₁(3, q), with two joined when they meet.
 - (b) AG(n, q) generation. **D** is generated by its subspaces isomorphic to $AG_1(n, q)$.
 - (c) Every point of **D** is in a subspace isomorphic to $AG_1(n, q)$ (in fact, many of these).
 - (d) More than q^n points are moved by every nontrivial automorphism of **D**.
- (3) Additional properties of the design $\bf D$ in Theorem 6.1. This time versions of (2a) (using $AG_2(4,2)$ -connectedness), (2b), (2c), (2d) (2e) hold.

These reflect the fact that the sets of points in (I) or (II) cover a tiny portion of the underlying projective or affine space: a subset of the points determined by F-linear combinations of at most two of the v_i . For (1a), it is easy to see that any point in $\mathfrak P$ lies in a 4-space of V that contains some point $K\beta \sum_i v_i$, $\beta \in F^*$, and meets each set in (I) or (II) in at most a point; by (2.1) this produces a subspace of $\mathbf D$ isomorphic to $\mathrm{PG}_1(3,q)$. Moreover, all $K\beta \sum_i v_i$ lie in $F(\sum_i v_i)$, which also produces a subspace of $\mathbf D$ isomorphic to $\mathrm{PG}_1(3,q)$.

For (1b) we give examples of subspaces of V:

$$\langle v_1 + \theta^2 v_2, v_2 + \theta^2 v_3 + \theta^i v_4, \dots, v_{n-2} + \theta^2 v_{n-1} + \theta^i v_n, v_1 + v_2 + v_4 + v_5, \theta(v_1 + v_2 + v_4 + v_5) \rangle$$

for $2 < i < q^4 - 1$. Each of these misses all sets in (I) or (II), and hence determines a subspace of **D** isomorphic to $PG_1(n-1,q)$. These subspaces generate a subspace of **D** containing the points $K(\theta^i - \theta^3)v_n$, $3 < i < q^4 - 1$, and hence also $PG_1(Fv_n)$. Now permute the subscripts to generate **D**.

Part (1c) holds by using K-subspaces similar to the above ones. There are clearly projective spaces of larger dimension that are subdesigns of \mathbf{D} .

Part (1d) depends on the semiregularity of G on $\{v_1, \ldots, v_n\}$. Use the points $K \sum_i \alpha_i v_i$ with $\alpha_1 = 1$ and $\alpha_i \in F - \{1\}$ for i > 1, where each $\alpha \in F - \{1\}$ occurs either for 0 or at least two basis vectors v_i . The lower bound q^n is easy to obtain but very poor.

Both (2) and (3) are handled as in (1).

Remark 7.2. In (II) we used the K-subspaces $F(v_i + \theta_i v_j)$. We could have used subspaces $F(v_i + \theta_i v_j)$, $r = 1, \ldots, s$, for various θ_r , together with further nonisomorphic designs $\Delta_{2,r}$ (which are needed to distinguish among the $F(v_i + \theta_i v_j)$). All proofs go through without difficulty, as do the additional properties in the preceding remark.

Remark 7.3. Each of our designs has the same parameters as some $PG_1(V)$ or $AG_1(V)$. What is needed is a much better type of result, such as: for each finite group G there is an integer f(|G|) such that, if q is a prime power and if v > f(|G|) satisfies the necessary conditions for the existence of a 2-(v, q + 1, 1)-design, then there is such a design \mathbf{D} for which $Aut\mathbf{D} \cong G$. When q = 2 this result is proved in a sequel to the present paper [6].

Acknowledgments

I am grateful to Jean Doyen for providing me with a clear description of Skolem's construction and for helpful comments concerning this research. I am also grateful to a referee for many helpful comments. This research was supported in part by a grant from the Simons Foundation.

References

- [1] L. Babai, BIBD's with given automorphism groups, (unpublished); see [3, p. 8].
- [2] L. Babai, On the minimum order of graphs with given group, Can. Math. Bull. 17 (1974) 467-470.
- [3] L. Babai, On the abstract group of automorphisms, in: Combinatorics (Swansea, 1981), in: LMS Lecture Notes, vol. 52, Cambridge U. Press, Cambridge-New York, 1981, pp. 1–40.
- [4] F.N. Cole, L.D. Cummings, H.S. White, The complete enumeration of triad systems in 15 elements, Proc. Natl. Acad. Sci. 3 (1917) 197–199.
- [5] U. Dempwolff, W.M. Kantor, Distorting symmetric designs, Des. Codes Cryptogr. 48 (2008) 307–322.
- [6] J. Doyen, W.M. Kantor, Automorphism groups of Steiner triple systems. http://arxiv.org/abs/1808.03615.
- [7] R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compos. Math. 6 (1938) 239–250.
- [8] D. Jungnickel, V.D. Tonchev, The number of designs with geometric parameters grows exponentially, Des. Codes Cryptogr. 55 (2010) 131–140.
- [9] W.M. Kantor, Automorphisms and isomorphisms of symmetric and affine designs, J. Algebr. Comb. 3 (1994) 307–338.
- [10] P. Kaski, P. Östergård, O. Pottonen, The Steiner quadruple systems of order 16, J. Combin. Theory Ser. A 113 (2006) 1764-1770.
- [11] C.C. Lindner, A. Rosa, On the existence of automorphism free Steiner triple systems, J. Algebra 34 (1975) 430–443.
- [12] P. Lorimer, A class of block designs having the same parameters as the design of points and lines in a projective 3-space, in: Combinatorial Mathematics (Proc. Second Australian Conf. Univ. Melbourne, Melbourne, 1973), in: Lecture Notes in Math., vol. 403, Springer, Berlin, 1974, pp. 73–78.
- [13] E. Mendelsohn, On the groups of automorphisms of Steiner triple and quadruple systems, J. Combin. Theory Ser. A 25 (1978) 97-104.
- [14] S.S. Shrikhande, On the nonexistence of affine resolvable balanced incomplete block designs, Sankhyā 11 (1951) 185-186.
- [15] E. Witt, Über Steinersche Systeme, Abh. Math. Sem. Hamburg 12 (1938) 265–275.