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Abstract

Forward-backward correlation in pp collisions is studied in an approach that empha-

sizes the partonic scattering angles and circumvents the intractable problem related to

the transverse momenta that are low. Assuming the back-to-back scattering of partons

to be the origin of hadronic correlation, the properties of forward-backward multiplic-

ity covariance can be derived essentially independent of details of hadronization. The

range of correlation in pseudo-rapidity emerges from the study without any dynamical

input, thus dispelling the notion that correlation length has any fundamental signifi-

cance. An attempt is made to relate the results to the two-component structure seen

in autocorrelation.

1 Introduction

Correlations among particles produced at high energies have always been a subject of great
interest, starting from the beginning in hadronic collisions [1], and more recently in nuclear
collisions [2]. Over the years an abundant supply of experimental data have been accumu-
lated, some of which have very high statistics, especially in the work done at relativistic
heavy-ion collider (RHIC). By comparison, theoretical studies of the correlation phenom-
ena in the bulk (excluding high-pT jets) have been meager. Before the basic processes in
hadron collisions mainly at low pT are fully understood in a way that can be accepted as
having a solid theoretical foundation, the profusion of nuclear data has inundated the subject
that has no clear theoretical guidance, resulting in conflicting interpretations at times. The
terms “long-range” and “short-range” correlations have been used, primarily in reference to
what have been observed, rather than as properties of correlations understood at the level
of parton interaction.

STAR collaboration has produced extensive and detailed data on correlations in nuclear
collisions [3, 4, 5, 6, 7] as well as in pp collisions [8, 9, 10]. The analyses have been done
on autocorrelations in the angular difference variables η∆ = η1 − η2 and φ∆ = φ1 − φ2.
The method used is to invert the scale-dependent 〈pT 〉 fluctuations [11, 12, 13], yielding a
rich structure in correlations not seen by any other method. Theoretical interpretation of
the result is unfortunately grossly out of step with the growth of experimental information.
Earlier models, such as the dual parton model [14], were adequate to treat the problem at
a level commensurate with the coarseness of the data available at the time, but no recent
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attempt has been made to calculate more accurately the basic correlations in pp collisions
and to compare with the latest data. Soft production is still based on the idea of string
fragmentation, the implementation of which is not much different from the original Lund
model [15]. On nuclear collisions efforts have been made to incorporate string fusion [16, 17],
but no explicit calculation on correlation has been done. Very recently, the possibility of
forward-backward correlation in the framework of color glass condensate has been advanced
[18] , but without quantitative result yet to be compared with data.

In view of the present theoretical status described above, a model-independent calcula-
tion on any portion of the problem would lead to an improvement of that status. There
is, however, no feasible formalism for calculating soft QCD processes involving multiparticle
production at low pT . Instead of starting from first principles, it is sensible to examine
relevant hints from the data and restrict the scope to the issues most salient for correlations.
It is furthermore reasonable to start with pp collisions before tackling the complexity asso-
ciated with nuclear collisions. Careful analysis of the high-statistics data on the inclusive
pT distribution in pp collisions at

√
s = 200 GeV has revealed a two-component picture

of the particle production process essentially independent of theoretical models [19]. Infer-
ences on the properties of parton scattering are made. The dominant soft component gives
rise to a correlation behavior in η∆ that is drastically different from the contribution from
the minor, but significant, harder component, as revealed by the Porter-Trainor analysis
of autocorrelation for pp collisions [8, 9, 10]. Although the autocorrelation measure is the
Pearson’s correlation coefficient that is the normalized version of the covariance of multiplic-
ity densities, the η∆ dependence is primarily the same as the forward-backward multiplicity
covariance D2

fb that has been determined without averaging over the rapidity sum η1 + η2

[20].
We shall focus on just that piece of data on D2

fb and relate it to the basic partonic
scattering process that has back-to-back correlation. The connection between scattering
angle and pseudo-rapidity is carefully done at the parton level to reveal the basic structure
in the η∆ dependence after hadronization is incorporated to relate the partonic properties
to the hadronic observables. Since the processes are at low pT , there are inevitably some
free parameters that are not fixed by our current understanding of soft physics. While the
strength of correlation is adjustable to fit the data, there are no adjustable parameters to
specify the range of correlation. Thus an understanding of the η∆ dependence will be the
main finding in this study that is essentially independent of models. Hadronization will be
considered in the context of recombination, but details are not important in any essential
way. A significant outcome of our study is the recognition that parton and hadron pseudo-
rapidities can be sufficiently different that partons in one region may give rise to hadrons
in another region, thereby cross-fertilizing forward and backward windows that are not too
far apart. A correspondence of our result with the two components in the Porter-Trainor
analysis will be attempted at the end of our study.

2 Two-parton joint distribution

We start with a brief discussion of the kinematical relationship between the parton and
hadron variables. Since the forward-backward correlation (FBC) is measured in terms of
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pseudo-rapidity without reference to the transverse momenta pT of the detected hadrons, it
is clear that the correlation properties are dominated by the hadrons produced at low pT ,
since high-pT particles are severely suppressed. Since pQCD is not valid at low pT , there is
no reliable theoretical formalism in which rigorous calculation can be made. Nevertheless,
quarks are the constituents that interact, and partons are the intermediary that bridges the
initial state of the nucleons and the final state of multiparticles. We therefore seek some
simple description of the parton state before hadronization in the hope that the observed
FBC can be related to some basic properties of the partons. Since the hadronic pT is not
specified in the measurement of FBC, there is no point in emphasizing the partonic transverse
momenta kT , especially when their behavior is not calculable. Hence, our focus will be on
the angular properties of the partons and hadrons.

Let the parton and hadron momenta be denoted by ~k and ~p, respectively, and let their
corresponding polar angles be θ and Θ. If the angle between ~k and ~p is denoted by ψ, then
we have

cos Θ = cos θ cosψ + sin θ sinψ cosϕ, (1)

where ϕ is the solid angle between the plane containing ~k and ~p and the plane containing
~k and the z axis. The ψ dependence in the problem is a property of the hadronization
process. At low pT parton recombination is far more efficient, thus dominant, compared to
fragmentation, which requires higher kT partons. The dynamical mechanism need not be
specified at this stage of geometrical consideration. Let the hadronization cone be described
by a Gaussian distribution in ψ

g(ψ) = g0 exp(− ψ2

2σ2
), (2)

where the normalization factor g0 is determined by

∫ 2π

0

dϕ
∫ π/4

0

dψ sinψ g(ψ) = 〈N〉 . (3)

〈N〉 is the average number of hadrons produced by a parton. The cone width σ is expected
to be small for pp collisions, and larger for AA collisions. For σ much smaller than the range
of angular integration in Eq. (3), we approximate sinψ by ψ so the integration can be readily
carried out, yielding

g0 =
〈N〉
2πσ2

. (4)

The differential form of Eq. (3) is

dN

dϕd cosψ
= g(ψ). (5)

We postpone further discussion about hadronization until the following section, since
what is described above is sufficient to lead us from the hadrons to the partons. We now
consider the two-parton distribution of back-to-back scattering at low kT in the CM system
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of the partons. Starting from the simplest possible form at this point, with allowance for
complications to be included later, we write

dn

dz1dz2
= A0 δ(z1 + z2), (6)

where zi = cos θi, assuming temporarily that the partonic rest frame is the same as the
pp CM system. Since the two partons are exactly back-to-back, it is obviously a possible
source of correlation at the partonic level. There can, of course, be other types of partonic
interaction not describable in a simple form as in Eq. (6). However, it is not our problem here
to provide a listing of all possible expressions of those interactions. Our aim is to investigate
to what extent the observed FBC at the hadronic level can be traced back to Eq. (6).

The δ(z1 + z2) function is, of course, to constrain z2 = −z1 that is only valid if the CM
systems of partons and hadrons coincide. In reality the proton has a wide distribution of
partons at low x, so any pair of them from the two initial protons can have varying degree
of mismatch between the two systems. Thus in the pp system we must allow δ(z1 + z2) to
be broadened, but the way in which it is to be done is not calculable, since these are all
low-Q2 partons. We use a one-parameter description of the broadened distribution to replace
δ(z1 + z2):

Dm(z1 + z2) =
1

Nm

[

1 − 1

4
(z1 + z2)

2

]m

, (7)

which is forced to vanish at the kinematic limit |z1 + z2| = 2 and is normalized such that

Nm =
∫ 2

−2

dzDm(z) = 2B(1/2, m+ 1), (8)

B(a, b) being the Beta function. This distribution is roughly Gaussian shaped in the finite
interval that z1 + z2 is allowed to vary, and can be broad when m is small. Since D0 is a
constant, we know that in the limit m→ 0, Dm(z1 + z2) cannot give rise to any correlation
between the two partons. Thus for the correlated part, we must subtract the uncorrelated
part and introduce

Cm(z1 + z2) = Dm(z1 + z2) −D0, (9)

which is what we shall use in place of δ(z1 + z2) for the correlation to be calculated below.
Let the pseudo-rapidity of a parton be denoted by ζ , i.e.,

ζ = − ln tan θ/2, (10)

from which can be derived

z = cos θ = tanh ζ, dz = cosh−2 ζ dζ. (11)

Using this in Eqs. (6) and (9) yields

dnc

dζ1dζ2
=

A0

cosh2 ζ1 cosh2 ζ2
Cm(ζ1, ζ2), (12)
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where

Cm(ζ1, ζ2) =
1

Nm
[1 − 1

4
(tanh ζ1 + tanh ζ2)

2]m − 1

4
. (13)

The subscript c in Eq. (12) is to emphasize that it is the correlated part of the two-parton
distribution we are describing.

3 Two-hadron joint distribution

Having obtained an expression for the correlated two-parton distribution in ζ1 and ζ2, we
now develop from it the correlated part of the two-hadron distribution. Equation (1) gives
the relationship between the hadronic polar angle Θ in terms of the partonic polar angle θ,
with ψ being the hadronization cone angle. Since soft hadrons with pT

<
∼
1 GeV/c dominate

FBC, the participating partons that hadronize by recombination have transverse momenta
kT in the range <

∼
0.5 GeV/c. For a quark with ~k that hadronizes, it picks up an antiquark

with momentum ~k′ and forms a pion with momentum ~p = ~k+~k′. The vectors ~k and ~k′ need
not be exactly collinear, but their angular difference cannot be too large, since the pion size
is finite. In momentum space the uncertainty in the pion wave function is of the order of
the pion mass, so the angular difference between ~k and ~k′ is of order 0.14/0.5. The angle ψ

between ~k and ~p is about half that much. Thus the hadronization cone width σ in Eq. (2)
is roughly between 0.1 and 0.2.

The hadronization process considered here implies that only one pion is produced per
inclusive parton, since we are not discussing the total number of hadrons formed from a
fixed pool of partons. Thus the normalization integral in Eq. (3) is 〈N〉 = 1. The precise
value of 〈N〉 is unimportant in the situation where the parton density is not precisely known,
exemplified by the undetermined parameter A0 in Eq. (6).

For a fixed parton momentum ~k(θ) the probability of finding a hadron at angles (ψ, ϕ)
relative to it is given by Eq. (5). To guarantee that Eq. (1) is satisfied for the hadron at Θ,
we define the hadron distribution per unit cos Θ as

G̃(θ,Θ) =
dN

d cosΘ
=

∫ 2π

0

dϕ
∫ π/4

0

dψ
dN

dϕdψ
δ(cos Θ − cos θ cosψ − sin θ sinψ cosϕ) (14)

such that
∫

d cosΘG̃(θ,Θ) = 1, (15)

where the range of integration corresponds to the angles in Eq. (3). Carrying out the
integration over ϕ in Eq. (14) we obtain

G̃(θ,Θ) = 2
∫

dψ sinψ g(ψ)| sin2 θ sin2 ψ − (cos Θ − cos θ cosψ)2|−1/2. (16)

In the realistic 3D geometry of the experiments the angular measure is in d cos Θ dφ. The
azimuthal angle φ around the beam axis is integrated over 2π in both [10] and [20], and is
of no concern here.
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With the definition Z = cos Θ the hadron distribution in Z is related to the parton
distribution in z as

dN

dZ
=

∫

dz
dn

dz
G̃(z, Z). (17)

In terms of the hadron pseudo-rapidity η, as in Eq. (11),

Z = tanh η, dZ = cosh−2 η dη, (18)

we have

dN

dη
=

∫

dζ
dn

dζ

1

cosh2 η
G̃(z(ζ), Z(η)). (19)

Defining

G(ζ, η) =
1

cosh2 η
G̃(z(ζ), Z(η)), (20)

we then have for the two-hadron distribution

dN

dη1dη2

=
∫

dζ1dζ2
dn

dζ1dζ2
G(ζ1, η1)G(ζ2, η2). (21)

The hadronization function G(ζ, η) has no simple analytical form and is non-trivial. For
small σ, G(ζ, η) may be shaped roughly as a Gaussian, depending on ζ . Because of the
non-linear relationship between polar angle and pseudo-rapidity, what is symmetric in ψ as
in Eq. (2) cannot be symmetric in η around ζ . In Fig. 1 we show some illustrative examples
of G(ζ, η) for ζ = 0.2 and σ = 0.1, 0.2 and 0.5. As σ increases, the asymmetry in η − ζ
develops in the wings, and becomes more significant for higher ζ (not shown). The physics
of hadronization is in the physical 3D momentum space involving ψ, not in ζ or η. In AA
collisions σ can be large and G(ζ, η) can be wide in η − ζ . It is then unreliable to assume
that a window in η for the detected hadrons corresponds to a similar window in ζ for the
originating partons.

Returning to the two-hadron distribution given in Eq. (21) we note that the two partons
at ζ1 and ζ2 hadronize independently, but because of the finite width in η − ζ of the G
functions, it is possible that for any given window in η the detected hadrons in any given
event can originate from both partons separately at different ζ1 and ζ2. In other words,
hadronization can “spill over” from positive to negative sides, and vice-versa, even if the
forward and backward windows are located symmetrically on the two sides of η = 0.

Putting Eq. (12) in (21) we obtain for the correlated two-hadron distribution

dNc

dη1dη2

=
∫

dζ1dζ2
A0

cosh2 ζ1 cosh2 ζ2
Cm(ζ1, ζ2)G(ζ1, η1)G(ζ2, η2). (22)

Note that without the Cm(ζ1, ζ2) function the integral is factorizable, resulting in no corre-
lation. Thus the non-factorizable Cm(ζ1, ζ2) is the source of FBC. The inverse-square factor
(cosh ζ1 cosh ζ2)

−2 suppresses the large ζ contribution, so dNc/dη1dη2 appears to have no
long-range correlation. However, that factor is the Jacobian of the transformation from z to
ζ in Eq. (11) and has no dynamical content. Thus the designation of such terms as short-
or long-range correlation can be misleading.
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4 Forward-backward correlation

To get FBC we integrate Eq. (22) over η1, η2 with η1 in the forward window, and η2 in the
backward window, defined to have widths δη and spaced symmetrically apart from η = 0
with η∆ being the distance between the centers of the windows. Thus the correlated part of
the forward and backward multiplicities is

〈NFNB〉c (η∆) =
∫ η+

η
−

dη1

∫

−η
−

−η+

dη2

dNc

dη1dη2

=
∫

dζ1

∫

dζ2
A0

cosh2 ζ1 cosh2 ζ2
Cm(ζ1, ζ2)HF (ζ1, η∆)HB(ζ2, η∆), (23)

where η− = (η∆ − δη)/2 and η+ = (η∆ + δη)/2 , and

HF (ζ1, η∆) =
∫ η+

η
−

dη1G(ζ1, η1), (24)

HB(ζ2, η∆) =
∫

−η
−

−η+

dη2G(ζ2, η2). (25)

It is clear in Eq. (23) that hadronization is described entirely by the HF and HB functions.
The hadronization of the two partons at ζ1 and ζ2 can allow a forward (backward) parton into
a backward (forward) window when η∆ is small, since HF and HB are not narrow functions.

To illuminate the properties of hadronization, we show in Fig. 2 HF (ζ, η∆) vs ζ for fixed
η∆ = 0.4 and δη = 0.2, and for three values of σ. All curves peak at ζ = η∆/2 = 0.2, which
is the location of the window extending from 0.1 to 0.3, as indicated by the shaded interval.
The solid curve shows that even for the narrow cone width of σ = 0.1 partons significantly
outside that window can contribute. It is even wider for the dashed curve. Although large σ
(such as 0.5) is not relevant to pp collisions, it shows that the value of ζ of the contributing
parton can be greater than 1, i.e., outside the detector coverage of STAR.

The covariance of NFNB that is measured is denoted by D2
fb:

D2
fb = 〈NFNB〉 − 〈NF 〉 〈NB〉 , (26)

whose η∆ dependence in the data [20] is shown in two figures below. Identifying D2
fb =

〈NFNB〉c with Eq. (23), we can fit the data by varying the relevant parameters in the
problem. Before discussing how that is done, it is important to note first that the decrease
of D2

fb with increasing η∆ is strongly affected by the (cosh ζ1 cosh ζ2)
−2 factor in the integrand

in Eq. (23). Changing that factor artificially to a weaker power diminishes the rate of decrease
of 〈NFNB〉c with η∆ and will not fit the data. Since there is nothing to adjust in that factor
to reflect the nature of interaction, the range of correlation that one may naively infer from
the data has no dynamical meaning.

There are essentially only two parameters to adjust in the problem: A0 and m. A0

describes the strength of parton interaction at low pT , and m specifies the spread of the
parton rest frame relative to the pp CM system, thereby affecting the observed properties
of correlation. σ is between 0.1 and 0.2, and will not affect the final result sensitively. We
adopt the following fitting strategy. First, we fix A0 = 1, σ = 0.2, and vary m to see the
corresponding dependence of 〈NFNB〉c (m, η∆) on η∆. That is shown in Fig. 3. Evidently,
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there is strong dependence on m. For narrower Cm(ζ1, ζ2) at higher m, the hadronic FBC is
stronger, as it should for fixed A0. However, the dependence on η∆ appears to be universal.
We plot the ratios

Rm(η∆) =
〈NFNB〉c (m)

〈NFNB〉c (m = 1)
(27)

in the inset and find that they are essentially independent of η∆, except when m = 10 or
larger. We do not expect Dm to be narrow, so m should not be large. For smaller m, Rm

increases approximately linearly with m. A fit of the whole range of m studied results in

Rm = 0.0517 + 1.0335m− 0.1083m2 + 0.005m3, (28)

at η∆ = 0.6. It is clear then to fit the data on D2
fb the value of A0 must decrease with m as

R−1
m . Let us then define

Bm ≡ A0Rm(η∆ = 0.6), (29)

which we expect to be a rather stable variable to use to fit D2
fb for a wide range of m.

Still holding σ = 0.2, we obtain the results shown collectively by the solid line in Fig. 4 for
m = 0.5, 1, 2. There is no dependence on m. The value of Bm is

Bm = 14, m < 3. (30)

The reproduction of the data in their η∆ dependence is very good, except for the highest point
at η∆=1.6. We emphasize that we only vary Bm to fit the normalization; the η∆ dependence
follows from Eq. (23) without adjustment. For σ = 0.1 we fix all other parameters already
considered, and obtain the dashed line in Fig. 4 for m = 1. For other values of m there are
some small variations because Rm that is used is given in Eq. (28), which was calculated
for σ = 0.2. But the difference is miniscule (< 5%). The dependence on σ is evidently not
strong, so we shall hereafter adhere to the value σ = 0.2.

To summarize our result so far, we see that A0 and m are strongly correlated in the fitting
procedure. A0Cm(ζ1, ζ2) is the source of hadronic correlation that replaces the A0δ(z1+z2) in
Eq. (6). The smaller m is, the larger must be A0 to compensate for the spread of Cm(ζ1, ζ2)
in order to account for the observed magnitude of FBC. We have combined the two into
one parameter Bm and succeeded in fitting the data. But the adjustment is only in the
magnitude of the correlation. The important point is that the basic dependence of 〈NFNB〉c
on η∆ is due to the factor (cosh ζ1 cosh ζ2)

−2 in Eq. (23) that is not adjustable and is the
origin of the universality seen in Fig. 3.

Let us, for definiteness, consider the case m = 1, for which R1 = 1, so A0 = 14. Using
this number in Eq. (6) and integrate it over −1 ≤ (z1, z2) ≤ 1, we obtain 28 correlated pairs
of partons. This is not a large number compared to the total number of pairs of partons
〈n(n− 1)〉, where 〈n〉 is roughly twice the total average charged event multiplicity 〈N〉 of
hadrons, which is about 20. Thus only a small fraction (< 2%) of all parton pairs are
correlated.

Returning now to Eq. (6) that expresses the two-parton distribution assumed from the
start, one may regard that as the s-wave contribution to the scattering process. It is of
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interest to ask whether the data on FBC can admit a p-wave contribution as well. To that
end we extend Eq. (6) to include a second term

dn

dz1dz2
= [A0 + A1(z

2
1 + z2

2)]δ(z1 + z2), (31)

which is symmetric under z1 ↔ ±z2. Since all quantities considered here and in the experi-
ment are integrated over the 2π range of the azimuthal angle φ, the cross term between s and
p waves vanishes by azimuthal symmetry. Applying Eq. (31) to Eq. (23) we replace the nu-
merator by A0 +A1(tanh ζ2

1 +tanh ζ2
2). The p-wave contribution increases with ζi because of

the factor (tanh ζ2
1 +tanh ζ2

2), so it may lift the upper end of the η∆ distribution of 〈NFNB〉c
for a possibly better fit of the data. For values of A0 and A1 to be specified below, the
contributions of the s- and p-wave components are shown by the dashed and dashed-dotted
lines, respectively, in Fig. 5; the latter indeed increases with η∆. The solid line represents
their sum, whose fit of the data is about comparable to that in Fig. 4. However, we have
another motive for considering the additional p-wave contribution.

To explain that, it is best to rewrite Eq. (31) first as

dn

dz1dz2
= [As + Ah(z1, z2)]δ(z1 + z2), (32)

where

As = A0 − 0.4A1, (33)

Ah(z1, z2) = A1(0.4 + z2
1 + z2

2). (34)

The inclusion of 0.4A1 in Eq. (34) is for the purpose of rendering the Ah contribution roughly
constant in η∆. That is shown by the dotted line in Fig. 5. The overall fit of the data is now
achieved by choosing

A0 = 13.2, A1 = 0.2A0 = 2.64. (35)

The dotted line is the contribution from Ah(ζ1, ζ2) magnified by a factor of 2 for visual
clarity, as is done for the dashed-dotted line. Without the multiplier, Ah is roughly As/10
at small η∆; that is the constraint that leads to the determination of A1 relative to A0 in
Eq. (35). Although the fit of the data on D2

fb in Fig. 5 is not significantly improved, we have
demonstrated that the data can be understood as a combination of two components, one of
which is nearly flat in η∆.

The reason for doing the above decomposition is to establish a connection with the picture
formed in the data analyzed in Ref. [19] that there exist a soft and a hard component; the
former is larger and has a Gaussian-like decrease in η∆, while the latter is smaller and
roughly constant in η∆ [8, 9, 10]. Our notations As and Ah are chosen to make a symbolic
correspondence to those soft and hard components. The magnitude of the hard component
depends on the charge multiplicity of the event class analyzed. The ratio of hard to soft
components can be as much as 10% but can be much lower. The choice of A1 in Eq. (35)
and the solid line in Fig. 5 correspond to the maxium value that A1 can have. For weaker
hard components, A1 is lower and the height of the dotted line is also lower accordingly. The
quality of the overall fit of the data on D2

fb in Fig. 5 is largely unaffected.
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The soft and hard components in Ref. [19] are determined by detailed analysis of the pT

behavior of the produced hadrons, the hard having 〈pT 〉 only around 1.2 GeV/c, but still
higher than the soft component. Our study here bypasses the issue about the transverse
momenta of the partons and hadrons, which are not tractable at such low pT , but focuses on
the angular variables that are more intimately related to pseudo-rapidity. We find that the
properties found in Refs. [8, 9, 10, 19] can be accommodated by a combination of s- and p-
wave components to give the As and Ah components. Since we have had no need to question
the kT aspect of the partons in the present treatment, we have no basis to judge what is soft
or hard. However, it does seem reasonable that the soft component consists entirely of the
s-wave, while the hard component includes also the p-wave part of the scattering.

5 Conclusion

We have considered hadronic FBC by relating it to the simplest form of partonic interaction
that has back-to-back correlation. It is found that it gives a fairly good description of
the dependence of FBC on window separation η∆ without any adjustment of the range
of correlation. The magnitude of the correlation function is fitted by varying the number
of correlated pairs of partons, which turns out to be less than 2% of all possible pairs
that hadronize. The so-called “range of correlation” in η is mainly a consequence of the
transformation from the polar angles, and has no meaning at the parton level.

Since low-pT hadrons dominate any hadronic measure that does not restrict the pT range
of coverage, it is necessary to consider low-kT partons for which available theoretical tools are
deficient. Leaving open the questions about kT and pT , we have focused on the relationship
between polar angles and pseudo-rapidities and found a meaningful way to separate different
issues that include the mismatch between the partonic and hadronic CM systems in the initial
state, and the hadronization of partons in the final state. Uncertain properties of those two
specific issues have been investigated, and various possibilities have been considered before
arriving at the final result that is mainly insensitive to those properties.

Since at pT < 1.5 GeV/c recombination may be more likely than fragmentation as the
dominant mechanism of hadronization, we have considered the effect of non-vanishing width
of the hadronization cone. We find that there is significant cross feeding of partons from
one region to hadrons in neighboring regions. To identify the partonic window with the
hadronic window is an assumption that becomes even more unreliable in nuclear collisions,
where attempts have been made to infer the nature of the bulk medium from the observed
charge fluctuation in restricted windows.

We have attempted to make contact with the results of Porter-Trainor analysis that
shows by autocorrelation the existence of very different η∆ behaviors for the soft and hard
components at low pT (< 1.5 GeV/c) [8, 9, 10]. We can identify the (soft) component having
strong η∆ dependence with our s-wave component and the weaker (hard) component having
roughly no dependence on η∆ with our part that includes the p-wave contribution. Our
major finding is that the strong η∆ dependence does not imply short-range correlation. It
is possible that the η∆-independent component may be related to multiplicity fluctuation in
some way by treating the “minijets” in the hard component at the parton level.

With the elucidation that we have achieved for the pp collision problem, it is natural to
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ask what light it sheds on the AA collision problem. To the extent that we have investigated
the subject we have found that the nuclear problem is vastly more complicated, since there
are many contributing factors that can influence FBC. What we have uncovered in the
pp problem is likely to be overwhelmed by fluctuations related to the particle production
processes outside the realm of partonic correlation in pp collisions. It is therefore mostly a
separate problem only a part of which is connected with the topic of study here.
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Figure 1: The distributions of G(ζ, η) in η for ζ = 0.2 and for three values of the cone width
σ.
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Figure 2: The distributions of HF (ζ, η∆) for a forward window at η∆/2 = 0.2 and window
size δη = 0.2 indicated by the shaded interval.
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Figure 3: Examples of the FBC function in η∆ for fixed A0 = 1 and σ = 0.2, and for six
values of m that characterizes the width of Cm(ζ1, ζ2). Ratios of those functions relative to
m = 1 are shown in the inset.
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Figure 4: Forward-backward multiplicity covariance versus η∆. Data are from Ref. [20]. The
solid line shows the coalescence of three cases for σ = 0.2 and m = 0.5, 1, 2. The dashed line
is for σ = 0.1 and m = 1; other cases for m = 0.5 and 2 are very nearly the same.
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Figure 5: Contributions to D2
fb from the s-wave component in dashed line and p-wave com-

ponent in dashed-dotted line, raised by a factor of 2 for visual clarity. The solid line is their
sum. The dotted line represents the (hard) component specified by Ah in Eq. (34), also
magnified by 2. The data are from [20].
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