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1. Introduction

Let F be a 2-transitive group of finite degree v such that the stabilizer Txy of the
distinct points x and y fixes precisely k points, where 2 < k < v. The only known
non-solvable groups with this property are of the following types: (i) a 2-transitive
collineation group of PG(d, 2) for some d; (ii) a 2-transitive collineation group of
AG(d, k) for some d; and (iii) PFL(2, 8) in its representation of degree 28. We shall
prove some characterizations of groups of these types. Let X be the set of fixed points
of Txy and Tx = N(Txy) the global stabilizer of X. Our main result (Theorem 5.1)
states that F is of the form (i) or (ii) provided that F x n F x is transitive on the points
not in X. This generalizes a result of Ito [13] (see [4; pp. 47-48]) which assumes that
Txy is transitive and regular on the points not in X. Our approach is, however, quite
different from Ito's. When k is even we use a result of Bender [2]. When k is odd a
result of Hall [9] is used in an unexpected way. The case where Txy is not regular on
the points it moves is deduced from the case where this group is regular by means of
a result of Glauberman [7].

This research was begun in order to obtain a proof of the above mentioned result
of Ito [13]. I am indebted to Prof. Ito for several useful discussions concerning results
of the type presented here. I am also grateful to Dr. F. Buekenhout for pointing out
errors in an earlier version of this paper.

2. Preliminaries
If A is a subset of a group F, Nr(A) and Cr(A) (or simply N(A) and C(A)) are its.

normalizer and centralizer in F, respectively. O(T) is the largest normal subgroup of
F of odd order.

We shall consider the following situations.
(*) F is a 2-transitive group of finite degree v, x and x' are distinct points, and

Txx- fixes precisely k points, where 2 < k < v.
(**) F satisfies (*) and Txx. acts regularly (but not necessarily transitively) on the

points it moves.
Let F satisfy (*). We shall use the following notation. X is the set of points

fixed by IT = F^-. N(Tl) = Tx is the global stabilizer of X. £^(F) consists of the points
permuted by F and the sets Xy, y e F . Two distinct points are in exactly one such
set: ^ ( F ) is a design with X = 1 ([5], Chapter 2). The sets Xy will be called lines,
n = T(X) is the pointwise stabilizer of the line X. There are r = (v— \)/(k— 1) lines
on x. T(x) is the linewise stabilizer of this set, and Px = Tx/r(x) is the permutation
group induced by Tx on these lines.

By (*), rx acts on X as a sharply 2-transitive group. In particular, A: is a prime
power.
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3. k even

Let F satisfy (**) wi th k e v e n . T h e n k = 2e,e^2.

LEMMA 3.1. v is even, k\(r— 1), and each involution in F fixes v/k pairwise disjoint
lines.

Proof. Suppose that v is odd, and let a be an involution in F,. As v — k is odd,
by (**) cr fixes no point other than x. If y # JC then a fixes the line through y and
y". As k is even, no two such lines meet. Thus, a fixes (v—l)/k pairwise disjoint
lines. On the other hand, by a result of Bender [2], either F has a normal subgroup
similar to PSL(2,g), Sz(q) or PSU(3,#) in its usual representation, where q is even,
or v is a power of a prime p and F has a regular normal elementary abelian p-subgroup.
In the former case (**) cannot hold. In the latter case the number of fixed points of an
element of T(X) is a power of p. As k\(v — 1) we must have T(X) = 1, a contradiction.
Thus, v is even, and it is easy to complete the proof.

Let I be a Sylow 2-subgroup of IT. If S = 1 then F is solvable [1]. Assume
that I ¥" 1, and let m be the number of involutions in II.

LEMMA 3.2. (i) m ^ k — 1, with equality if and only if TyX is transitive on X whenever
y $ X. (ii) If m > 1 then E contains distinct commuting involutions.

Proof. If x T* x' e X and y $ X, let n(x, x'; y) be the number of involutions of the
form (y) (xx').... Count in two ways the ordered quadruples (x, x', y, y) with y an
involution of the form (y) (xx') . . . and JC, X', y non-collinear:

v(v~\)j: n(x,x';y) = ^ ~ 1 } m.(v-k)k,
y*x k(k-\)

or

whenever x ̂  x' e X.

(i) This follows from the inequality n(x, x'\ y) ^ 1.

(ii) Let xt(i = 1, . . . , k— 1) be the points of X — {x}. As

£ Yn(x,Xi',y) = m(r-\).(k-\) > v-k,
vtx i

there is a point y $ X and there are distinct integers i and; such that FyX has involutions
(y) (XA-J) . . . and (y) (xxj).... These generate a group of order 4 fixing some line X*
pointwise as v — k is even.

LEMMA 3.3. Let F be a non-solvable group satisfying (**) such that the Sylow
2-subgroups ofTxx. have only one involution. Ifk is even then v = 28 and T « PFL(2, 8).

Proof. By Lemma 3.2 (ii), IT has a unique involution a. As a fixes a line X* ^ X
it centralizes the involution T in F(X*). As Cn(t) fixes X* and acts regularly on X*,
Cn(x) = <<r>. We may assume that x normalizes E.

By the Frattini argument, Tx = ITN(E), so that iV(Z) is 2-transitive on X. So
N(Z)/C(I) (N(I) n i l ) is a homomorphic image of a sharply 2-transitive group of
degree k and of iV(S)/C(E)S. However, JV(E)/C(I)£ is isomorphic to a group of
outer automorphisms of I , hence is a 2-group or has order 3 or 6. It follows that
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|N(Z)/C(Z) Z| = 1 or 3. Then % e C(Z) Z, so that T = yax with y e C(Z) and o^ e Z.
Now ff! e Cn(i) = <<r>, T e C(Z), and hence Z ^ C(T) = <<r>.

Thus, |Z| = 2, so that II = SO(II). As C0 ( n ) (T) = 1, T inverts 0(11). Let T' be a
conjugate of T by an element of FxX — II. Then TT' is fixed point free on J\T and
centralizes 0(11). Also, TT' e C(II). As N(U) = r x is 2-transitive on X, it follows
that C(II) is transitive on X. Consequently, C(II) contains a Sylow 2-subgroup of
Fx, and hence also an involution %" conjugate to T in Tx. Then z" is an element of C(II)
inverting 0(11), so that O(FI) = 1 and IT = Z. The lemma now follows from a result
oflto [12].

THEOREM 3.4. If T is a non-solvable group satisfying (**) with k even, then either
v = 28 and T « PFL(2, 8), or 2>{T) is a desarguesian affine plane and T contains all
elations.

Proof. By Lemma 3.3 we may assume that the Sylow 2-subgroups of Tx have
more than one involution. If xe Y =fc X then (tx)XY has odd order. It thus follows
from a result of Bender [2] that Tx has a normal subgroup A containing T(x) such that
A = A/r(x) is isomorphic to PSL(2,2/), Sz(2-0 or PSU(3,2f) for some integer / .
Moreover, A acts on the lines on x in its usual 2-transitive representation, and
s = |rx/A| is odd.

The Sylow 2-subgroup Z of TxX is sharply transitive on the lines ^ X on x.
Thus, TxX = ZF x y . As TxX is transitive on X—{x}, so is TXY. Then rXY is also
transitive on Y — {x}. It follows that FxX is transitive on the points not on X.

Let yiX. Then | r , x : r , , x | = | r ^ : r , x | | r , x . T ^ x | / | r x : r , x | = k, so that TyX is
transitive on X. The Sylow 2-subgroup K of FyX is elementary abelian of order k.
Asv — k—\ is odd, K fixes a line X* ^ X pointwise. By Lemma 3.2 (i), K contains
all of the A:— 1 involutions in T(X*). However, a Sylow 2-subgroup of A has precisely
2f -1 involutions. Thus, e = f. Then r = 2Ee +1, where e = 1,2 or 3 if A « PSL(2,2e),
Sz(2e) or PSU(3, 2e), respectively.

If r = 2C+1 then 2>{T) is an affine plane of order k in which each line is the axis
of A: elations. Consequently, 3>(T) is desarguesian [5; p. 126]. We now assume that
e = 2 or 3.

If e = 3 then, for d = 1 or 1/3,

d(22e-i)s\r(x)\ = irxy| = (2e-i)ir(x

a contradiction. Thus, e =2 . In particular, k — 2e ;> 8.
There is an involution c e l l centralized by K. Let X* be the Sylow 2-subgroup

of r ^ . . Then <reK* implies that iC* < n .
Suppose that 1 # a e T(x). Then [a, II] c [r(x), II] = 1 [14]. Let a' ^ a be

conjugate to a by an element of K. Then a"x a' centralizes II and is fixed point free
on X. As |Z| = r— 1 > k, a"1 a' is fixed point free. There is an element 1 ^ t e X
such that a ~ 1 a ' T € l l . Then a"1 a' centralizes a~ia't and hence also T, SO that
a"1 a' fixes X*. There is thus an involution ax GK* such that a"1 a' o^ fixes a point
of X*. As a"1 a' o^ centralizes Z it fixes at least |Z| > k points but is fixed point free
on X, a contradiction. Thus, T(x) = 1. It follows that AXY is cyclic.
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We now show that T(X)Y = 1, and hence that II = I has order r— 1. For,
Y{X)Y, T(Y)X and AXY are normal in TXY. There is an element of A interchanging
T(X)Y and F(Y)X while normalizing the cyclic group AXY. Thus T(X)Y n Ax y = 1,
so T(X)Y centralizes AXY. From the structure of Tx it follows that T(X)Y = 1.

Let 1 # t e K invert c elements of II. If F has c' fixed point free involutions,
then

k ~ k(k-\)

c > v/k—l = (k—l) (r

A result of G. A. Miller [10; p. 60, Ex. 12] now implies that T inverts IT. As II is
non-abelian, this is a contradiction.

COROLLARY 3.5. Under the hypotheses of Theorem 3.4, if also Tx is 2-transitive
on the set of distinct sets Xy,yeTx, then 3>(T) is a desarguesian affine plane and F
contains all elations.

Proof. Theorem 3.4 and Huppert [11].

4. k odd

Let r satisfy (**) with k odd. r = (v-l)/(k-\) implies that v is odd. k = pe

where p is prime. Let FT have m involutions.

LEMMA 4.1. Let a be an involution in F.

(i) / / a fixes only one point x then a e T(x).

(ii) If a fixes at least two points it fixes a unique line X pointwise. Moreover, a fixes
precisely r—\ lines # X, and each of these meets X.

Proof, (i) If y # x then a fixes the line through y and y". As k is odd, a fixes a
point of this line, which must be x. It follows that a fixes all lines on x.

(ii) The existence and uniqueness of X are immediate. If y ^ x then a fixes the
line through y and y", and as k is odd this line meets X. It follows that a fixes
(v—k)/(k— 1) = r — 1 lines # X, each meeting X.

LEMMA 4.2. m <:k, and either m = 0, m = 1 or m ^ p. Moreover, the following
are equivalent ifm>0.

(i) m = k;

(ii) |F(Z)y | is even whenever \X n Y\ = 1;

(iii) TyX is transitive on X for all y$X; and

(iv) TyX is transitive on X for some y$X.

The proof is similar to that of Lemma 3.1.

LEMMA 4.3. Let T(x) have even order.

(i) / / II has even order then ®(T) is PG(2, 2) or an affine translation plane.
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(ii) Either F has a non-trivial regular normal elementary abelian p-subgroup or
®{T) is PG(2,2).

Proof. Let FI have even order. Let a be an involution in n fixing a line Y •£ X
on x, and 5 e T(x) an involution in neither T(X) nor r(Y). Then a = <5 on Y. If <r
fixes a third line Z on x, then <5 must fix Z pointwise, and taking <reT(x) n IT, we
find that r = 3. If r > 3, it follows that a fixes at most k lines ^ A!". Then r — 1 < A:
by Lemma 4.1 (ii), and it is easy to see that ^ (F ) is a translation plane.

Suppose now that IT has odd order. By a result of Bender [2], either F has a
normal subgroup similar to PSL(2,g), Sz(q) or PSU(3,g) in its usual representation,
where q is even, or F has a regular normal elementary abelian p'-subgroup of order
p'd, where p' is prime. The first possibility cannot occur. In the second case, the
number of fixed points of each element of T(X) is a power of p'. Thus, p' = p.

LEMMA 4.4. Let T(x) have odd order.

(i) If a is an involution in FT and x e X, then a fixes precisely 1 + (r — l)/k lines on x.
Moreover, C(o) is transitive on X.

(ii) / / \X n Y\ = 1 then FXY has precisely 0,1 or 3 involutions.

Proof (i) Set S(a) = {xeX\(r fixes at least 2 lines on x}. As |F(x)| is odd,
\S(&)\ > 1 by Lemma 4.1 (ii). Assume that |S(<r)| < k. By Lemma 4.2 there are at
most k distinct sets S(o)y, yeTx. Then 1 < |rx:rXS(<T)| < k implies that TXS(a) = FxX

for some xeX. There are thus k sets S(a)y, ysTx, hence also k involutions in
T(X); moreover, S(a) = X — {x}. However, if x # x' eX then a fixes some line
Y ^ X on x'. As a normalizes T(Y) it centralizes an involution xeY(Y)x. Then
S(a)x = S(a), while T moves x, a contradiction.

Thus, S(a) = X. If xeX and o- fixes the line Y =£ X on #, then (j normalizes
F(7) , and hence centralizes an involution T in F(y) . Clearly xeC(p) n F (7 ) x . It
follows that C(o) is transitive on X. Consequently, each point of X is on the same
number of fixed lines of a. As a fixes r — 1 lines # X, each point of X is on (/• — [)/k
of these lines.

(ii) Let a and x be distinct involutions in TXY. First assume that <re F(-Y)y and
xeT(Y)x. Then [a, x]e T(X)Y n F ( 7 ) x = 1, so (TT is an involution. If a is an
involution in TXY-T(X)Y then a = T on I , so OLXET(X)Y. AS T centralizes T(X)Y,
ax is 1 or an involution, that is, ocx = 1 or c.

We may now assume that a is in neither T(X)Y nor T(Y)X. As cr and T<TT agree
on X and y, a and T commute. Similarly, x must be in FpQy or T(Y)X, say F(y)^.
Then ax e r (X) y and at is an involution. We have now reduced to the first situation.

THEOREM 4.5. Let F satisfy (**) with k odd. Assume that Tx is 2-transitive on the
set of distinct sets Xy, y e Tx. Then either @{T) is a desarguesian affine plane and F
contains all elations, 9(T) is PG(2,2) and T is PSL(3, 2), or ®{T) is PG(3,2) and

Proof. By hypothesis, Tx is 2-transitive.

Case 1. |F(x)| is even. If |T71 is even then, by Lemma 4.4 (i), we may assume that
^ ( F ) is an affine translation plane. As r— 1 = k, a Sylow p-subgroup of Tx fixes
some line X on x pointwise and is transitive on the remaining lines on ,v. It follows
that $>(T) is desarguesian [5; p. 126].
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Suppose now that |EL| is odd. By Lemma 4.4 (ii), F has a non-trivial regular
normal elementary abelian p-subgroup. As k\v = l+r(k— 1), k\(r— 1).
By hypothesis, ( r - 1) J |FJ. Let A be a Sylow p-subgroup of TxX. Then A <; F(X)
and k | |A|. We may regard F as a coUineation group of the affine space AG(d,p),
where v = pd. X is an e-subspace, where k = pc. A fixes an (e+ l)-subspace contain-
ing X and acts faithfully on this subspace. It follows that |A| = k and A is elementary
abelian.

We also note that, by [14], if xeX then F(x) n T(X) = 1. Suppose that
O(fx) # 1. As O(tx) is solvable by the Feit-Thompson Theorem [6], f, has a regular
normal elementary abelian subgroup O of order r, where <f> = O/F(x), Fx ^ O ^ F(A').

If )> ̂  x and Y is the line joining x and j>, then Oj, ̂  T(x) n T(Y) = 1. O is thus a
Frobenius complement, so that <t> is cyclic and r is prime. Then (tx)x is cyclic.
However, A n F(x) ^ F(X) n F(x) = 1, so that A is isomorphic to a subgroup of
(Tx)x. Then A is cyclic of order k. As A is known to be elementary abelian, k = p.
It follows that f x is a sharply 2-transitive coUineation group of PG(d — 1, p). This can
happen only when d = 2 and p = 3, and then ^(F) is AG(2, 3).

We now assume that O(t)x = 1 . As IT has odd order, Tx has exactly one involu-
tion, and this belongs to F(.Y). Consequently, Tx has cyclic or generalized quaternion
Sylow 2-subgroups. Then Tx has cyclic or dihedral Sylow 2-subgroups. By the
transfer theorem of Burnside and a result of Gorenstein and Walter [8], either
Tx « A-j or Tx is isomorphic to a subgroup of PFL(2,g) containing PSL(2,g), where
q is an odd prime power.

If fx « A-, then r = 7 or 15, since tx is 2-transitive. If r = 7, then, as k\(r— 1)
we must have k = 3, so that v = 15 is not a power of 3. Similarly, if r = 15 then
k = 7 a n d r = 91.

Thus, fx is isomorphic to a subgroup of PFL(2,g) containing PSL(2,g). By a
result of Liineburg [5; p. 196], if r ̂ q + l then r = 5,6,7 or 11. Once again,
k\(r— 1) and u a power of p imply that k = 5 and u = 52, so that ^ (F) is AG(2, 5).
We may thus assume that r = q +1. Then A:|(r— 1) implies that q is a power of p.
As q | |A| = A:, it follows that ^(F) is a desarguesian affine plane [5, p. 126].

Case 2. |F(x)| is odd. By Lemma 4.3, each involution in T(X) fixes 1 + (r— l)/k
lines on each point of X, and any two distinct intersecting lines are fixed by precisely
3 involutions. Count the ordered triples (X, Y,y) consisting of distinct lines X and Y
on x and an involution y e Txy:

rk.(l + (r-l)/k) ((r-l)/k) =r(r-l).3.

Thus, r = 2k+l.
Clearly r > 3. Define a Steiner triple system £f{x) as follows. The "points" of

S?(x) are the lines on x. If X and Y are distinct lines on x, and a and T are the involu-
tions in T(X)Y and F( Y)x, respectively, then the line fixed pointwise by the involution
ox is the third member of the triple determined by X and Y.

fx is an automorphism group of y(x). Moreover, Sf(x) has the property that
each triple is fixed pointwise by precisely 3 involutions, commuting with one another
and fixing only the 3 points of this triple. By a result of Hall [9, Theorem 3.2], any
3 points of £f(x), not forming a triple, generate a subsystem PG(2, 2) or AG(2, 3).
As the 3 involutions commute, we must always have PG(2,2). By the Veblen and
Young axioms [16], Sf(x) consists of the points and lines of a protective space
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TG(d, 2). As the involutions fix only the 3 points of a projective line,
(d+1)/2 < (1 +l)/2. If d = 2 then t> = 15, F « >47, and ®(T) is PG(3,2). If d = 3
then r = 1 5 and f, « A7. Then (fx)x « PSL(3,2) and rxX/r(jt) & r(je)II/r(jt)
imply that II ^ T(x) or FxX = T(x) II. The first possibility is clearly impossible.
The second yields that FxX/II » F(;c)/r(,Y) n II. As F(x) has odd order, this is also
a contradiction.

COROLLARY 4.6. Le/ T satisfy (**). / /& t5 odd tffld F^- /ws atf leastkinvolutions,
then either @>(T) is a desarguesian affine plane and F contains all elations, &>(T) is
PG(25 2), or 9{T) is PG(3,2) and F * A7.

Proo/. By Lemma 4.2, II has k involutions and II y has even order whenever
\X n Y\ = 1. If T(x) has even order then, by Lemma 4.4 (i), we may assume that
i#(F) is an arfine translation plane. As II has k = r—\ involutions, Gleason's
lemma [5; p. 191] implies that II is transitive on the lines ¥= X on x. As in Theorem
4.5, ^(F) is a desarguesian affine plane.

If T(x) has odd order, the result follows from precisely the same argument as
that used in Theorem 4.5, Case 2.

COROLLARY 4.7. Let F satisfy (**) with kprime. IfTxx> has more than one involution
then F is similar to a collineation group of a desarguesian affine plane containing all
elations, PSL(3, 2) in its usual representation, or A7 in its 2-transitive representation
of degree 15.

Proof. Lemma 4.2 and Corollary 4.6.

5. The non-regular case

THEOREM 5.1. Let F satisfy (*). Suppose that N(TXX.)X is transitive on the points
moved by rxx>. Then F is similar to a 2-transitive collineation group of PG(d, 2) or
AG(d, k) for some d.

Proof. First suppose that II is regular on the points not on X. As tx is 2-transitive,
Corollary 3.5 and Theorem 4.5 imply the result.

Now assume that II is not regular on the points not on X. \fy$X then X and y
determine a unique subdesign (with the same k) to which our previous results apply,
as r is transitive on the ordered triples (x, y, X) with xeX and y$X. If this subdesign
consists of the points and lines of PG(2,2) or PG(3,2), the Veblen and Young axioms
[16] imply that ^(F) consists of the points and lines of PG(d, 2) for some d. We may
thus assume that these subdesigns are affine planes AG(2, k). It follows that TxX/T(X)
is cyclic if x e X.

Fix x and X and let a(X) be a generator of TxX/T(X), regarded as a permutation
of X. For each yeTx let o{Xy) = a(X)y. This is well-defined and independent of
the choice of X on x. Now set x" = x and, if y ^ x, y° = y(xy)

} where xy is the line
joining x and j>. As a fixes each plane containing x and induces a collineation on that
plane, a is an automorphism of 2)(T). We may assume that a e F. As TxX centralizes
a and is maximal in Fx, oeZ(Tx). Then a point y is fixed by exactly one conjugate
ay of a = ax. If y # x then ax <ry ~

i fixes each plane 3 xy and has order p on that plane,
where p is the prime dividing k. Thus, oxoy~

l has order p. Similarly, there is a
unique point zexy such that ff^/1 o^o-."1 fixes xy pointwise and fixes each plane
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For fixed x let Z be the group generated by the automorphisms o^"1 <jy, y # x.
We claim that £ is a p-group. If p > 2 this follows from the above remarks and a
result of Glauberman [7; Theorem 15], If p = 2, then

As Z is transitive on points and is normalized by Fx, it is normal in F. Then Z is
elementary abelian and regular. As ax has order k— 1 and is in the centre of Fx, Tx

may be regarded as a group of GF(fc)-linear mappings. The result now follows.
We note that, once it is assumed that all the subdesigns considered in the above

proof are affine planes, the theorem can also be deduced from a result of Bruck
[5; p. 100] and a recent result of Buekenhout [3].

COROLLARY 5.2. Let F satisfy (*) with v or k even. IfN(Txx>) is transitive on the
points moved by Txx>, then T is similar to a 2-transitive collineation group ofAG(d, k)
for some d.

Proof. As in the previous proof, if y £ X then X and y determine a unique sub-
design ^* . The automorphism group F* of S * induced by F has the property that
it is transitive on non-incident point-line pairs.

We first show that F* is 2-transitive on ^ * ; the proof is essentially that of Ostrom
[15]. Let F* have t orbits of points # x and / orbits of lines on x. As each such
point-orbit determines such a line-orbit, we have t' < t. However, F* has *+l
point-orbits and f' + l line-orbits, so that t+l<t' + l [5; p. 78]. Thus, T*x is
transitive on X-{x}. It follows that F* is 2-transitive on X. Combined with the
line-transitivity of F*, this yields the 2-transitivity of F*.

As (k— l)\(v— 1), by hypothesis k is even. Thus, Theorem 3.4 applies to F*
(acting on ^ * ) . By a result of Huppert [11], F* is non-solvable, so that 2)* is
AG(2, k) and F* satisfies the hypotheses of Theorem 5.1. In view of the transitivity
of F on non-incident point-line pairs, F also satisfies the hypotheses of Theorem 5.1,
and the corollary follows.

Added in proof: While this paper waited almost 2\ years to be refereed, K. Harada
proved and published results which generalize our results of Sections 3 and 4 (" On
some doubly transitive groups ", J. Algebra, 17 (1971), 437-450). Harada assumes
(*), but replaces (**) by the much weaker condition that each involution in Fe-
lixes only k points. His methods are group theoretic and not geometric.

Using Harada's results, it is possible to prove the following strengthened version
of the results of Section 5. Let F satisfy (*), and suppose that ^ ( r ^ , ) is transitive
on the points moved by F^.. Then either 2>{T) is PG(d, 2) or AG(d, k) for some d,
or 2>{T) is an affine translation plane of odd order (and F contains the translation
group as a regular normal subgroup).
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