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Automorphism Groups of Designs* 
WILLIAM M. KANTOR 

1. Introduction 

From a geometric point of view, the most interesting designs (see w 2 for 
definitions) are generally those admitting fairly large automorphism groups. 
The methods of finite permutat ion groups may be applied to such designs, and 
vice versa, as in [5, 6, 8, 11, 13 and 143. We shall prove several general results 
which are useful in the study of automorphism groups of designs, and then use 
some of these to characterize some designs admitting large automorphism 
groups. Further applications are found in [11]. 

A Hadamard  design is a symmetric design with k = ( v -  1)/2 (see [3] or [17] 
for the connection with Hadamard  determinants). The best known examples of 
such designs - other than the Desarguesian projective spaces over GF(2) - are 
the Paley designs ([15]; cf. [183 and [11]). The points of a Paley design are the 
elements o fF  = GF(v), where v > 3 is a prime power -=- 3 (rood 4), while the blocks 
are the translates under F + of the set Q of non-zero squares of F. This design 
admits an automorphism group of odd order {x --+ x ~ t + a[t E Q, a ~ F, ~ A u t ( F ) }  
which is transitive on incident point-block pairs; this group is not always the 
full automorphism group (cf. [11]). 

Theorem 1.1. Paley designs are the only Hadamard designs admitting auto- 
morphism groups which are transitive on incident point-block pairs but which are 
not 2-transitive on points, 

A larger class of designs will also be considered, all related to F. Our 
characterizations of some of these designs generalize many of the results of 
Liineburg [13], whose approach is different. 

Many of the results of this paper are quoted in Dembowski [3]. The author is indebted to 
Dr. Dembowski for his many helpful comments and suggestions. 

2. Definitions 

It is occasionally useful to consider incidence structures in which distinct 
blocks may be incident with precisely the same sets of points (or dually). It 
will be clear from context whether or not blocks can be identified with their sets 
of points (or dually). A tactical configuration is a finite incidence structure 
consisting of v points and b blocks in which each point is on r < b blocks and 
each block is on k < v points. Here b k = v r. A design is a tactical configuration 
in which every two distinct points are on ~ blocks. Then 2 ( v - 1 ) = r ( k - 1 ) .  
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Moreover, Fisher's inequality states that b > v  [17, p. 99]. Those designs for 
which b = v > k +2  are called symmetric designs. For such designs r = k  and 
every two distinct blocks are on precisely 2 points. A Hadamard design is a 
symmetric design for which v -  1 =2k.  

If x is a point of a design @ then ~x is the tactical configuration whose 
points are the points ~ x and whose blocks are the blocks on x, with induced 
incidence. ~x has parameters v x = v -  1, b x = r, k x = k - 1  and rx = 2. The com- 
plementary design of a symmetric design is the symmetric design N' whose 
points and blocks are those of ~ and for which incidence is equivalent to non- 
incidence in @. Here the parameters are v'=v,  k ' = v - k  and 2 ' = v - 2 k + 2 .  

Many of the relevant definitions concerning permutation groups are found 
in Wielandt [193. The rank of a transitive permutation group is the number of 
orbits of the stabilizer of a point. A permutation group is called (sharply) 2- 
homogeneous if it is (sharply) transitive on the set of unordered pairs of points. 

It will be necessary to distinguish between the action of automorphism 
groups on points and on blocks. Thus, we shall speak of point-orbits, block- 
rank, and so on. A flag of an incidence structure is an incident point-block pa i r ,  
and it is then clear what is meant by a (sharply) flag-transitive automorphism 
group. 

If v is a prime power and F =  GF(v), then S(v) is the group of all semilinear 
mappings x---, x ~ t + a  on F, where t ~ 0  and a are in F and a~Aut(F).  L(v) is 
the normal subgroup of S (v) consisting of those mappings for which o-= 1. 

For  the definition and properties of Dickson nearfields, see Zassenhaus [20]. 

3. 2-Homogeneous Groups 
The following result provides a description of 2-homogeneous groups which 

are not 2-transitive. 

Proposition 3.1. I f  F is a transitive permutation group on a finite set S, where 
v = IS] > 3, then the following statements are equivalent. 

i) F has rank 3 and all orbits of  F~, x s S, have odd lengths. 

ii) F is 2-homogeneous but not 2-transitive on S. 

iii) v is a prime power - 3 (mod 4), and F is similar to a 2-homogeneous sub- 
group of S (v). 

I f  F is represented as in iii), then F contains the set Z of  all translations 
x--* x +a, a 6 F =  GF(v), as a normal subgroup. F ~  L(v) is a normal Frobenius 
subgroup o f F  with kernel Z. I f  Q is the group of  non-zero squares o fF,  then the 
orbits of F o are {0}, Q and - Q .  

Proof i ) ~  ii). Let k and l be the lengths of the orbits =t= {x} of F x. Suppose 
that F has even order. By Higman [5, Lemmas 5 and 7], there are integers 2 and 
/~ such that ~ l = k (k - 2 - 1) and d = ( 2 -  #)2 + 4 ( k -  #) is a square. Then k -  l -  1 
(mod2) implies that /~-=2 (rood2), d ~ 0  (rood4) and 2 k + ( 2 - # ) ( k + l ) - 2  
(rood 4). This contradicts the fact that 2 l ~  divides 2 k + (2-/~) (k + l) (Higman 
[5, Lemma 7]). 
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Thus F has odd order and k = t = (v -  1)/2 by Higman [5, Corollary 1]. If x 
and y are distinct points of S then IF: F~,yll = IF: F~yl = v (v -  1)/2. It follows that 
F is transitive on the unordered pairs of points of S. 

ii) ~ iii). F is clearly primitive, and is solvable by the Feit-Thompson Theo- 
rem [4]. Thus there is a transitive elementary abelian normal subgroup Z of F. 
If Z is identified with S then a ~ a -1, aES, is a permutation not in F which 
centralizes F~ and together with/" thus generates a solvable 2-transitive group P 
on S containing F as a subgroup of index 2. Huppert's classification of such 
groups [9] completes the proof (cf. [12, p. 402]). 

Suppose that F is represented as in iii), As above, Z is a normal subgroup 
of F. It is easy to see that the orbits of F 0 are {0}, Q and - Q, so that i) holds, 
~ / F  o n L(v) is isomorphic to a group of automorphisms of F. If v = pe, where p 
is prime, it follows that ( p e  1)/2 < IF01__< e IF0 n L(v)l. Thus, F o n L(v)4: 1, 

Corollary 3.2. I f  F is a sharply 2-homogeneous permutation group of degree v 
then F is similar to the group of  mappings x ~ x o t + a on a Dickson nearfietd K, 
where a e K  and t is in the group of  non-zero squares of  K. In particular, F is 
contained as a subgroup of  index 2 in a sharply 2-transitive group F. 

This follows from the preceding Proposition together with Zassenhaus' 
results on nearfields [20]. 

4. Orbits and Imprimitivity Classes 

It is often very useful to have information concerning transitivity or primi- 
tivity properties of automorphism groups of designs. Dembowski [21, Hughes 
[7], and Parker [16] have shown that the numbers of point- and block-orbits 
of an automorphism group of a symmetric design are equal. The following 
result is a straightforward generalization of this. 

Theorem 4.1. An automorphism group F of a design has at least as many 
block-orbits as point-orbits. 

Proof. For not necessarily symmetric designs, equation (11) of Dembowski 
[2] becomes det(AB)---r k ( r -2 )  t- 1, where F has t point-orbits and t' block- 
orbits and A and B are t x t' resp. t' x t matrices. As in the proof of Fisher's 
inequality in [ 17], t' > rank (A) > rank (AB) = t. 

Corollary 4.2. An automorphism group of a design is 2-transitive on points 
provided that, for each point x, the stabilizer of x is transitive on the blocks on x 
and on the blocks not on x. 

Lemma 4.3. I f  F is a point- and block-transitive automorphism group of a 
tactical configuration, and x and X are a point and a block, then F x has as many 
point-orbits as F~ has block-orbits. 

Proof Both quantities are the number of orbits of F on the pairs (x, X). 

Theorem 4.4. I f  F is a point- and block-transitive automorphism group of  a 
design, then the block-rank of F is at least as large as the point-rank of F. 
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Proof By Theorem 4.1 and Lemma 4.3, 

block-rank of F = number of block-orbits of Fx 

number of point-orbits of I" x 

= number of block-orbits of [~ 

>_- number of point-orbits of 

=point-rank of F. 

Theorem 4.4 generalizes a result of Dembowski [2, Satz 4]. Both Theo- 
rems 4.t and 4.4 have been obtained independently by Block [I] .  The above 
proof  of Theorem 4.4 is more elementary than his proof. 

Proposition 4.5, Let F be an automorphism group of a tactical configuration 
such that each block-orbit of F has length divisible by b/e, where e is an integer. 
Then each point-orbit of F has length divisible by v/(v, e k). In particular, there 
are at most (v, e k) point-orbits. 

Proof If p is a point-orbit and b a block-orbit, let (p, b) be the number of 
points o fp  on each block in b. Then r = ~ .  (p, b)[bt/lpt, so that b/e divides r fp[. 

b 
It follows that e r tp lib = e kip [/v is an integer. (The case e = 1 = (v, k) of Proposi- 
tion 4.5 is due to LiJneburg [14, Lemma 1].) 

Corollary 4.6. I f  F is a flag-transitive automorphism group of a design, then 
i) if ( v -  1, k -  1)=1 then F is 2-transitive on points; and ii) f ( v - t , k - 1 ) = 2  
then F is either 2-transitive on points or has rank 3 on points and, for each point x, 
the point-orbits 4: {x} of ~ have length (v -  1)/2. 

Proof Apply Proposition 4.5 to the tactical configuration ~x (see Section 2). 
The following two results generalize Higman and McLaughlin [6, Proposi- 

tion 3]. Applications are found in [I 1]. 

Theorem 4.7. Let F be a point-transitive automorphism group of a design 
such that, for each point x, the length of each orbit of ~ of blocks on x is divisible 
by r/e, where e is an integer. Then F is point-primitive provided that either 
i) r > e ,~.(e k - e -  2), or ii) 2 > (r/e, 2)(eZ(r/e, 2 ) -  1). 

Theorem 4.8. A flag-transitive automorphism group F of a design @ is point- 
primitive provided that either i) r > 2 ( k - 3 ) ,  ii) 2>(r ,  2)((r, 2 ) -1) .  iii) (r, 2)= t, 
iv) (r,)O=2 and either 24:2 or r# :2 (k-3) ,  v) ( r - 2 ,  k )= l ,  or vi) (v ,k)=l ,  
r = k + 2 and k is square-fi'ee. 

Proof of Theorems 4.7 and 4.8. If F is imprimitive there are n > I imprimi- 
tivity classes, each having c > 1  points, which are permuted transitively by 
F ([19, p. 123). Here v = n c. Let 0, t 1 . . . .  , t h be the distinct values taken by IX c~ ~1 
as X ranges over all blocks and ~ over all classes. I f~  is a class and x~E, there 
are (r/e) WLblocks on x meeting if; in tj points, where wj is an integer (j = 1, ..., h). 
If t -  1 = L  ~ ( t j -  t), then 

J 
2 ( c -  1)= Z (r/e) wj(t~- t)=(r/e)(t-  1). (I) 

) 
18 Math, Z., Bd. 109 
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Together with 2 ( v -  1)= r ( k -  1) and v = n c this implies that t > 1 and 

2 ( n - 1 ) = ( r / e ) { e ( k - 1 ) - n ( t - 1 ) } = ( r / e ) { ( n - e ) - ( n t - e k ) } .  (2) 

Since n > l ,  e ( k - l ) > n ( t - 1 ) + l > ( n - 1 ) + 2 > r / e 2 + 2 ,  and Theorem 4.7 i) 
cannot hold. By (2), s = {(n-  e ) -  (n t -  e k)} (r/e, 2)/2 is a positive integer, so that 
r > k (Fisher's inequality), (1) and (2) imply that 

(r/e, 2) = r s/e ( n -  1) > {n t - (n t -  e k)} s/e 2 ( n -  1) 

>nts/e2(n - 1 ) -  ( n -  e) s/e2(n - 1) (3) 

> t s / e  2 - -  s / e  2 ~ (t  - -  a)/e 2. 

By (1),)~](r/e, 2) ( t -  1) so that Theorem 4.7 ii) cannot hold. This proves Theo- 
rem 4.7. 

From now on assume that the additional hypothesis of Theorem 4.8 holds: 
e = 1. i) and ii) follow from Theorem 4.7. iii) is a special case of ii) due to Dem- 
bowski. If (r, ~.) = 2 then (3) implies that iv) cannot hold. 

Thus far we have been following the argument of Higman and McLaughlin 
fairly closely. We gain additional information by observing that a second 
design ~1 may be constructed by taking the imprimitivity classes as points and 
the blocks of @ as blocks, incidence being "class meets b lock ' .  The parameters 
of ~1 are v 1 = n, b I = b, k, = k/t and 21 = 2 C2/t 2. The value of 21 may be checked 
by fixing distinct classes gl  and g2 and counting in two ways the triples 
(Xl, x2, X) with x i s g  i and x i on X (i= 1, 2). Thus 

t[(2 v, k ) = ( 2 - r + r  k, k)= ( r - 2 ,  k) 

and v) cannot hold. Also, if r = k + 2 then 

t2 ] (*)~ 13 2, k 2) = (b k 2 - -  I) k, k 2) = (v, k) k 

and vi) cannot hold, proving Theorem 4.8. 

5. Proof of Theorem 1.1 

It is easy to see that a group of the type described in Proposition 3.1 is 
flag-transitive on the corresponding Paley design. Conversely, suppose that F 
is a flag-transitive automorphism group of a Hadamard design 9 ,  but is not 
2-transitive on points. By Corollary 4.6 and Proposition 3.1, v is a prime power 
and we may assume that F<S(v). By Proposition 3.1, ~b=F~L(v) acts on 
points and blocks as a Frobenius group with kernel ~. Let X be a block. Since 
~b x c~ Z = 1 and the commutator  subgroup of ~b is contained in ~, ~b x fixes some 
point, say 0. Then F x fixes 0, or Fx=F  o . By Proposition 3.1, ~ is isomorphic to 
a Paley design, proving Theorem 1.1. A similar proof yields the 

Corollary 5.1. Paley designs and their complementary designs are the only 
symmetric designs admitting automorphism groups which are 2-homogeneous but 
not 2-transitive on points. 
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6. Sharply Flag-Transitive Designs 

Let K be a Dickson nearfield with v elements, 3 < v--3 (rood 4), in which 
multiplication is denoted by o. The group of all linear mappings on K of the 
form x ~ x o t + a ,  where a e K  and t is in the group Q(K) of squares of K, is a 
sharply 2-homogeneous group F. Let G be a non-trivial subgroup of Q (K). We 
construct a design @(K, G) as follows: points are the elements of K and blocks 
are the distinct sets G ~, 7~F, with incidence the same as inclusion. Since F is 
2-homogeneous, the incidence structure defined in this manner is a design. 
~ ( K ,  Q(K)) is a Paley design. F~ is the group of mappings x ~ x o g ,  g~G. It 
follows that ~ ( K ,  G) has parameters b=v(v-1) /2k ,  k=tGI, r=(v -1 ) /2  and 
2 = ( k -  1)/2. Proposition 3.1 implies the following 

Proposition 6.1. The sharply 2-homogeneous group defined by a Dickson 
nearfield K with [Kt ~ 3 (rood 4) is a sharply flag-transitive automorphism group 
of ~(K,  G) for any G<=Q(K). I f  K is a field, then the group of all mappings 
x ~ x  ~ t +a, where a~K, t~Q(K) and a~Aut(K),  is a maximal automorphism 
group of ~(K,  G) of odd order. 

Proposition 6.2. Let F be a sharply flag-transitive, sharply 2-homogeneous 
automorphism group of a design ~ with (v, k)= 1. Then @ is isomorphic to 
~(K,  G) for some D ickson nearfield K with v elements and some G < Q (K). 

Proof We may assume that F is represented as in Corollary 3.2. Let B be a 
block. Since (v, k)= 1, ~ has trivial intersection with the Frobenius kernel o f F  
and thus fixes some point x. The 2-transitive automorphism group P of Corol- 
lary 3.2 may be used to pass to an isomorphic design for which x ~ B and x = 0. 
Then the sharp transitivity of FoB on B implies that B is a subgroup of Q(K). 

Theorem 6.3. Let ~ be a design admitting a sharply flag-transitive auto- 
morphism group and such that v = 2 r +  1 - 3  (mod 4) and (v, k)= 1 =(r,  2). Then 

is isomorphic to ~(K,  G) for some Dickson nearfield K and some G < Q (K). 

Proqfi. Since r = ( v -  1)/2 and 2 = ( k -  1)/2, Corollary 4,6 and Propositions 3.1 
and 6.2 imply the result. 

Theorem 6.4. Let @ be a design admitting a sharply flag-transitive auto- 
morphism group F, and such that v = 2 r +  1 ~3  (rood 4), (r, 2)-- 1 and k is a prime 
divisor of v. Then @ is isomorphic to the design of points and lines of an affine 
space over GF(3). 

Proof Since tFI = v r = v ( v -  1)/2, Corollary 4.6 and Proposition 3.1 imply 
that we may assume that F is represented in terms o fa  Dickson nearfield K as in 
Corollary 3.2. v is a power of k, and GF(k) is in the center o f K  (Zassenhaus [20]). 
Thus, we may identify K + with the Frobenius kernel of F, and regard K + as 
a vector space over GF(k), If B is a block containing 0, then FB<K +. Thus, 
since B is the orbit of F B containing 0 it may be regarded as a subspace of K § 
over GF(k). Then B has dimension 1, so that distinct blocks containing 0 meet 
in 0, and 2 =  1. Thus, k =  3 and r = ( v -  1)/(k-  1), proving the Theorem. 

Proposition 6.1 and Theorems 6.3 and 6.4 reduce to results of Ltineburg [13J 
in the case k = 3 and 2 = 1. 

18"* 
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