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The following construction was first given in Kantor (1980). Let Q be 

a finite group and '.F a family of subgroups; with each A E'.F is 
associated another subgroup A *. These subgroups satisfy the 
following conditions for some integers s, t > 1 and all distinct A, B, 

CE'.F: 

1 Q 1 = sF, 1 '.FI = s + 1, 1 A 1 = f, 1 A* 1 = sf, 
A < A*, Q = A*B, A*n B = 1, AB n C = 1. 

A generalized quadrangle Q(1) is constructed by using cosets together 
with symbols [A] and ['.Fl as in the following picture (for all A E '.F and 
g EQ): 

Lrl 
Points: 
[A] 
cosets Ag 

g 

as indicated 

Lines: 
[.1] 
cosets A*g 
elements g 

"Most" of the known families of finite generalized quadrangles arise 
by this procedure (see Kantor (1980); Payne (1990». It seems likely that 
Q must be a p-group for some prime p. While this remains open, 
there has been significant progress (Frohardt (1988); Chen and 
Frohardt (submitted». 

Proposition. Let G = AutQ(1). Then one of the following holds: 
(i) G fixes a line, namely ['.Fl. 
(ii) G fixes a point 00 but no line. Then 00 is on ['.Fl, G is transitive on 
the points collinear with 00 as well as those not, and G is 2-transitive 
on the lines on 00. 

.. 



252 W.M. KANTOR 

(iii) G is transitive on both points and the lines of Q(J), having rank 3 
on each of these sets. G is flag-transitive. The stabilizer of a line is 2-
transitive on the points of the line and dually. 

Proof. (i) Q moves each line ~ [,1], 
(ii) Q moves each point not on [1], so that the fixed point 00 must be 
on [1], say 00 = [A]. Then G must have an element g moving [1] to 
some other line on [A]. Write H = (Q, Q~. 

Note that Q fixes [A] and is transitive on the lines ~ [1] on [A], so 
that H is 2-transitive on the lines through 00. Since A * is transitive 
on the set of points ~ [A] of the line A *1, it follows that G is transitive 
on the set of points collinear with 00. 

Since Q is transitive on the lines missing [1], H is transitive on the 
lines not on 00. It remains to consider the action of the points not 
collinear with 00. Recall that B* is transitive on the set of points ~ [B] 
of the line B*I; by transitivity on the lines not on 00, the same is true 
for each such line. Thus, if x is any point not collinear with 00, then 
xH contains every point collinear with x but not 00. Moreover, every 
such line must contain at least 5 points of xH, so there can be only one 
such point-orbit xH. 

(iii) Now without loss of generality G moves every point and line. 
Then [llG contains two lines with no common points, and hence 
contains every line since Q is transitive on the lines missing [1]. If 
g eG moves [1] to a line meeting [1] at a point x, then (Q, Qg) fixes x 
and is transitive on the points collinear with x as well as those not 
collinear with x. Thus, G has rank 3 on points. Moreover, (Q, Qg) is 
2-transitive on the lines through x. In particular, G is flag-transitive. 

Moreover, it follows that the stabilizer of [1] is transitive on the 
lines meeting [1]. Thus, G has rank 3 on lines. [J 

Since all rank 3 groups are essentially known (using the classification 
of finite simple groups), it is clear that one can determine all the 
possibilities in (iii); and this does, indeed, lead to a characterization of 
the classical generalized quadrangles. However, this seems to be an 
uninteresting and uninformative approach. Too much information 
is available and too much is ignored in the above argument (especially 
the regularity of Q on the set of lines missing [1]). In other words, a 
more geometric approach is needed. 

As a side remark, it is also clear that all generalized quadrangles 
whose automorphism groups have rank 3 on the set of points can be 
determined. Again, this is a straightforward question. (Note, 
however, that there is one nonclassical example: the quadrangle with 
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s = 3, t = 5.) A more interesting question is the determination of all 
flag-transitive quadrangles - using the aforementioned classification! 
Besides the classical ones, presumably there are only two others, with 
s = 3, t = 5 and s = 15, t = 17. 

In the only known nonclassical examples for which (ii) holds, Q is 
elementary abelian of order q4 (Kantor (1986); Payne (1989». 

In order to make further progress in the context of the Proposition, 
it seems necessary to have a way to recover Q from Q(1"). In general 
this is entirely open. However, under "reasonable" assumptions this 
can be accomplished: 
For intersecting lines Land 
M, let UL, M denote the group 
of all automorphisms fixing 
every point of L, every point 
of M and every line on L ('I M. 

L 
LIlM ...... ~.~ ... § .. ~ ... :: ... = ... = ... .::..: ... = .. " 

Then U L, M is semiregular on the t lines '" L through each point 
'" L ('I M of L, so that I UL, M I ~ t with inequality if and only if UL, Mis 
regular on those t lines. The groups UL, M, and their duals, are exactly 
those involved in the Moufang condition for generalized quadrangles 
(Tits (1976); Payne and Thas (1984». 

It is clear that the collection of groups UL, M is canonically deter­
mined by a quadrangle. Thus, if Q is generated by some such 
subgroups then it can be recovered from the quadrangle. 

Remark. Ul.rl. kl = A ¢:) (A <J A * and g-lAg ~ A *, 'it g E Q). Hence, if 
this condition holds for (at least) three members of 1" then Q = 

(UI.rl.M I M meets [1.1). 
This is straightforward to check. The stated condition holds for all 

known examples of the construction given at the beginning of this 
note. 

Let q be a prime power. 

Example 1. Let Q be the set GF(q)2x GF(q) x GF(q)2 equipped with the 
multiplication (u, c, v)(u', c', v') = (u + u', c + c' + v·u', v + v'), where 
v·u' is the usual dot-product. Then Q is a group, whose center is 
Z(Q) = OxGF(q)xO. Moreover, Q/Z(Q) can be viewed as a vector space 
over GF(q). Let 

A(oo) = OxOxGF(q)2, A(r) = (u, uBru t, uMr) I u E GF(q)2}, 

and A* = AZ(Q) for r EGF(q)2 and each A = A(oo) or A(r), 
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where Br and Mr are 2x2 matrices satisfying suitable conditions in 
order to produce a quadrangle with s = q and t = q2 (Payne (1980, 1989, 
1990); Kantor (1986». 

In this situation, if Q(J) is not the 0(5, q) quadrangle then Q ::S! 

AutQ(1). For, in Payne (1989) it is shown that the line L11 is the only 
line L with the following property: If Xv X2, X3, X4 and Yv Y2, Y3, Y4 are two 
sets of pairwise non collinear points such that XI and YI are on L and Xi 

and Yj are collinear for all i, j except perhaps for i = j = 4, then also X4 

and Y4 are collinear. Thus, AutQ(1) fixes L1], and then the preceding 
Remark implies that Q is normal in AutQ(1). 

Example 2. Let s = q and t = q2, and assume that Q/ Z(Q) is elementary 
abelian of order q4 and A" = A Z (Q) for all A E Z. Note that 
quadrangles behaving in this manner, but not as in Example 1, have 
been constructed in Payne (1989). 

Once again, if Q(1) is not the 0(5, q) quadrangle then Q ::S! AutQ(J). 
This time no purely geometric argument presently is available. 

By the Remark, Q can be recovered as the group generated by those 
U[J1M with M meeting [1} Also, Z(Q) is the group U[ll of all 
automorphisms of Q(J) fixing every line meeting [1], and is regular 
on the set of points not on L1] of each such line. 

Now consider possibilities (ii) and (iii) for AutQ (J) in the 
Proposition. If (iii) holds, then Q (J) is Moufang, and the main 
theorem in Fang and Seitz (1973) can be applied. However, this will 
not be needed: possibilities (ij) and (iii) will be handled 
sim ul taneousl y. 

Consider the group H generated by Q and Qg for some g E G such 
that [1]g meets [1] at a point [AJ. Without loss of generality [1]g = A"I. 
The stabilizer H[ll normalizes Q (since Q is canonically determined by 
[1]), so that the stabilizer H[1l,l lies in Out(Q). 

Let K be the kernel of the 2-transitive action of H on the set of t + 1 
lines on [A]. Then K n Q = A", while A is just the pointwise stabilizer 
of A"1 in Q Moreover, Q / A .. == Q K / K induces a normal subgroup 
of H[J]/ K regular on the t lines "# [1] through [A]. 

Without loss of generality g interchanges [1] and A "1, and hence 
normalizes U[.1l,A*l = A. 

Note that Z(Q)g is transitive on the points [BJ "# [A] of [1], while A" 

is transitive on the points not on [1] collinear with such a [B]. Thus, 
(A .. , A .. g) is a subgroup of K transitive on the set of points not 
collinear with [A]. Let E denote the group generated by all the 
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conjugates of A * under the action of H. Then E is a p-group (as each 
such conjugate is a p-group normal in K). Claim: E = (A*, A*g). For, 
it suffices to show that E is regular on the set of points not collinear 
with [A]. Let e eE fix a point x not collinear with [A]. Each line on [A] 
has a unique point collinear with x, and hence has a point "# [A] fixed 
bye; and since e is a p-element it must fix yet another point on that 
line. It follows that the set of fixed points and lines of e is a 
subquadrangle with 5' :5: 5 = q and t' = t = q2. By Higman's inequality 
(Payne and Thas (I984, p.4» t :5: 5'2, so that 5' = 5 and hence e = 1. 

Thus, E = (A *, A *g ) has order q4. It contains a set 0 of t + 1 = q2 + 1 
subgroups conjugate under H to Z(Q) and permuted 2-transitively by 
H. It follows that E must be elementary abelian, and that H acts 
irreducibly on it. 

At this point, I do not know how to show that E is a GF(q)[H]­
module without invoking some (preclassification!) group theory. 
The 2-transitive group H induced by H on 0 has the property that the 
stabilizer of Z(Q) has a normal elementary abelian subgroup of order q2 

regular on the remaining members of O. It follows from Shult (I 972) 
and Hering, Kantor and Seitz (1972) that R ~ PSL(2, q2). This group 
PSL(2, q2) acts (projectively and) irreducibly on the GF(p)-space E. 
However, up to twisting by field automorphisms, PSL(2, q2) has exactly 
two projective irreducible modules of size q4: the natural one (over 
GF(q2» and the 0-(4, q)-module (Fong and Seitz (1973 4B, C». Since 

there is an orbit 0 of q2 + 1 subgroups of size q, the only possibility is 
that E can be viewed as the 0-(4, q)-module with 0 the associated 
ovoid of singular points. 

Now it is easy to recover the generalized quadrangle from the 
group E. For, the stabilizer in E of a point [B] of [11 is known -
namely, A *, which fixes every such point; as is that of a line BOO on [B] 
but not on [A] - namely, Z(Q), which fixes every such line. Since E is 
regular on the points not collinear with [A], while H is transitive on 
the lines on [A], the lines not on [A], and the points collinear with [A], 

it follows that Q(J) can be described in terms of the 0-(4, q)-ovoid 0 
consisting of q2 + 1 subgroups of E, together with the tangent planes 
(such as A *) to that ovoid. Consequently, Q(J) == Q(O) and Q(J) is the 
0(5, q)-quadrangle. 0 

Remark. Payne and Thas (1984) came very close to obtaining a 
geometric proof of the classification of finite Moufang quadrangles. 
Their obstacle was the same one appearing in Example 2! Thus, the 
above argument can be inserted into the appropriate part of Payne and 

,.. 
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Thas (op. cit., Ch. 9) in order to complete their approach to that 
classification theorem. 

Note, however, that the amount of group theory employed was 
fairly small, certainly miniscule compared to Fong and Seitz (1973): 
information was required concerning a relatively restricted type of 
2-transitive permutation group, together with a fact about very small 
degree representations of such a group. 
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