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1. Introduction

Starting with Frucht’s theorem on graphs [7], there have been many papers proving that any finite group is isomorphic
to the full automorphism group of some specific type of combinatorial object. Babai surveyed this topic [3], and in [3, p. 8]
stated that in [1] he had proved that 2-designs with λ = 1 are such objects when k = q > 2 or k = q+1 for a prime power q.
(The case of Steiner triple systems was handled in [13].) The purpose of this note is to provide a proof of Babai’s result1:

Theorem 1.1. Let G be a finite group and q a prime power.

(i) There are infinitely many integers v such that there is a 2-(v, q + 1, 1)-design D for which AutD ∼= G.
(ii) If q > 2 then there are infinitely many integers v such that there is a 2-(v, q, 1)-design D for which AutD ∼= G.

Parts of our proof mimic [5, Sec. 5] and [9, Sec. 4], but the present situation is much simpler.Wemodify a small number of
subspaces of a projective or affine space in such a way that the projective or affine space can be recovered from the resulting
design by elementary geometric arguments. Further geometric arguments determine the automorphism group.

Section 7 contains further properties of the design D in the theorem, some of which are needed in future research [6].

Notation: We use standard permutation group notation, such as xπ for the image of a point x under a permutation π and
gh

= h−1gh for conjugation. The group of automorphisms of a projective space Y = PG(V ) defined by a vector space V is
denoted by P0L(V ) = P0L(Y ); this is induced by the group0L(V ) of invertible semilinear transformations on V . Also A0L(V )
denotes the group of automorphisms of the affine space AG(V ) defined by V .

2. A simple projective construction

Let G be a finite group. Let Γ be a simple, undirected, connected graph on {1, . . . , n} such that AutΓ ∼= G and G acts
semiregularly on the vertices. There is such a graph for each n ≥ 6|G| that is a multiple of |G| (using [2]).
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Let K = Fq ⊂ F = Fq4 , and let θ generate F∗. Let VF be an n-dimensional vector space over F , with basis v1, . . . , vn. View
G as acting on VF , permuting {v1, . . . , vn} as it does {1, . . . , n}. View VF as a vector space V over K . If Y is a set of points of
P = PG(V ) then ⟨Y ⟩ denotes the smallest subspace of P containing Y .

We will modify the point-line design PG1(V ) of P, using nonisomorphic designs ∆1 and ∆2 whose parameters are those
of PG1(K 4) = PG1(3, q) but are not isomorphic to that design, chosen so that Aut∆1 fixes a point (Proposition 3.5).

Our design D has the setP of points of P as its set of points. Most blocks of D are lines of P, with the following exceptions
involving some of the subspaces Fv, 0 ̸= v ∈ V , viewed as subsets ofP. For orbit representatives i and ij of G on the vertices
and ordered edges of Γ ,

(I) replace the set of lines of PG1(Fvi) by a copy of the set of blocks of ∆1, subject only to the condition

(#) there are distinct blocks, neither of which is a line of P, whose span in P is PG1(Fvi),

and then apply all g ∈ G to these sets of blocks in order to obtain the blocks in PG1((Fvi)g ), g ∈ G; and
(II) replace the set of lines of PG1(F (vi + θvj)) by a copy of the set of blocks of ∆2, subject only to (#), and then apply all

g ∈ G to these sets of blocks in order to obtain the blocks in PG1(F (vi + θvj)g ), g ∈ G.

We need to check that these requirements can be met.
(i) Satisfying (#): Let ∆̄s be an isomorphic copy of ∆s, s = 1 or 2, whose set of points is that of PG1(Fv) = PG1(Fvi) or

PG1(F (vi + θvj)). Let B1 and B2 be any distinct blocks of ∆̄s. Choose any permutation π of the points of PG1(Fv) such that the
sets Bπ

1 and Bπ
2 are not lines of PG1(Fv) and together span PG1(Fv). Using ∆̄π

s in place of ∆̄s satisfies (#). (If q+ 1 ≥ 4 then B2
is not needed.)

(ii) These replacements are well-defined: For (II), if F (vi + θvj)g ∩ F (vi + θvj)g
′

̸= 0 for some g, g ′
∈ G, then vig′ + θvjg′ ∈

F (vig + θvjg ). Then either vig′ = vig and vjg′ = vjg , or vig′ = αθvjg and θvjg′ = αvig for some α ∈ F∗; but in the latter case
we obtain 1 = αθ and θ = α, whereas θ generates F∗. Thus, vig′ = vig , so the semiregularity of G on {1, . . . , n} implies that
g ′

= g , as required.
It is trivial to see that D is a design having the same parameters as PG1(V ). Clearly G acts on the collection of subsets of P

occurring in (I) or (II): we can view G as a subgroup of both AutD and PGL(V ).
We emphasize that the sets in (I) and (II) occupy a tiny portion of the underlying projective space: most sets Fv are

unchanged. More precisely, in view of the definition of D:
Every block of D not contained in a set (I) or (II) is a line of P.

Every line of P not contained in set (I) or (II) is a block of D.
(2.1)

Nevertheless, we will distinguish between the lines of P and the blocks of D, even when the blocks happen to be lines. A
subspace of D is a set of points that contains the block joining any pair of its points. (Examples: (I) and (II) involve subspaces
ofD.) A hyperplane ofD is a subspace ofD that meets every block but does not contain every point.We need further notation:

Distinct y, z ∈ P determine a block yz of D and a line⟨y, z⟩ of P. (2.2)

For distinct y, z ∈ P and x ∈ P − yz,
⟨x|y, z⟩ =

⋃{
xp | p ∈ y′z ′, y′

∈ xy − {x}, z ′
∈ xz − {x}, {y, z} ̸= {y′, z ′

}
}
.

(2.3)

Here (2.3) depends only on D not on P, which will allow us to recover P from D.

Lemma 2.4. If y, z ∈ P are distinct, then there are more than 1
2 |P| points x ∈ P − yz such that

(1) ⟨x, y, z⟩ is a plane of P every line of which, except possibly ⟨y, z⟩, is a block of D,
(2) ⟨x|y, z⟩ = ⟨x, y, z⟩,
(3) if yz ⊆ ⟨x|y, z⟩ then ⟨y, z⟩ = yz, and
(4) if yz ̸⊆ ⟨x|y, z⟩ then ⟨y, z⟩ is the union of the pairs {y1, z1} ⊂ ⟨x|y, z⟩ such that y1z1 ̸⊆ ⟨x|y, z⟩.

Proof. Let

x /∈ yz ∪

⋃{
⟨y, z, Fv⟩ | Fv in (I) or (II)

}
. (2.5)

There are more than (q4n − 1)/(q − 1) − n2(q6 − 1)/(q − 1) − (q + 1) > 1
2 |P| such points x. Clearly ⟨x, y, z⟩ is a plane of P.

(1) Let L ̸= ⟨y, z⟩ be a line of ⟨x, y, z⟩, so ⟨x, y, z⟩ = ⟨y, z, L⟩. If L is not a block of D then, by (2.1), L is contained in some
set Fv in (I) or (II), so x ∈ ⟨y, z, L⟩ ⊆ ⟨y, z, Fv⟩ contradicts (2.5).

(2) By (1), ⟨x, y⟩ and ⟨x, z⟩ are blocks of D. Let {y′, z ′
} be as in (2.3). Then {y′, z ′

} ⊂ ⟨x, y, z⟩ and ⟨y′, z ′
⟩ ̸= ⟨y, z⟩. By (1),

y′z ′
= ⟨y′, z ′

⟩ ⊆ ⟨x, y, z⟩ and xp = ⟨x, p⟩ ⊆ ⟨x, y, z⟩ for each point p of ⟨y′, z ′
⟩. Then ⟨x|y, z⟩ ⊆ ⟨x, y, z⟩. Each point of ⟨x, y, z⟩

lies in such a line ⟨x, p⟩; since that line is a block by (1), ⟨x, y, z⟩ ⊆ ⟨x|y, z⟩.
(3) If yz ̸= ⟨y, z⟩ then, by (2.1), yz lies in some set Fv in (I) or (II). By hypothesis and (2), yz ⊆ ⟨x|y, z⟩∩Fv = ⟨x, y, z⟩∩Fv =

⟨y, z⟩. Thus, yz = ⟨y, z⟩.
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(4) We have yz ̸= ⟨y, z⟩ since ⟨y, z⟩ ⊆ ⟨x, y, z⟩ = ⟨x|y, z⟩ by (2). By (2.1), since ⟨y, z⟩ is not a block it is contained in some
set Fv in (I) or (II).

For any {y1, z1} in (4) we have {y1, z1} ⊆ ⟨x|y, z⟩ = ⟨x, y, z⟩ by (2), and y1z1 ̸⊆ ⟨x, y, z⟩, so ⟨y1, z1⟩ is not a block of D and
hence ⟨y1, z1⟩ = ⟨y, z⟩ by (1).

On the other hand, consider an arbitrary pair {y1, z1} ⊂ ⟨y, z⟩ ⊂ Fv. Then y1z1 ⊂ Fv by the definition of D. Since ⟨y, z⟩ is
not a block, y1z1 ̸⊆ ⟨y, z⟩ = ⟨x|y, z⟩ ∩ Fv by (2), so y1z1 ̸⊆ ⟨x|y, z⟩. Thus, ⟨y, z⟩ is the union of the pairs {y1, z1} in (4). □

Proof of Theorem 1.1(i). We first recover the lines of P from D. For distinct y, z ∈ P, use each x /∈ yz in Lemma 2.4(3) or (4)
in order to obtain, more than 1

2 |P| times, the same set of points that must be ⟨y, z⟩.
We have now reconstructed all lines of P as subsets ofP. Then we have also recovered P, V , 0L(V ) and P0L(V ), so that AutD

is induced by a subgroup of AutP = P0L(V ), and hence by a subgroup H of 0L(V ) such that AutD ∼= H/K ∗.
Any block of D that is not a line of P spans a 2-space or 3-space of P occurring in some 3-space PG1(Fv) in (I) or (II), and

spans at least a 4-space of P together with any block in any PG1(Fv′) ̸= PG1(Fv). Any two blocks of D that are not lines of P
and lie in the same set in (I) or (II) span at most a 3-space of P; by (#) each set in (I) or (II) is spanned by two such blocks.

This recovers all subsets (I) and (II) of P from D and P. Moreover, the fact that ∆1 ̸∼= ∆2 specifies which of these subspaces
of D have type (I) (or (II)).

We next determine the F-structure of V using D. We claim that the subgroup of GL(V ) fixing each set in (I) or (II) consists of
scalar multiplications by members of F∗. Clearly such scalar multiplications behave this way. Let h ∈ GL(V ) behave as stated.
Then h: xvi ↦→ (xAi)vi for each x ∈ F , each i and a 4 × 4 invertible matrix Ai over K . If ij is an ordered edge of Γ and x ∈ F ,
then (x(vi + θvj))h = (xAi)vi + ((xθ )Aj)vj is in F (vi + θvj), so (xAi)θ = (xθ )Aj. Since ji is an ordered edge, also (xAj)θ = (xθ )Ai,
so (xθθ )Ai = ((xθ )Aj)θ = (xAi)θθ , and Ai commutes with multiplication by θ2. By Schur’s Lemma, xAi = xai for all x ∈ F and
some ai ∈ F∗. Then xaiθ = xθaj, so ai = aj. Since Γ is connected, all ai are equal, proving our claim.

In particular, the field F and the F-space VF can be reconstructed from D. Then H ≤ 0L(VF ) since H normalizes F∗, while
G lies in H . Since the sets in (II) correspond to (ordered) edges of Γ , H induces AutΓ ∼= G on the collection of sets in (I). It
remains to show that the kernel of this action is K ∗.

Let h ∈ H ≤ 0L(VF ). Multiply h by an element of G in order to have h fix all Fvi. Let σ ∈ AutF be the field automorphism
associated with h. For each iwe have vh

i = aivi for some ai ∈ F∗. Let ij be an ordered edge of Γ and write b = aj/ai. As above,
F (vi + θvj)h = F (aivi + θσ ajvj) = F (vi + θσ bvj) and F (θvi + vj)h = F (θσ aivi + ajvj) = F (vi + θ−σ bvj) both have type (II), so
θσ b = θ±1 and θ−σb = θ∓1. Then b2 = 1, θσ

= ±θ±1, and hence σ = 1 and b = 1 since θ generates F∗. The connectedness
of Γ implies that all ai are equal: h is scalar multiplication by a1 ∈ F∗.

Since h fixes Fv1 it induces an automorphism of the subspace of D determined by Fv1. By (I) and our condition on ∆1, h
fixes a point Kcv1 of Fv1, where c ∈ F∗. Then Kcv1 = (Kcv1)h = Kca1v1, so a1 ∈ K . Thus, h ∈ K ∗ and AutD ∼= G. □

3. A simpler projective construction

We need a fairly weak result (Proposition 3.5) concerning designs with the parameters of PG1(3, q). We know of two
published constructions for designs having those parameters, due to Skolem [15, p. 268] and Lorimer [12]. However,
isomorphism questions seem difficult using their descriptions. Instead, we will use a method that imitates [9,14] (but which
was hinted at by Skolem’s idea).

Consider a hyperplane X of P = PG(d, q), d ≥ 3; we identify P with PG1(d, q). Let π be any permutation of the points of
X . Define a geometry Dπ as follows:

the setP of points is the set of points of P, and
blocks are of two sorts:

the lines of P not in X , and
the sets Lπ for lines L ⊂ X .

Once again it is trivial to see that Dπ is a design having the same parameters as P. Note that π has nothing to do with the
incidences between points and the blocks not in X .

We have a hyperplane X of Dπ such that the blocks of Dπ not in X are lines of a projective space P for which P is the set
of points. We claim that the lines of this projective space can be recovered from Dπ and X. Namely, we have all points and lines
of P not in X . For distinct y, z ∈ X and x /∈ X , the set ⟨x|y, z⟩ in (2.3) consists of the points of the plane ⟨x, y, z⟩ of P, and
⟨x|y, z⟩ ∩ X is the line ⟨y, z⟩. We have now obtained all lines of the original projective space P, as claimed. It follows that

AutDπ ≤ AutP. (3.1)

The symbol X is ambiguous: it will nowmean either a set of points or a hyperplane of the underlying projective space (as
in the next result). It will not refer to X together with a different set of lines produced by a permutation π .

Proposition 3.2. The designs Dπ and Dπ ′ are isomorphic by an isomorphism sending X to itself if and only if π and π ′ are in the
same P0L(X), P0L(X) double coset in Sym(X).

Moreover, the pointwise stabilizer of X inAutDπ is transitive on the points outside of X, and the stabilizer (AutDπ )X of X induces
P0L(X) ∩ P0L(X)π on X.
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Proof. Let g:Dπ → Dπ ′ be such an isomorphism.We just saw that P is naturally reconstructible from either design. It follows
that g is a collineation of P; its restriction ḡ to X is in P0L(X).

If L ⊂ X is a line of P then g sends the block Lπ
⊂ X of Dπ to a block Lπ g

⊂ X of Dπ ′ . Then Lπ gπ ′−1
is a line of P, so that

π ḡπ ′−1 is a permutation of the points of the hyperplane X of P sending lines to lines, and hence is an element h ∈ P0L(X).
Thus, π and π ′ are in the same P0L(X), P0L(X) double coset.

Conversely, if π and π ′ are in the same P0L(X), P0L(X) double coset let ḡ, h ∈ P0L(X) with π ḡπ ′−1
= h. Extend ḡ to

g ∈ AutP in any way. We claim that g is an isomorphism Dπ → Dπ ′ . It preserves incidences between blocks not in X and
points of P since g ∈ AutP and those incidences have nothing to do with π and π ′. Consider an incidence x ∈ B ⊂ X for a
block B of Dπ . Then B = Lπ for a line L ⊂ X . Since g ∈ AutP, xg ∈ Bg

= Bḡ
= Lπ ḡ

= (Lh)π
′

, which is a block of Dπ ′ , as required.
For the final assertion, the pointwise stabilizer of X in AutP is in AutDπ by the definition of Dπ . We have seen that the

group induced on X by AutDπ corresponds to the pairs (ḡ, h) ∈ P0L(X) × P0L(X) satisfying π ḡπ−1
= h. □

Note that there are many extensions g of ḡ since the designs Dπ have many automorphisms inducing the identity on X .
Double cosets arise naturally in this type of result; compare [9, Theorem 4.4].

Let vi = (qi − 1)/(q − 1).

Corollary 3.3. There are at least vd!/(vd+1|P0L(d, q)|2) pairwise nonisomorphic designs having the same parameters as P.

Proof. Fix π in the proposition. There are at most vd+1 hyperplanes Y ofDπ (as in [8, Theorem 2.2]). By the proposition there
are then at most |P0L(X)|2 choices for π ′ such that Dπ

∼= Dπ ′ by an isomorphism sending Y to X . Since there are vd! choices
for π we obtain the stated lower bound. □

Remark 3.4. We describe a useful trick. A transposition σ and a 3-cycle τ are in different P0L(d, q), P0L(d, q) double cosets
in Sym(N), N = (qd − 1)/(q − 1), if d ≥ 3 and we exclude the case d = 3, q = 2. For, if σg = hτ with g, h ∈ P0L(d, q) then
g−1h = g−1

·σgτ−1
= σ gτ−1

∈ P0L(d, q) fixes at least N −5 points, and hence is 1 by our restriction on d, whereas σ g
̸= τ .

Proposition 3.5. For any q there are two designs having the parameters of P = PG1(3, q) and not isomorphic to one another or
to P, for one of which the automorphism group fixes a point.

Proof. If q = 2 then there are even such designs with trivial automorphism group [4]. (Undoubtedly such designs exist for
all q.)

Assume that q > 2. The preceding corollary and remark provide us with two nonisomorphic designs. It remains to deal
with the final assertion constructively.

Let π be a transposition (x1, x2) of X . We will show that Dπ behaves as stated.
First note that each g ∈ AutDπ fixes X . For, suppose that Y = Xg

̸= X for some g , where g ∈ AutP by (3.1). The blocks in
Y not in X are lines of P. Then the same is true of the blocks in Y g−1

= X not in Xg−1
. This contradicts the fact that π sends

all lines ̸= ⟨x1, x2⟩ of P inside X and on x to sets that are not lines of P.
By Proposition 3.2, AutDπ = (AutDπ )X induces P0L(X) ∩ P0L(X)π on X . Let π ḡπ−1

= h for ḡ, h ∈ P0L(X). Then
ḡ−1h = π ḡπ−1 is a collineation of X thatmoves atmost 2·2 points of X and hence fixes at least (q2+q+1)−2·2 > q+

√
q+1

points. By elementary (semi)linear algebra, the only such collineation is 1, so that ḡ = h commutes with π and hence fixes
the line ⟨x1, x2⟩. Then ḡ also fixes a point of X and hence of Dπ . □

Remark 3.6. By excluding the possibilities q ≤ 8 and q prime in the previous section we could have used nondesarguesian
projective planes (and [F :K ] = 3).

4. A simple affine construction

We now consider Theorem 1.1(ii). The proof is similar to that of Theorem 1.1(i). That result handles the cases q = 3, 4 or
5, but we ignore this and only assume that q > 2.

Let G and Γ be as in Section 2. This time we use K = Fq ⊂ F = Fq3 ; once again θ generates F∗. Let VF be an n-dimensional
vector space over F , with basis v1, . . . , vn. View VF as a vector space V over K . If Y is a set of points of A then ⟨Y ⟩ denotes the
smallest affine subspace containing Y .

We will modify the point-line design AG1(V ) of A = AG(V ), using nonisomorphic designs ∆1, ∆2 whose parameters are
those of AG1(3, q) but are not isomorphic to that design, chosen so that Aut∆1 fixes at least two points (Proposition 5.2).

Our design D has V as its set of points. Most blocks of D are lines of A, with exceptions involving the sets Fv, 0 ̸= v ∈ V ,
in Section 2(I, II), where now Fv is viewed as a 3-dimensional affine space.

As before, the set of lines of AG1(Fvi) or AG1(F (vi + θvj)) is replaced by a copy of the set of blocks of ∆1 or ∆2. This time,
for each of these we require

(#′) there are distinct blocks, each of which spans a plane of A, such that the intersection of those planes is a line.
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Clearly, these two blocks span a 3-space. (When q > 3 it would be marginally easier to require that there is a single block
that spans a 3-space.) Condition (#′) can be satisfied exactly as in Satisfying (#) in Section 2. Since different sets Fv meet
only in a single point, the modifications made inside them are unrelated. Once again it is easy to check that this produces a
design D with the desired parameters for which G ≤ AutD.

As in Section 2, most sets Fv are unchanged. In view of the definition of D, the analogue of (2.1) holds. We use the natural
analogues of definitions (2.2) and (2.3), using A in place of P and V in place ofP.

Lemma 4.1. If y, z ∈ V are distinct, then there are more than 1
2 |V | points x ∈ V − yz such that

(1) every line of the plane ⟨x, y, z⟩ of A, except possibly ⟨y, z⟩, is a block of D,
(2) ⟨x|y, z⟩ = ⟨x, y, z⟩,
(3) if yz ⊆ ⟨x|y, z⟩ then ⟨y, z⟩ = yz, and
(4) if yz ̸⊆ ⟨x|y, z⟩ then ⟨y, z⟩ is the union of the pairs {y1, z1} ⊂ ⟨x|y, z⟩ such that y1z1 ̸⊆ ⟨x|y, z⟩.

Proof. Using x in (2.5), this is proved exactly as in Lemma 2.4 except for (2), where we need to consider parallel lines using
blocks that are lines by (1). Clearly ⟨x|y, z⟩ ⊆ ⟨x, y, z⟩; we must show that ⟨x, y, z⟩ ⊆ ⟨x|y, z⟩. In (2.3), for p in the line
y′z ′

= ⟨y′, z ′
⟩ of ⟨x, y, z⟩ parallel to ⟨y, z⟩, the blocks xp ⊂ ⟨x|y, z⟩ cover all points of the plane ⟨x, y, z⟩ except for those in

the line L on x parallel to ⟨y, z⟩. If y′
∈ xy − {x, y} and p′

= y′z ∩ L, then L = xp′
⊂ ⟨x|y, z⟩, so ⟨x, y, z⟩ ⊆ ⟨x|y, z⟩. □

Proof of Theorem 1.1(ii). First recover all lines of A fromD exactly as in the proof of Theorem 1.1(i). This also produces both
the K -space V and A0L(V ) from D.

We recover all subsets (I) and (II) essentially as before. Consider a pair B, B′ of blocks of D behaving as in (#′): ⟨B⟩ and ⟨B′
⟩

are planes and ⟨B⟩ ∩ ⟨B′
⟩ is a line. Since distinct subsets in (I) or (II) do not have a common line, each such pair B, B′ spans a

subset in (I) or (II). Thus, by (#′) we have obtained each subset in (I) or (II) from D and A using some pair B, B′. Once again,
the fact that ∆1 ̸∼= ∆2 specifies which of these subspaces of D have type (I) (or (II)).

The subsets (I) all contain 0, and AutD fixes their intersection, so AutD is induced by a subgroup of A0L(V )0 = 0L(V ).
Recover the field F exactly as in the proof of Theorem 1.1(i). Once again, AutD is a subgroup of 0L(VF ) that induces

AutΓ ∼= G on the collection of sets in (I).
By repeating the argument at the end of the proof of Theorem 1.1(i) we reduce to the case of h ∈ AutD fixing all sets in (I)

and acting on V as v ↦→ av for some a ∈ F∗. We chose ∆1 so that Aut∆1 fixes at least two of its points. It follows that a = 1,
so that h = 1 and AutD ∼= G. □

5. A simpler affine construction

Consider a plane X of A = AG(3, q) = AG(V ), q > 2; we identify Awith AG1(3, q). Let π be any permutation of the points
of X . Define a geometry Dπ as follows:

the set V of points is the set of points of A, and
blocks are of two sorts:

the lines of A not in X , and
the sets Lπ for lines L ⊂ X .

Once again it is trivial to see that Dπ is a design having the same parameters as A.
As in Section 3, the blocks ofDπ not in X are lines of an affine spaceA forwhich V is the set of points. As in Sections 3 and 4,

the lines of this affine space can be recovered from Dπ using the analogue of (2.3).

Proposition 5.1. The designs Dπ and Dπ ′ are isomorphic by an isomorphism sending X to itself if and only if π and π ′ are in the
same A0L(X),A0L(X) double coset in Sym(X). This produces at least q2!/(q(q2 + q + 1)|A0L(2, q)|2) pairwise nonisomorphic
designs having the same parameters as AG1(3, q).

Moreover, the pointwise stabilizer of X in AutDπ is transitive on the points outside of X, and (AutDπ )X induces A0L(X) ∩

A0L(X)π on X.

Proof. This is the same as for Proposition 3.2 and Corollary 3.3. □

Proposition 5.2. For any q ≥ 3 there are at least two designs having the parameters of A = AG1(3, q), not isomorphic to one
another or to A, such that the automorphism group of one of them fixes at least two points.

Proof. The bound in the preceding proposition provides us with many nonisomorphic designs. We need to deal with the
requirement concerning automorphism groups. By [11] we may assume that q ≥ 4.

Let π ∈ Sym(X) be a 4-cycle (x, x1, x2, x3), where x1, x2, x3 are on a line not containing x. We will show that Dπ behaves
as required.



W.M. Kantor / Discrete Mathematics 342 (2019) 2886–2892 2891

Let g ∈ AutDπ . As in the proof of Proposition 3.5, g fixes X and induces a collineation ḡ of the subspace X of A. By
Proposition 5.1, π ḡ = hπ with ḡ, h ∈ A0L(X). As before, ḡ−1h = π ḡπ−1 is a collineation of X that fixes at least q2 −2 ·4 > q
points as q ≥ 4. Then ḡ = h and π ḡ

= π . Since the collineation ḡ commutes with π it fixes {x, x1, x2, x3} and hence also x,
and so is the identity on the support of π . Thus, AutDπ is the identity on that support. □

6. Steiner quadruple systems

We have avoided AG(d, 2) in the preceding two sections. Here we briefly comment about those spaces in the context of
3-(v, 4, 1)-designs (Steiner quadruple systems), outlining a proof of the following result in [13].

Theorem 6.1. If G is a finite group then there are infinitely many integers v such that there is a 3-(v, 4, 1)-design D for which
AutD ∼= G.

Proof. Let K = F2 ⊂ F = F16 and Γ be as in Section 2, with θ a generator of F∗. Let VF be a vector space over F with
basis v1, . . . , vn, viewed as a K -space V . This time we modify the 3-design AG2(V ) of points and (affine) planes of V . We
use nonisomorphic designs ∆1, ∆2 having the parameters of AG2(4, 2) but not isomorphic to that design, and such that
Aut∆1 = 1 [10].

Once again our design D has V as its set of points. Most blocks of D are planes of A, with exceptions involving the sets Fv,
0 ̸= v ∈ V , in Section 2(I, II), where now Fv is viewed as a 4-dimensional affine space. As before, the set of planes of AG2(Fvi)
or AG2(F (vi + θvj)) is replaced by a copy of the set of blocks of ∆1 or ∆2. This time, for each of these we require

(#′′) there are distinct blocks, each of which spans a 3-space of A, such that the intersection of those 3-spaces is a plane.

Once again it is easy to check that this produces a design D with the desired parameters for which G ≤ AutD.
Distinct x, y, z ∈ V determine a block xyz of D and a plane ⟨x, y, z⟩ of A. For distinct x, y, z and w /∈ xyz, instead of (2.3)

we use ⟨w|x, y, z⟩ =
⋃{

abc | a ∈ wxy − {w}, b ∈ wxz − {w}, c ∈ wyz − {w}, with a, b, c distinct and not all in {x, y, z}
}
.

As before, all planes of A can be recovered from D, this time using various sets ⟨w|x, y, z⟩. Also the sets in (I) and (II) can
be recovered, as can F , and the argument at the end of Section 4 goes through as before. □

7. Concluding remarks

Remark 7.1. When considering possible consequences of this paper it became clear that additional properties of our designs
should also be mentioned.

(1) Additional properties of the design D in Theorem 1.1(i).

(a) PG(3, q)-connectedness. The following graph is connected: the vertices are the subspaces of D isomorphic to
PG1(3, q), with two joined when they meet.

(b) PG(n − 1, q) generation. D is generated by its subspaces isomorphic to PG1(n − 1, q).
(c) Every point of D is in a subspace isomorphic to PG1(n − 1, q) (in fact, many of these).
(d) More than qn points are moved by every nontrivial automorphism of D.

(2) Additional properties of the design D in Theorem 1.1(ii).

(a) AG(3, q)-connectedness. The following graph is connected: the vertices are the subspaces of D isomorphic to
AG1(3, q), with two joined when they meet.

(b) AG(n, q) generation. D is generated by its subspaces isomorphic to AG1(n, q).
(c) Every point of D is in a subspace isomorphic to AG1(n, q) (in fact, many of these).
(d) More than qn points are moved by every nontrivial automorphism of D.

(3) Additional properties of the designD in Theorem 6.1. This time versions of (2a) (using AG2(4, 2)-connectedness), (2b),
(2c), (2d) (2e) hold.

These reflect the fact that the sets of points in (I) or (II) cover a tiny portion of the underlying projective or affine space: a
subset of the points determined by F-linear combinations of at most two of the vi. For (1a), it is easy to see that any point in
P lies in a 4-space of V that contains some point Kβ

∑
ivi, β ∈ F∗, and meets each set in (I) or (II) in at most a point; by (2.1)

this produces a subspace of D isomorphic to PG1(3, q). Moreover, all Kβ
∑

i vi lie in F (
∑

ivi), which also produces a subspace
of D isomorphic to PG1(3, q).

For (1b) we give examples of subspaces of V :

⟨v1 + θ2v2, v2 + θ2v3 + θ iv4, . . . , vn−2 + θ2vn−1 + θ ivn, v1 + v2 + v4 + v5, θ (v1 + v2 + v4 + v5)⟩

for 2 < i < q4−1. Each of thesemisses all sets in (I) or (II), and hence determines a subspace ofD isomorphic to PG1(n−1, q).
These subspaces generate a subspace of D containing the points K (θ i

− θ3)vn, 3 < i < q4 − 1, and hence also PG1(Fvn). Now
permute the subscripts to generate D.
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Part (1c) holds by using K -subspaces similar to the above ones. There are clearly projective spaces of larger dimension
that are subdesigns of D.

Part (1d) depends on the semiregularity of G on {v1, . . . , vn}. Use the points K
∑

i αivi with α1 = 1 and αi ∈ F − {1} for
i > 1, where each α ∈ F − {1} occurs either for 0 or at least two basis vectors vi. The lower bound qn is easy to obtain but
very poor.

Both (2) and (3) are handled as in (1).

Remark 7.2. In (II) we used the K -subspaces F (vi +θvj). We could have used subspaces F (vi +θrvj), r = 1, . . . , s, for various
θr , together with further nonisomorphic designs ∆2,r (which are needed to distinguish among the F (vi + θrvj)). All proofs go
through without difficulty, as do the additional properties in the preceding remark.

Remark 7.3. Each of our designs has the same parameters as some PG1(V ) or AG1(V ). What is needed is a much better type
of result, such as: for each finite group G there is an integer f (|G|) such that, if q is a prime power and if v > f (|G|) satisfies the
necessary conditions for the existence of a 2-(v, q + 1, 1)-design, then there is such a design D for which AutD ∼= G.When q = 2
this result is proved in a sequel to the present paper [6].
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