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1. INTRODUCTION

In the midst of all of the more practical papers presented at the confer-
ence, this one is injected in order to describe a more theoretical frame-
work. Instead of having usability as our criterion for efficiency, we
will employ polynomial time. This places an entirely different emphasis
on what can or cannot be accomplished (as explained at the end of this
section and in Section 3). On the other hand, this new emphasis occa-
sionally leads to new methods that may have nontheoretical applicability
(cf. Section 5).

Throughout the paper we will consider a subgroup G = <I'> of Sy
generated by a subset I which may be assumed to be "small" (say, of
size < n2; ef. (2.4iii)). After indicating some of the properties of G
that can be obtained in polynomial time by using Sims' results or re-
lated algorithms (Section 2), we will turn to the more recent results due
to Luks [L2], Rényai [R], or the author [K3,K4] (Section 4). The re-
mainder of the paper consists of examples of some of the methods in
[K3,K4], specialized to solvable groups (Section 5)—including an un-
published result on Sylow normalizers—and the Replacement theorem of
[K2] that switches from one primitive permutation representation to an-
other one when G is simple or nearly simple (Section 6). We conclude
with miscellaneous remarks (Section 7), including similar types of ques-
tions concerning polynomial-time Galois theory.

Unlike the situation in many of the talks at this conference (or in
CAYLEY [C]), there are no probabilistic aspects of the algorithms pre-
sented here: no probabilistic algorithms are known in this area that
provably run in polynomial time and are faster than any of the algo-
rithms we discuss—although such algorithms would certainly be of inter-
est. A more serious restriction is our avoidance of backtrack algorithms,
as they are usually exponential. On the other hand, in the present con-
text there is no difficulty with the use of the action of G on sets of
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polynomial size, such as the set of all 2-element subsets of our n-set—
whereas for practical purposes it may be undesirable to deal with such
a "large" set (i.e., of size O(n2)).

2. FUNDAMENTAL ALGORITHMS

Since we will be using recursion for subgroups of S;, the following sim-
ple result is very useful.

Lemma 2.1
If 1 <Hj <Hg < :++ <Hp < Sy, then m < n logg n < n2.

Proof:

By Lagrange's theorem, 2 < |H;| < n! for each i.

Babai [B] has shown that, in fact, m < 2n.

Let G = <I'> < Sy, acting on the n-set X = {1,2,...,n}. We begin
with two simple results that give an indication of the meaning of "poly-
nomial time." Note that in each situation we need an algorithm which,
for any G, produces the desired information. We emphasize that all
subgroups of S, we mention are assumed to be specified by means of
generating sets of permutations.

Proposition 2.2

In polynomial time all orbits of G can be found.

Proof:

Form the graph with vertex set X and edges {x,xE} for g €T and x8 #
x € X. This graph can be determined in time O(n|T|). Its connected
components are just the orbits of G.

Proposition 2.3 [A]

Assume that G is transitive on X.
(i) In polynomial time all minimal blocks of imprimitivity (of size >
1) can be determined.

(ii) In polynomial time a block system I of size > 1 can be found
such that GI is primitive.

Proof:

(i) Find the orbits of G in its natural action on X2 (namely, g :
(x,¥) —> (x8,y8)). Each orbit other than the diagonal {(x,x) | x € X}
determines a graph with vertex set X and edges {x,y} for (x,y) or
(y,x) in the orbit. The set of connected components of such a graph
is a block system &, and each minimal block system arises in this manner.

(ii) Iterate (i), replacing X by : if {z] < n. (The number of iter-
ations is < logg n.)
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Note that it is not possible (in polynomial time!) to find all block
systems (consider the regular representation of an elementary abelian
2-group).

The main result concerning G is Sims' algorithm:

Theorem 2.4 [S1,S2,FHL]

In polynomial time the following can all be determined:
@ gl
(ii) For i =1,...,n, a set 4; such that Gyg...{ = <A{> and [ag} < n2
(iii) A set TI'' such that G = <I'> and |I'| < nZ,
Moreover, if G also acts on a second set X' of polynomially-bounded size,
then the kernel of the action of G on X' can also be found in polynomial
time.

The original algorithm used by Sims [S1,S2] finds a base and strong
generating set, as discussed at other talks at this conference. It was
modified in [FHL] so as to be visibly polynomial-time. For |r| = O(nz)
the algorithm in [FHL] runs in time O(nB); but, as pointed out by
Babai [B] and Finkelstein [F], the original algorithm of Sims can be
written so that it runs in time O(n5) (also see [J]). The last statement
in (2.4) is essentially a special case of (ii). It has the effect of allow-
ing several permutation representations to be dealt with simultaneously
(for an example, see (4.1)).

The fact that O(n5) is presently the best time available for (2.4)
influences all estimates of running times of later algorithms, making them
seem much less practical than they may in fact be.

There are many useful consequences of (2.4). The simplest is

Corollary 2.5

"If f € S, then in polynomial time one can decide whether or not £ € G.

Proof:

Test whether |<I U {f}>| = |G].

Proposition 2.6 [FHL]

Given A ¢ G, in polynomial time the normal closure <2G> can be found.

Proof:

Successively test each g € T 1o see whether <A> = <A8> (using (2.4i)).
if this fails for some g replace <A> by <A U AE>, otherwise output <a>.

Corollary 2.7 [FHL]

The derived series and descending central series of G can be found in
polynomial time. (Hence, solvability and nilpotence can be tested in
polynomial time.)
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Proposition 2.8

Given A,B < Sp such that A normalizes B, the intersection A n B can
be found in polynomial time.

The proof follows from a straightforward extension of Sim's algo-
rithm (cf. [FHL]). It should be noted, however, that in CAYLEY [C]
all intersections are handled in the same manner, using a backtrack
search. For further comments concerning intersections, see Section 3.
For now we note one further situation in which intersections can be
found in our context:

Theorem 2.9 [L1]

Given an integer b, there is a polynomial-time algorithm which, when
given G,H < S, such that all noncyclic composition factors of G have
order <b, finds G n H.

The algorithm for (2.9) has the disadvantage of requiring time
O(nf(b)) with f(b) > © ags b » «, Thus, while polynomial-time, for
large b it is perhaps unreasonably theoretical.

Finally, we note that it is easy to find the center Z(G) in polynomial
time. More generally, if A 4 G is given then Cg(A) can be found in
polynomial time [L3].

For an exposition of most of the above results, see [H].

3. GRAPH ISOMORPHISM

There are probably severe restrictions on what can be accomplished in
polynomial time. Namely, consider the following four problems (where
G < 8y is as usual):

1. Given G,H < Sn, find G n H.

2. Given a p-subgroup P of G, find Ng(P).

3. Given an involution t € G, find Cg(t).

4. Given Y ¢ X find the setwise stabilizer of Y in G.
Theorem 3.1

If any of the problems 1—4 can be solved in polynomial time, then so
can the GRAPH ISOMORPHISM problem.

Here, GRAPH ISOMORPHISM is the following: Given two n-vertex
graphs, decide whether or not they are isomorphic. The above some-
what surprising-looking result is due to Luks [L1,L3]. Parts of the
theorem and other similar results of Luks are described in [H].

It is generally believed that there is no polynomial-time algorithm
for GRAPH ISOMORPHISM. If that turns out to be the case then none
of 1—4 can be accomplished in polynomial time. In any event, it should
be evident that 1—4 must be avoided in the context of the present sub-
ject—except, of course, for the unlikely possibility that the study of
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polynomial-time group-theoretic algorithms might produce a solution to
the GRAPH ISOMORPHISM problem.

Finally, we note that (2.9) provides polynomial-time algorithms for
1, 3, and 4 when G is bounded as in (2.9) (e.g., if G is solvable).
However, 2 remains open even for solvable groups G.

4. NONSOLVABLE GROUPS

There are a number of other elementary consequences of the results in

Section 2. However, we will now move to more recent and more compli-

cated results due to Luks [L2,BKL], Rényai [R], or the author [K3,K4].
Let G = <I'> be as usual.

Theorem 4.1 (Luks [L2]; cf. [BKL])

A composition series of G can be found in polynomial time.

Note that it is not possible to find all composition series, as there
may be too many of them (once again, consider the regular representa-
tion of an elementary abelian 2-group).

Sketch:

First an auxiliary procedure PRIM is needed: if G acts transitively on
a set X* (not necessarily our original X) of size >1, PRIM finds a block
system I of size >1 on which G acts primitively (using (2.3ii)), finds
the kernel of this action (using (2.4)), and outputs that kernel if it is
nontrivial or 3 if the kernel is trivial but |z| < |X| = n.

Next, note that all we need is to find either a smaller set on which
G acts faithfully or a proper normal subgroup of G or to determine that
no proper normal subgroup exists. For then recursion can be applied.

With this in mind, Luks' algorithm proceeds as follows. If, at any
stage, we produce either a smaller set on which G acts faithfully or a
nontrivial normal subgroup of G, then we can apply recursion.

1. Call PRIM for one nontrivial orbit of G.

WLOG G is primitive on X.

9. Test whether G # G'.

3. Pick any distinet x,y € X, and find the set 7 of fixed points
of Gx,y. For each z €7,

Test whether (y,z) € (x,y)G.

If so find g € G with (y,z) € (x,y)8, form the orbit x<8”,
and test whether |(x<8”)G | < nZ.

If so call PRIM for G on Y = (x¢8”)G.

4. Pick x € X. For each y € X — {x} call PRIM for {x,y}G.

5. Pick x € X. For eachy, z, w € X, let H = <ny,sz>, and
if H # G then call PRIM for G/H.

6. If G passes all of the above steps then G is simple.
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Comments:

3: If G has a regular normal subgroup then x<£> will be a line of
an n-point affine space; such a space has < n2 lines. Note that we are
not looking at the action of G on all p-element subsets of X, but rather
on a severely limited collection of such subsets.

4-6: These are motivated by the O'Nan-Scott theorem (see, e.g.,
[AS Appendix]). Namely, if the socle N of G is not regular in its ac-
tion on X, then N is the direct product of a certain number k of iso-
morphic nonabelian simple groups. If k > 1 and the action of G on X
is the wreathed product action, then it is not difficult to show that 4
will produce a smaller set or a proper normal subgroup. If k > 1 and
the action arises from a diagonal action on the direct product N (see
[AS]), then the algorithm stops at 5. Finally, if k = 1 then, since 2
has been passed, G = N by the correctness of Schreier's conjecture.

The above algorithm runs in time O(n8)—with the exponent due, to
a large extent, to the O(nd) for (2.4).

Corollary 4.2

. (1) [L2} Simplicity of G can be tested in polynomial time.
(ii) For each successive pair A <4 B in the composition series, in

polynomial time a set of size < n can be found on which B/A acts faith-
fully.

Proof:

(i) is clear, so consider (ii). WLOG G = B. Let Y be the set of orbits
of Aon X. If GY #1 output Y. WLOG GY = 1. Since G acts nontriv-
ially on some member of Y, WLOG A is transitive on X. Now G = AGy
for x € X, so that G/A = Gyx/Ayx and we can apply recursion to the

pair Gy, X — {x}. (For a somewhat different argument, see [L1, (3.2)].)

Theorem 4.3 (Rényai [R])

A chief series of G can be found in polynomial time.

Outline:

Using (4.1) it is easy to find a normal series for G each of whose fac-
tors is either (i) elementary abelian or (ii) the direct product of non-
abelian simple groups permuted transitively by G. (Namely, consider
the normal closures (2.6) of all the terms in (4.1).) Therefore, (4.3)
can be viewed as a special case of the following situation. Given a set
4 of linear transformations of a finite vector space, find a A-irreducible
subspace. Rényai considers this latter problem in terms of the algebra
of linear transformations generated by 4. This is dealt with by an in-
genious use of classical ideas concerning finite-dimensional algebras.

We briefly digress in order to present the following elementary var-
iant of (4.3) that will be needed later:
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Lemma 4.4 (Roényai)

Given an m-dimensional vector space V over GF(p) and a set T of linear
transformations, there is a polynomial (in m,p, and |r|) time algorithm
that finds the space of fixed vectors of T.

Proof:

Use elementary linear algebra in order first to find the space of fixed
vectors of each member of I' and then to intersect these subspaces.

Simplicity is one of the standard and most basic questions concern-
ing a finite group. Almost as basic are Cauchy's and Sylow's theorems.
All of the standard proofs for these theorems either clearly do not pro-
duce polynomial-time algorithms or probably do not. For example, the
proof of Cauchy via the "class equation" is purely existential. Similarly,
the most standard proofs of the existence of Sylow subgroups involve—
in addition to Cauchy's theorem—the use of normalizers or centralizers
of p-subgroups of G, and these must be avoided by Section 3. (On the
other hand, the algorithm in CAYLEY builds up a Sylow subgroup by
using centralizers.) Other proofs of Cauchy or Sylow involve the ex-
amination of potentially exponential-size subsets of G. Finally, the con-
jugacy part of Sylow's theorem is standardly proved by a purely exis-
tential argument. Consequently, new techniques were required in order
to obtain polynomial-time algorithms.

Cauchy's theorem was dealt with in [K2]. Once again, the classifi-
cation of finite simple groups was involved! However, unlike the situa-
tion with (4.1), detailed information was needed concerning such groups
(cf. Section 6).

In [KT], polynomial-time algorithms were obtained for special cases
of Sylow's theorem, such as for solvable groups—in which case Hall's
theorem was also dealt with. These solvable group algorithms were later
modified in [K3] (cf. Section 5, and Section 6, Remark 1) in the proc-
ess of obtaining methods that led to the general case:

Theorem 4.5 [K3]

If p is a prime then the following can be found in polynomial time:

(i) Given a p-subgroup of G, a Sylow p-subgroup of G containing
it;

(ii) Given two Sylow p-subgroups of G, an element of G conjugat-
ing the first one to the second.

More recently, the set of all conjugating elements in (4.5ii) has, in
effect, been specified:

Proposition 4.6 [K4]

Given a Sylow p-subgroup P of G, Ng(P) can be found in polynomial
time.

All of these results depend on detailed information concerning all
finite simple groups—not, for example, just on the finiteness of the
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number of sporadic simple groups. On the other hand, the main ideas
of the proofs can be seen in two diametrically opposite situations: solv-
able groups, and switching permutation representations of simple groups.
These will be discussed in the next two sections.

5. SOLVABLE GROUPS

In this section we will prove the following special cases of (4.5) and
(4.6).

Theorem 5.1

Given a solvable subgroup G of Sn and a prime p, the following can be
found in polynomial time:

(i) A Sylow p-subgroup P of G;

(ii) Given a Sylow b-subgroup Pg of G, an element g € G such
that P€ = Pp; and

(iii) Ng(P).

Proof of (i) and (ii) [K3 Appendix]:

We will proceed by means of two reductions: from (i) to (ii), and then
from (ii) to a third situation (which is, in fact, just a special case of
(ii)). In each reduction we will also use recursion.

Reduction from (i) to (ii). Assume that we have available a poly-
nomial-time algorithm for (ii); we will present a polynomial-time algo-
rithm for (i).

Find M q G with {G/M| prime [use G/G' (2.1)].

letge T — M.

Recursively find a Sylow p-subgroup P of M.

Use (ii) to find m € M such that (Pg)m = p,

Find a Sylow p-subgroup <g'> of the cyclic group <gm>.

Then <P,g'> is Sylow in G.

[Note that, in effect, we have used the Frattini argument—cf. (5.2).]

Reduction from (ii) to the following statement (ii*):

(ii*) Given a solvable subgroup G of S;,, M < G with IG/M| = p,
and Sylow p-subgroups P and Py of G such that P n M = PonM Jd aq,
find g € G such that PE = Pg.

This time we are assuming the availability of a polynomial-time algo-

rithm for (ii*). Using it, we will present a polynomial-time algorithm
for (ii).

Find M <4 G with {G/M| prime. WLOG this prime is p.
Find P n M and Po n M. [Use (2.8)].

Recursively find m € M such that P n M= (Pg n M),
Let G* = <P,(Pg)™> and M* = G* n M [using (2.8)].

Al
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Apply (ii*) to the quadruple G*, M*, P, (Pg)™ in order to conju-
gate (Pg)™ to P. [Note that P n M is normal in P, (Pg)™, and
hence G*, so that (ii*) applies.]

[The idea here was to "move P and Pg closer together." Note that
G*/P n M has Sylow subgroups of order p. This is essentially what
(ii*) is all about.]

Algorithm for (ii*). We are given G, M, P and Pg. As above, the
goal will be to move P and Pg closer together.

WLOG P n M < P.

Ilet he P — M.

Let hy € Pg — M with h™lhg € M.

Let t = h~lhg.

Let u € <t> with uPt € P n M. [Note that M/P n Mis a p'-group. ]
Let m = uh(u2)h? ... (up-1HhP~

Let G* = <P,(Pg)™> and M* = G* n M [using (2.8)].

Apply recursion to the quadruple G*, M*, P, (Pgp)™.

[The fact that G* < G can be seen by taking a normal subgroup N
of G such that P n M < N < M and M/N is a G-chief factor and passing
mod N. That is, we may assume that N = 1. Then G is a semidirect
product of an elementary abelian g-group M (for some prime g # p) with
a group P of order p acting irreducibly on M. Now there is exactly
one element of M conjugating Pg to P, which elementary linear algebra
shows to be just m.]

This completes the proof of (i) and (ii).

Remark:

The algorithms just presented seem simple enough to be efficiently pro-
grammed. No visible use was made of the n-set X—although X was cer-
tainly used in essential ways since (2.4) and its consequences were em-
ployed often. It also seems as if it should be possible to effectively
use some of the ideas in the above algorithms (or the next one or others
in [K3 Appendix]). In fact, the Frattini approach and the linear alge-
bra trick at the end of (ii*) have been used in [G].

Before we turn to (iii), we need the following

Corollary 5.2 (Frattini argument [KT])

If M is a normal subgroup of the solvable subgroup G = <I» of Sp, and
if P is a Sylow p-subgroup of M, then in polynomial time a subgroup

D < Ng(P) can be found such that G = DM.

Proof':

For each g € T find m € M such that PEgM = P, and let D be the group
generated by all of the resulting elements gm.

In (5.4) we will see that Ng(P) itself can be found.
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Corollary 5.3 [KT]

Given a solvable subgroup G of S
p-subgroup Op(G) of G can be f

n and a prime p, the largest normal
ound in polynomial time.

Proof':

If P is an intersection of some Sylow p-subgroups of G then successive-
ly test the elements g € T to see whether P& = P. If this fails for some
g, replace P by P n PZ, otherwise output P.

Proof of (5.1iii):

1. WLOG P is not normal in G.
2. Find Op(G) using (5.3). [Then O0p(G) < P.]
| 3. Find normal subgroups K < L < M of G such that

L/K is an elementary abelian q-group for some q # p, and
M/L is a p-group.

[Use (2.7): since G/Op(G) is not a p-group, K, L, and M exist and
can be found by using the derived series (2.7) together with (2.4i).]

4. Find R=Pn M using (2.8).

[Then R is a Sylow p-subgroup of M, R > 0p(G), and M = RL.]
5. If RK <4 G then use (2.6) and (2.7) to find K1 with Op(G) <
K1 < K, K; 4 G, and K/Kq elementary abelian; then replace
the triple (M, L, K) by (RK, K, K1), and return to 4.
[Clearly K < RK. If RK d G then K cannot be a p-group, so that
Op(G) < K. Hence K1 exists, and can easily be found using K'. Since
we are decreasing K, this loop eventually leads to the situation that RK
is not normal in G.]
6. Find D < Ng(R) with G = DM and D > R. [Use (5.2). Note
that G = DRL = DL.]

7. Find A with K <A <L and Cr/k(R) = A/K, using (4.4).
[Since L/K is an elementary abelian r-group for some prime r # p, it
can be viewed as a vector space, so that (4.4) applies. ]

8. Recursively find and output N<D’A>(P).

[We must show that N¢p o,(P) = Ng(P) and that <D,A> # G. If ~
is the natural homomorphism G - G/K, then [Nf (I_{),R] <LNnR<K-=
1 (since L is a p'-group and R is a p-group), so that Ni(f{) < CE(R) =

A. Also, NG(P) < Ng(R), while Ng(R) = Npyp(R) = NpRE(R) =

_DNE(E) < DA < G since R = RK/K is not normal in G = G/K.]

Corollary 5.4

Given a Sylow P-subgroup P of a normal subgroup M of a solvable
group G < S;, Ng(P) can be found in polynomial time.

Proof':

Find Ny (P) using (5.1iii). Find D < Ng(P) such that G = DM using
(5.2). Then DNy (P) is the desired normalizer.
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It should be evident that all of the above arguments used in the
proof of (5.1) are very different from the standard ones. It is also
clear that they are far less transparent than the purely existential
proofs found in textbooks.

It is natural to ask exactly where solvability was used in this sec-
tion, and how the classification of finite simple groups might enter into
the nonsolvable case. Note that, in the proof of (5.1i,ii), we began
with a normal subgroup M such that G/M was cyclic of prime order. In
the general case of (4.9), this quotient group might be a nonabelian sim-
ple group. In [K3] that situation was reduced to the case of a simple
group G, and then Sylow subgroups of G were found and conjugated by
using (4.2ii) and the Replacement Theorem of the next section.

6. THE REPLACEMENT THEOREM

We begin with a result that is a fairly straightforward consequence of
the results in [K1], together with some geometry of the classical groups.
Let G be a group acting on an n-set X. Let x € X. For eachy € X
let @x(x,¥) consist of G(x,y} together with the set of all proper sub-
groups of G of which Gx,y} is a maximal subgroup, and let G.X(x,y)*
consist of @x(x,¥) together with all proper subgroups of G of which
some member of ax(x,y) is a maximal subgroup. Let ® (G,X) be any
set of maximal subgroups of G such that each member of U {ax(x,y)* |
y €X}is contained in some member of ®(G,X). Finally, let

®(G) = U {®(G,G/M) | M€ ®(G,X)}
and
b(G) = min{|G/H| | H € B(G)}

Note that b(G) < n since y = X was allowed. Using all of this notation,
we have the following useful result:

Proposition 6.1

Let T be a simple group, Tet T < G < Aut(T), and suppose that G
acts primitively on an n-set X. Then one of the following holds:
(a) |G} < n8; or
(b) If M€ B(G) is such that b(G) = |G : M|, then either
(i) M is a proper normal subgroup of G, or
(ii) T restricted to G/M is equivalent to the faithful permu-
tation representation of T of smallest degree.

The representation in (ii) is either the usual action on an r-set if
T 2 Ay, or the action on the unique shortest orbit of 1-spaces or hyper-

planes of the underlying vector space if T is a classical group.

Proof:

This is essentially the same as [K2, Theorem 6.1]. If we assume that
(a) does not hold then the simple normal subgroup T of G is alternating
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or classical, and the permutation representation of G on X is very re-
stricted (K1]. (Namely, either T = Ay and Gy is the stabilizer of a
subset or a partition of the r-set into subsets of equal size, or T is
classical and Gy is the stabilizer of a subspace.) The proof of the
aforementioned theorem goes through with one minor change: it is con-
ceivable that some M € ® (G) contains T, in which case (i) can occur
(for T = PSL(d,q) or Pa*(2d,q) and suitable G).

Note that (6.1bi) produces a normal subgroup of G to which (6.1)
can again be applied. Moreover, when that is done, (6.1bi) does not

occur a second time. Also, the bound in (6.1a) (and the next result)
can be improved, with n? in place of n8.

Theorem 6.2 (Replacement Theorem) [K2]

Given a simple subgroup G of Sy, of order > n8, there is a polynomial-
time algorithm that finds the natural permutation representation of G
(and that permutation representation has degree < 2n).

Proof':

Use (2.2) and (2.3) in order to reduce to the case in which G acts
primitively. By (2.3), all of the sets ax(x,y), @x(x,y)*, ®(G,X),
and ®(G) can be found in polynomial time.

In fact, much more is proved in [K2,K3] in the case of classical
groups: in polynomial time the underlying vector space can be found,
as can a group of linear transformations inducing G. Moreover, in the
case of a symplectic, orthogonal, or unitary group, a suitable form is
constructed on the vector space. This has the effect of replacing per-
mutation group considerations by linear algebra. In view of this, it
should come as no surprise that the simple group case of Theorems 4.4

and 4.5 can be deduced from the Replacement Theorem (by means of
some rather tedious work).

7. CONCLUDING REMARKS
Remark 1:

There are also polynomial-time algorithms for Hall's theorem and related
results [KT; K3 Appendix]; Carter subgroups of solvable groups can
be found and conjugated to one another (in polynomial time, as usual),
as can system normalizers; and the Fitting subgroup and the generalized
Fitting subgroup can be found, as can 04 (G) for any set w of primes.

(In the case of Hall's theorem, the arguments in Section 4 go through
almost verbatim.)

Remark 2:

It is not known whether the Frattini subgroup or the ascending central
series can be found in polynomial time (though they probably can). Of
course, more technical group-theoretic subgroups such as the Thompson
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subgroup J(P) of a p-group probably cannot be found since their defi-
nitions involve knowledge of potentially exponential-size sets (the set of
all maximal-size abelian subgroups of P). Moreover, many of the more

familiar types of group-theoretic methods involve normalizers of p-sub-

groups, and hence must be avoided (cf. Section 3).

Remark 3:

Some of the methods described here have some applicability to a some-
what similar but much harder subject: polynomial-time Galois theory.
There, one is given a finite extension K of Q and a polynomial f € K[x]
and asked to find the Galois group of f. For simplicity, assume that

f € 7Z[x] (although extensions of @ must eventually be considered as
well). Then the problem is to determine Gal(f) in time that is polyno-
mial in the number of (binary or decimal) digits required to write f.
Analogs of (2.2) and (2.3) exist: f can be factored into irreducibles
[LLL]; an extension L = Q(a) of Q can be obtained with f(a) = 0 (de-
scribed as a vector space over @ with a distinguished basis and a mul-
tiplication rule for that basis); and, when f is irreducible, subfields of
1, can be specified in polynomial time that correspond to the blocks in-
volved in (2.3) (specified as the sets of roots of explicitly constructed
polynomials) [LM].

This situation is harder than the one in this paper because i)
Galois groups are determined only up to conjugacy in symmetric groups;
(ii) no efficient way is known for finding a nontrivial element of G =
Gal(f) (except possibly for complex conjugation); and (iii) a splitting
field of f generally has nonpolynomial degree over Q, and hence cannot
be written (as a vector space over Q) in polynomial time. In view of
these difficulties, it is not surprising that no polynomial-time algorithm
is known for determining |G|.

Only the following have been proved: in polynomial time it can be
decided whether or not G is solvable [LM] (or a p-group); and weak
analogs of (4.1) and (4.2) have been obtained [KL,K5] based on the
fact that all of the sets appearing in (6.1) can be found in polynomial
time.
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