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1. Introduction

One of the most striking observations from the Relativistic Heavy Ion Collider
(RHIC) is the very large elliptic flow48,49. The primary goal of this report is
to explain as succinctly as possible what precisely is observed and how the
shear viscosity can be estimated from these observations. The resulting estimates
67,71,72,21,20,57,79,73,70,2 indicate that the shear viscosity to entropy ratio η/s is close
to the limits suggested by the uncertainty principle, and the result of N = 4 Super
Yang Mills theory at strong coupling65,66

η

s
=

1
4π

.

These estimates imply that the heavy ion experiments are probing quantum kinetic
processes in this theoretically interesting, but poorly understood regime. Clearly
a complete understanding of nucleus-nucleus collisions at high energies is extraor-
dinarily difficult. We will attempt to explain the theoretical basis for these recent
claims and the uncertainties in the estimated values of η/s. Further, since the result
has raised considerable interest outside of the heavy ion community76,77, this review
will try to make the analysis accessible to a fairly broad theoretical audience.

1.1. Experimental Overview

In high energy nucleus-nucleus collisions at RHIC approximately ∼ 7000 par-
ticles are produced in a single gold-gold event with collision energy,

√
s =

200 GeV/nucleon. Each nucleus has 197 nucleons and the two nuclei are initially
length contracted a factor of a hundred. The transverse size of the nucleus is
RAu ∼ 5 fm and the duration of the event is also of order ∼ RAu/c. Fig. 1 shows
the pre-collision geometry. Also shown is a schematic of the collision vertex and a
schematic particle detector
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Fig. 1. Overview of a heavy ion event. In the right figure the two nuclei collide along the beam
axis usually labeled as Z. At RHIC the nuclei are length contracted by a factor of γ ' 100. The

left figure shows the collision vertex of a typical event as viewed in a schematic particle detector
and shows a few of the ∼ 5000 charged particle tracts recorded per event. The angle θ is usually

reported in pseudo-rapidity variables as discussed in the text.

Generically the two nuclei collide off center at impact parameter b and oriented
at an angle ΨR with respect to the lab as shown Fig. 2. During the collision the
spectator nucleons (see Fig. 2) continue down the beam pipe leaving behind an
excited almond shaped region. The impact parameter b is a transverse vector b =
(bx, by) vector pointing from the center of one nucleus to the center of the other. As
discussed in Section 2 both the magnitude and direction of b can be determined on
an event by event basis. We will generally work with the reaction plane coordinates
X and Y rather than the lab coordinates.

The elliptic flow is defined as the anisotropy of particle production with respect
to the reaction plane

v2 ≡
〈
p2
X − p2

Y

p2
X + p2

Y

〉
, (1)

or the second Fourier coefficient of the azimuthal distribution 〈cos(2(φ−ΨR))〉.
Elliptic flow can also be measured as a function of transverse momentum pT =√
p2
X + p2

Y by expanding the differential yield of particles in Fourier series

1
pT

dN

dydpT dφ
=

1
2πpT

dN

dydpT
(1 + 2v2(pT ) cos 2(φ−ΨRP ) + . . .) . (2)

Here ellipses denote still higher harmonics v4 and v6 and so on. In addition the flow
can be measured as a function of impact parameter, particle type, and rapidity. For
a mid-peripheral collision, b ' 7 fm the average elliptic flow 〈v2〉 is approximately
7%. This is surprising large. For instance the ratio of particles in the X direction
to the Y is 1 + 2v2 : 1− 2v2 ' 1.3 : 1. At higher transverse momentum the elliptic
flow grows and at pT ∼ 1.5 GeV elliptic flow can be as large as 15%.
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Fig. 2. A schematic of the transverse plane in a heavy ion event. Both the magnitude and direction

of the impact parameter b can be determined on an event by event basis. X and Y label the
reaction plane axes and the dotted lines indicate the lab axis. ΨRP is known as the reaction plane

angle.
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Fig. 3. The conventional explanation for the observed elliptic flow. The spectators continue down
the beam pipe leaving behind an excited oval shape which expands preferentially along the short

axis of the ellipse. The finally momentum asymmetry in the particle distribution v2 reflects the
response of the excited medium to this geometry. The dot with transverse coordinate x = (x, y)
is illustrated to explain a technical point in Section 2.

1.2. An interpretation of elliptic flow

The explanation for the observed flow which is generally accepted is illustrated
in Fig. 3. Since the pressure gradient in the X direction is larger than in the Y
direction, the nuclear medium expands preferentially along the short axis of the
ellipse. Elliptic flow is such a useful observable because it is a rather direct probe of
the response of the QCD medium to high energy density created during the event.
If the mean free path is large compared to the size interaction region, then the
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produced particles will not respond to the initial geometry. On the other hand, if
the transverse size of the nucleus is large compared to the interaction length scales
involved, hydrodynamics is the appropriate theoretical framework to calculate the
response of the medium to the geometry. In a pioneering paper by Ollitrualt the
elliptic flow observable was proposed and analyzed based in part on conviction that
ideal hydrodynamic models would vastly over-predict the flow 107,108.

However calculations based on ideal hydrodynamics do a fair to reasonable job
job in reproducing the observed elliptic flow 51,52,53,54,55. This has been reviewed
elsewhere 3,13. Nevertheless the hydrodynamic interpretation requires that the rel-
evant mean free paths and relaxation times be small compared to the nuclear sizes
and expansion rates. This review will asses the consistency of the hydrodynamic
interpretation by categorizing viscous corrections. The principle tool is viscous hy-
drodynamics which needs to be extended into the relativistic domain in order to
address the problems associated with nuclear collisions. This problem has received
considerable attention recently and progress has been achieved both at a concep-
tual 75,8,9,76,69 and practical level 72,79,78,73,74,70. Generally macroscopic approaches,
such viscous hydrodynamics, and microscopic approaches, such kinetic theory, are
converging on the implications of the measured elliptic flow 69,1,2,19,21,68. There has
never been an even remotely successful model of the flow with η/s > 0.4. Since as
reviewed in Section 3 η/s is a measure of the relaxation time relative to ~/kBT .
This estimate of η/s places the kinetics processes measured at RHIC in an inter-
esting and fully quantum regime.

2. Elliptic Flow – Measurements and Definitions

The goal of this section is to review the progress that has been achieved in mea-
suring the elliptic flow. This progress has produced an increasingly self-consistent
hydroynamic interpretation of the observed elliptic flow results. This section will
also collect the various definitions which are needed to categorize the response the
excited medium to the initial geometry.

2.1. Measurements and Definitions

As discussed in the introduction (see Fig. 2) both the magnitude and direction of
the impact parameter can be determined on an event by event basis. The magni-
tude of the impact parameter can be determined by selecting events with definite
multiplicity for example. For instance, on average the top 10% of events with the
highest multiplicity correspond to the 10% events with the smallest impact param-
eter. Since the cross section is almost purely geometrical in this energy range this
top 10% events may be found by a purely geometrical arguement. This line of rea-
soning gives that the top 10% events with the highest multiplicity are produced by
events with impact parameter in the range

0 < b < b∗ where 10% =
πb∗2

σtot
, (3)
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where σtot ' π(2RA)2 is the total inelastic cross section of the nucleus-nucleus
event. After categorizing the top 10% of events we can categorize the top 10-20%
of events and so on. The general relation is(

b

2RA

)2

' % Centrality . (4)

Here we have neglected fluctuations and many other effects. For instance there is
a small probability that an event with impact parameter b = 4 fm will produce the
same multiplicity as an event with b = 0 fm. A full discussion of these and many
other issues is given in 32. The end result is that the impact parameter of a given
event can be determined to within say a femptometer.

Given that the impact parameter can be quantified, a useful definition is the
number of participating nucleons (also called “wounded” nucleons). The number
of nucleons per unit volume in the rest frame of the nucleus is ρA(x− xo, z), were
x − xo is the transverse displacement from a a nucleus centered at xo and z is
the longitudinal direction. These distributions are known experimentally and are
reasonably modelled by a Woods-Saxon form32. The number of nucleons per unit
transverse area is

TA(x− xo) =
∫ ∞
−∞

dz ρA(x− xo, z) , (5)

Then, after reexamining Fig. 3, we find that the probability that a nucleon at
x = (x, y) will suffer an inelastic interaction passing through the right nucleus
centered b/2 = (+b/2, 0) is

1− exp (−σNNTA(x− b/2)) ,

where σNN ' 40 mb is the inelatic nucleon-nucleon cross section at RHIC energies.
The number of nucleons which suffer an inelastic collision per unit area is

dNp
dxdy

= TA(x⊥ + b/2) [1− exp (−σNNTA(x⊥ − b/2))]

+TA(x⊥ − b/2) [1− exp (−σNN TA(x⊥ + b/2))] , (6)

Finally the total number of participants (i.e. the the number of nucleons which
collide) is

Np =
∫

dx dy
dN

dxdy
, (7)

For a central collision of two gold nuclei the number of participlants Np ' 340
is nearly equals the total number nucleons in the two nuclei N = 394, leaving
about fifty spectators. By comparing the top axis in Fig. 4 to the bottom axis
the relationship between participants, impact parameter b, and centrality can be
determined.

The reaction plane angle is ΨRP is also determined experimentally. Here we
will describe the Event Plane method which is conceptually the simplest. Assume
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Parameter/Value PbPb SPS AuAu RHIC

Cs 8.06 14.42
CnB 0.191 0.096
τ0 (fm) 1.0 1.0
σNN (mb) 33 33

s/nB = Cs/CnB 42 150

e0 (GeV/fm3)− LH8 8.2 16.7

e0 (GeV/fm3)− LH∞ 6.4 11.2

〈e〉 (GeV/fm3)− LH8 5.4 11.0

〈e〉 (GeV/fm3)− LH∞ 4.5 7.9

TABLE I: A summary of the input parameters to the model.
Cs and CnB are respectively the entropy and baryon number
per participant per unit rapidity. The values above the double
line are the input parameters. The values below the double
line are derived from the input parameters. The initial energy
density depends on the EOS and impact parameter. For cen-
tral collisions and for two EOS spanning the gamut, we quote
the initial energy density in the center of the collision (e0) and
the initial energy density averaged over the transverse plane
with respect to the number of participants (〈e〉).

cleus at position (x,y) and σNN is the inelastic nucleon-
nucleon cross section. For the sake of comparison, σNN is
taken as 33 mb both at the SPS and RHIC. For large A,
[1− σNN TA("xT )

A ]A ≈ exp(−σNNTA("xT )), and often Eq. 5
is re-written in terms of exponents.

With the number of participants specified, the initial
entropy and (net) baryon densities at time τ0 = 1 fm/c,
are then fixed with two constants Cs and CnB with

s(x, y, τ0) =
Cs

τ0

dNp

dx dy
(6)

nB(x, y, τ0) =
CnB

τ0

dNp

dx dy
. (7)

The two dimensionless constants Cs and CnB are the
entropy and net baryon number produced per unit spa-
tial rapidity per participant. At the SPS (see Sect.
IVA), Cs and CnB were adjusted to fit the total yield
of charged particles and the net yield of protons, re-
spectively. At RHIC, Cs was adjusted to match the
PHOBOS multiplicity dN

dη = 555 ± 12(stat) ± 35(syst)
[25]. At the, time the p̄/p ratio was not known and
s/nB = Cs/CnB was estimated from UrQMD simula-
tions to be ≈ 150. This gives the ratio p̄/p = 0.45.
Later, the STAR and PHOBOS collaborations measured
the ratios, p̄/p = 0.65 ± .01(stat)± .07(syst) and p̄/p =
0.60 ± .04(stat) ± .06(syst) respectively [47, 48]. Since
the measured ratio is close to the ratio initially used,
and since a full simulation takes several CPU days, the
UrQMD-based estimate s/nB ≈ 150 was used through-
out this work. This makes the model p̄ yield approxi-
mately 15% too low and the model proton yield approx-
imately 15% too high. This correction will be accounted
for in future works. A summary of the parameters is
given in Table I.

Two quantities, which will be used extensively in the
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FIG. 1: The derived quantities ε and Rrms/RA, defined
by Eq. 8 and 9, as a function of the number of participants
relative to the maximum number. The axis on top of the
graph shows the impact parameter b relative to 2RA. The
curves are drawn for PbPb collisions at the SPS, but depend
only slightly on the colliding system and energy.

analysis in Sect. III and Sect. V, are defined as

Rrms ≡
√
〈x2 + y2〉 (8)

ε ≡ 〈y2 − x2〉
〈y2 + x2〉 , (9)

where the average is taken over the initial entropy distri-
bution of Eq. 6. These quantities are plotted as a function
of the number of participants relative to central collisions
in Fig. 1. ε measures the initial elliptic deformation of
the overlap region and grows approximately linearly with
Np.

For the calculation presented, the entropy and there-
fore the number of charged particles scales as the number
of participants. Recently, the experiments have reported
that the charged particle multiplicity grows slightly faster
than the number of participants [49, 50]. This slight
growth can be incorporated into hydrodynamics [45], but
instead the experimental dNch/dy is compared directly
to the model dNch/dy. This makes the model impact
parameter slightly larger than the impact parameter de-
termined by the experimental collaborations.

C. Equation of State

To solve the equations of motion, we need an Equa-
tion of State (EOS), or a relation between the pressure
(p) and the energy and baryon densities (e and nB respec-
tively). In many previous hydrodynamic calculations, a

Fig. 4. The eccentricity εglb as a function of the number of participants relative to the number in

a central event Nmax
p . (The number Nmax

p ' 340 for a central event.)

frist that the reaction plane angle is known. Then the particle distribution can be
expanded in harmonics about the reation plane

dN

dφ
∝ 1 + 2v2 cos(2(φ−ΨRP )) + . . . (8)

If the number of particles is very large one could simply make a histogram of the
angular distribution of particles in an event with respect to the lab axis. Then the
reaction plane angle angle would be determined by finding where the histogram is
maximum. This is the basis of the event plane method. For all the particles in the
event we form the vector

~Q = (Qx , Qy) =

(∑
i

cos 2φi ,
∑
i

sin 2φi

)
, (9)

Using the continuum appoximation Qx '
∫

dφdN/dφ cos(2φ) we can estimate the
reaction plane angle ΨR, from the ~Q-vector

~Q

| ~Q| ≡ (cos(2Ψ2), sin(2Ψ2)) ' (cos(2ΨRP ) , sin(2ΨRP )) (10)

Then we can estimate elliptic flow as vobs
2 ' 〈cos(2(φi −Ψ2))〉. The estimated

angle Ψ2 differs from ΨRP due to statistical fluctuations. Consequently vobs
2 will

be systematically smaller than v2 since Ψ2 is not ΨRP . This leads to a correction
to the estimate given above which is known as the reaction plane resolution. The
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final result after considering the dispersion of Ψ2 relative to the true reaction plane
angle ΨRP is

v2 =
vobs

2

R
R = 〈cos 2(Ψ2 −ΨR)〉 (11)

In practice the resolution parameter R is estimated by dividing a given event into
sub-events and looking at the dispersion in Ψ2 between different sub-events.

There is a lot more to the determination of the event plane in practice. Fortu-
nately the various methods has been reviewed recently 38. An important criterion
for the validity of these methods is that the magnitude of elliptic flow be large
compared to statistical fluctuations

v2
2 �

1
N
. (12)

For v2 ' 7% and N ' 500 we have Nv2
2 ' 2.5. Since this number is not particularly

large the simple method described above is not completely adequate in practice. The
resolution parameter is R ' 0.7 in the STAR experiment. At the LHC, estimates
suggest that the resolution parameter R could be as large as R ' 0.95. Current
methods use 2 particle, 4 particle, and higher cummulants to remove the effects
of correlations and fluctuations. These advances are discussed more completely in
Section 2.3 and have played an important role in the current estimates of the shear
viscosity. The current measurements provide a unique theoretical opportunity to
systematically study how hydrodynamics begins to develop in mesoscopic systems.

We now turn several essential trends in the data of elliptic flow. Clearly we
would like to measure the response of nuclei to the geomoetry and to this end we
categorize the geometry with an assymetry parameter ε

εs,part =

〈
y2 − x2

〉
〈y2 + x2〉 . (13)

Traditionally the average 〈. . .〉 is taken with respect to the number of participants
in the transverse plane, for example〈

y2 − x2
〉

=
1
Np

∫
dxdy (y2 − x2)

dNp
dxdy

. (14)

We will discuss the uncertainty in this number shortly, for the moment we return
Fig. 4 which plots the assymmetry parameter versus centrality and also shows the
the root mean square radius

Rrms =
√
〈x2 + y2〉 ,

which is important for categorizing the size of viscous corrections.

2.2. Interpretation

We have collected the essential definitions of ε, centrality v2, and are now in a
position to return to the physics. The scaled elliptic flow v2/ε measures the response
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Fig. 5. Elliptic flow as measured by the STAR collaboration4,5. The points are shown for different

centralities. The measured elliptic flow has been divided by the eccentricity εhydro. The curves
are ideal hydrodynamic calculations based upon Refs.3,54 rather than viscous hydrodynmaics as

discussed in much of this work.

of the medium to the initial geometry. Fig. 5 shows v2(pT )/ε a function of centrality,
0-5% being the most central and 60-70% being the most peripheral. Examining this
figure we see a gradual transition from a weak to a strong dynamic response to
the geometry as a funcion of centrality. The interpretation adopted in this review
is that this change is a consequence of a system transitioning from a kinetic to
hydrodynamic regime.

There are several theoretical curves based upon calculations of ideal hydrody-
namics 54,53 which for pT < 1 GeV approximately reproduce the observed elliptic
flow in the most central collisions. Since ideal hydrodynamics is scale invariant (for
a scale invariant equation of state) the prediction of ideal hydrodynamics is that the
response v2/ε should be independent of centrality. This is reasoning is born out by
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the more elaborate hydrodynamic calculations shown in the figure. The data on the
other hand show a gradual transition as a function of increasing centrality, rising
towards the ideal hydrodynamic calcuations in a systematic way. These trends are
captured by models a finite mean free path42.

The data show other trends as a function of centrality. In more central collisions
the linearly rising trend, which resembles the ideal hdyrodynamic calculations, ex-
tends to larger and larger transverse momentum. We will see in Section 5 that
viscous corrections to ideal hydrodynamics grow as(pT

T

)2 `mfp

R
. (15)

and this correction restricts the applicable momentum range71. Thus in more cen-
tral collisions, where `mfp/R is smaller, the transverse momentum range described
by hydrodynamics extends to increasingly large pT . These qualitative trends are
reproduced by the more involved viscous calculations discussed in Section 6.

2.3. The eccentricity and fluctuations

Clearly much of the interpretation relies on a solid interpretation of the eccentric-
ity. There are several issues here. First there is the theoretical uncertainty in this
average quantity. For example, so far we have defined the ”standard glauber partic-
ipant eccentricity” in Eq. (13). An equally good definition is provided by collision
scaling. For instance one measure often used in heavy ion collisions is the number
of collisions per transverse area

d2Ncoll

dxdy
= σTA(x + b/2)TA(x− b/2) (16)

Then the eccentricity is defined with this weight in the transverse plane. Fig. 6
shows the “standard galuber Ncoll e ccentricity”. Another more sophisticated model
is provided by the KLN model which is based on the ideas of gluon saturation 80,40

as implemented in Refs. 113,41. This model is a safe upper bound on what can be
expected for the eccentricity from saturation physics and is also shown in Fig. 6. We
can not describe the details of this model and its implementation here. However the
physical reason why this model has a sharper eccentricity is the readily understood:
the center of one nucleus (nucleus A) passes through the edge of the other nucleus
(nucleus B). Since the density of gluons per unit area in the initial wave function
is larger in the center of a nucleus relative to the edge, the typical momentum scale
of nucleus A (∼ Qs,A) is larger nucleus B (∼ Qs,B). It is then difficult for the long
wavelength (low momentum) gluons in B to liberate the short wavelength gluons in
A. The result is that the production of gluons falls off more quickly near the x edge
relative to the y edge making the eccentricity larger. Clearly this physics is largely
correct although the magnitude of the effect is uncertain. Another estimate based
on classical yang mills theory which includes similar physics, but which models
the production and non-perturbative sector differently is also shown in Fig. 6 and
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FIG. 2: The eccentricity as a function of impact parameter.
The classical field CGC result with two different infrared cut-
offs m is denoted by CYM. The traditional initial eccentric-
ity used in hydrodynamics is a linear combination of mostly
“Glauber Npart” and a small amount of “Glauber Ncoll”. The
“KLN” curve is the eccentricity obtained from the CGC cal-
culation in Refs. [40, 41].

neglecting logarithmic corrections ∼ ln (Qs2/Qs1). The
additional dependence on Qs2 in the transverse energy,
relative to the multiplicity, holds the key to the following
discussion.

The difference between the two definitions of the trans-
verse coordinate dependence of the saturation scale,
Eqs. (2) and (3) is the largest in the region near the
edge of one nucleus (labeled as nucleus A) and in the
center of the other (nucleus B), so that QA

s < QB
s ; the

geometry is illustrated in Fig. 1. The smaller saturation
scale approaches zero as

(
QA

s

)2 ∼ TA regardless of the
definition of Qs (Eq. (2) or Eq. (3)). But the behavior
of the larger saturation scale QB

s is different in the two
cases. Using the universal definition of Qs in Eq. (2)
QB

s is large, (QB
s )2 ∼ TB. In contrast, the non-universal

Npart-definition of Qs in Eq. (3) suggests that the larger
saturation scale QB

s also approaches zero as σNNTATB.
Because the multiplicity (8) only depends on the

smaller saturation scale QA
s , the difference in the gluon

multiplicities between the two definitions Eqs. (2) and (3)
is small. This explains the numerical observation in
Ref. [20] that both the KLN prescription for Qs and the
universal CYM one give very similar results for the cen-
trality dependence of the multiplicity. The larger sat-
uration scale QB

s and therefore the energy density are,
however, very different in the two cases. This difference
is accentuated in the eccentricity (1). With the Npart def-
inition (3), the energy density in this edge region is sup-
pressed relative to the universal definition in (2), thereby
leading to a larger eccentricity.

The eccentricities obtained using the different trans-
verse coordinate dependences of the saturation scales are

shown in Fig. 2. The CYM eccentricity in the plot is
calculated at τ = 0.25 fm, while the KLN result does not
depend on time. The KLN Npart definition of Qs leads
to the largest eccentricity. The universal CYM definition
gives smaller values of ε albeit larger than the traditional
parametrization (used in hydrodynamical model compu-
tations) where the energy density is taken to be propor-
tional to the number of participating nucleons. This re-
sult is also shown to be insensitive to two different choices
of the infrared scale m which regulates the spatial ex-
tent of the Coulomb tails of the gluon distribution. We
observe that the values of ε from the CYM computa-
tion are close to those obtained from an energy density
parametrization following binary collisional (Ncoll) scal-
ing. This result can be explained qualitatively as fol-
lows. In the classical Yang-Mills calculation the total
multiplicity of gluons scales as Q2

s , where Qs is the domi-
nant transverse momentum scale of the produced gluons,
depending on both saturation scales QA

s and QB
s . The

multiplicity of produced gluons ∼ Q2
s turns out to be

roughly proportional to Npart. The energy density, on
the other hand, scales as Q3

s , and one expects it to scale
as (Npart)γ with some γ > 1. It is therefore natural to
expect the eccentricity in a saturation model to be larger
than the traditional one following from Npart-scaling of
the energy density. However, we see no reason in general
for it to exactly mimic the result from Ncoll-scaling.

In Fig. 3, we show a plot of the centrality dependence
of the multiplicity for g2µ = 1.6 GeV corresponding to an
estimated gluon multiplicity of ∼ 1000 in central Au-Au
collisions at RHIC 2. The universal Q2

s ∼ TA prescrip-
tion captures the observed centrality dependence of the
multiplicity distribution. It has been argued [57] that
in a realistic Monte Carlo implementation the KLN for-
malism can be recast in a form where the multiplicity is
equivalent to one calculated from universal unintegrated
gluon distributions. It appears unlikely however that this
equivalence holds for other observables.

IV. CONCLUSIONS

We have shown in this brief note that the initial eccen-
tricity of a relativistic heavy ion collision, computed in
the Color Glass Condensate framework, is very sensitive
to the transverse coordinate dependence of the satura-
tion scale Qs. When Q2

s is proportional to the number of
participants Npart, the energy density produced (near the

2 The value g2µ = 1.6 differs from the previous estimate of 2
GeV [16] primarily because these estimates had very low infrared
cut-offs of order m ∼ 1/RA. For finite nuclei an infrared scale m
of the order of the surface diffuseness of the Woods-Saxon den-
sity profile is required to regulate the Coulomb tails of the gluon
field at large distances. While the dependence on m is weak,
changing it by a factor of 10 does change the best estimate for
g2µ by ∼ 20%.

Fig. 6. Figure from Ref.43 showing various estimates for the initial eccentricity in heavy ion

collisons. The physics of the KLN eccentricity is described in the text. The eccentricity is expected
to increase with collison energy 42.

finds results similar to Ncoll scaling 43. Thus the predictions of the KLN model
seem to be a safe upper bound for the eccentricity in heavy ion collisons. Note
that an important phenomenological consequence of the the KLN model is that the
eccentricity grows with beam energy and is expected to increase about 20% from
the RHIC to the LHC 42.

Another important aspect in heavy ion collisions when interpreting the elliptic
flow data is fluctuations in the initial eccentricity. These fluctuations are not ac-
counted for in Fig. 6. The history is complicated and is reviewed in Refs.33,38. There
are fluctuations in the initial eccentricity of the participants especially in periphal
AuAu and CuCu collisions. Thus rather than using the continuum approximation
given in Eq. (13) it is better to implement a monte carlo glauber calculation and
estimate the eccentricity using the “participant plane eccentricity”. Fig. 7 illus-
trates the issue: In a given event the ellipse is tilted and the eccentricity depends
on the distibution of participants. This event by event quantity is denoted εPP in
the litterature. Clearly the experimental goal is to extract the response coefficient
C relating the elliptic flow to the eccentricity on an event by event basis

v2 = CεPP . (17)

If we assume that the flow methods measure 〈v2〉, then we would should sim-
ply divide to determine the response, C = 〈v2〉 / 〈εPP 〉. Making this assumption,
the PHOBOS collaboration significantly improved significantly improved the un-
derstanding of CuCu data39. However, it was generally realized (see in particular.
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Eccentricity fluctuations and elliptic flow at RHIC
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Fluctuations in nucleon positions can affect the spatial eccentricity of the overlap zone in nucleus-
nucleus collisions. We show that elliptic flow should be scaled by different eccentricities depending
on which method is used for the flow analysis. These eccentricities are estimated semi-analytically.
When v2 is analyzed from 4-particle cumulants, or using the event plane from directed flow in a
zero-degree calorimeter, the result is shown to be insensitive to eccentricity fluctuations.

PACS numbers: 25.75.Ld, 24.10.Nz

1. Introduction
Elliptic flow, v2, is one of the key observables in

nucleus-nucleus collisions at RHIC [1]. It originates
from the almond shape of the overlap zone (see Fig. 1)
which produces, through unequal pressure gradients, an
anisotropy in the transverse momentum distribution [2],
the so-called v2 ≡ 〈cos 2φ〉, where φ’s are the azimuthal
angles of the detected particles with respect to the reac-
tion plane.

Preliminary analyses of v2 in Cu-Cu collisions at RHIC
[3, 4, 5], presented at the QM’2005 conference, reported
values surprisingly large compared to theoretical expec-
tations, almost as large as in Au-Au collisions. It was
shown by the PHOBOS collaboration [4] that fluctua-
tions in nucleon positions provide a natural explanation
for this large magnitude. The idea is the following: The
time scale of the nucleus-nucleus collision at RHIC is so
short that each nucleus sees the nucleus coming in the op-
posite direction in a frozen configuration, with nucleons
located at positions whose probabilities are determined
according to the nuclear wave function. Fluctuations in
the nucleon positions result in fluctuations in the almond
shape and orientation (see Fig. 1), and hence in larger
values of v2.

In this Letter, we discuss various definitions of the ec-
centricity of the overlap zone. We show that estimates
of v2 using different methods should be scaled by appro-
priate choices of the eccentricity. We then compute the
effect of fluctuations on the eccentricity semi-analytically
to leading order in 1/N , where N is the mean number
of participants at a given centrality. A similar study was
recently performed by S. Voloshin on the basis of Monte-
Carlo Glauber calculations [6].

2. Eccentricity scaling and fluctuations
Elliptic flow is determined by the initial density pro-

file. Although its precise value depends on the detailed
shape of the profile, most of the relevant information is
encoded in three quantities: 1) the initial eccentricity of
the overlap zone, ε, which will be defined more precisely
below; 2) the density n, which determines pressure gradi-
ents through the equation of state (by density, we mean
the particle density, n, at the time when elliptic flow de-

x

y

x’

y’

FIG. 1: Schematic view of a collision of two identical nuclei,
in the plane transverse to the beam direction (z-axis). The
x- and y-axes are drawn as per the standard convention. The
dots indicate the positions of participant nucleons. Due to
fluctuations, the overlap zone could be shifted and tilted with
respect to the (x, y) frame. x′ and y′ are the principal axes
of inertia of the dots.

velops; this time is of the order of the transverse size R.
Quite remarkably, the density thus defined varies little
with centrality, and has almost the same value in Au-Au
and Cu-Cu collisions at the same colliding energy per
nucleon [7]); 3) the system transverse size R, which de-
termines the number of collisions per particle. v2 scales
like ε for small ε, that is, v2 = εf(n, R).

This proportionality relation is only approximate.
However, hydrodynamical calculations [7] show that it is
a very good approximation in practice for nucleus-nucleus
collisions. Eccentricity scaling holds for integrated flow
as well as for the differential flow of identified particles.
In the latter case, the function f(n, R) also depends on
the mass, transverse momentum and rapidity of the par-
ticle.

Eccentricity scaling of v2 is generally believed to be a
specific prediction of relativistic hydrodynamics. In the
form above, the scaling is expected to be more general: it
does not require thermalization, as implicitly assumed by
hydrodynamics. If thermalization is achieved, that is, if
the system size R is much larger than the mean free path
λ, then the scaling is stronger: v2/ε no longer depends
on R, but only on the density n [7].

Fig. 7. A figure from Ref.36 illustrating the participant plane eccentricity εPP in a single event.

Ref.34) that the elliptic flow methods measure different things. Some methods meth-
ods (such as two particle correlations v2 {2}) are sensitive to

√
〈v2

2〉, while other
methods (such as the event plane method v2 {EP}) measure something closer to
〈v2〉. What precisely the event plane method measures depends on the reaction
plane resolution in a known way33. So just dividing by the average participant ec-
centricity is not entirely correct. The appropriate quantity to divide by depends on
the method 34,36,35. In a gaussian approximation for the eccentricity fluctuations
this can be worked out analtyically. For instance, the two paricle correlation elliptic
flow v2 {2} (which measures

√
〈v2

2〉), should be divided by
√〈ε2PP 〉 . An important

corrolary of this analysis is that v2 {4} (v2 measured from four particle correla-
tions) can be divided by εs of Eq. (13) to yield a good estimate of the coefficient
C. This policy is the one taken in Fig. 5. In the most peripheral AuAu bins and in
CuCu the gaussian approximation is poor due to strong correlations amongst the
participants37. The correlations arise because every participant is assoicated with
another participant in the other nucleus. Presumably the last centrality bin in Fig. 5
could be moved up or down down somewhat due to non-gaussian corrections of this
sort. With the complete understanding of what each method measures, Ref.33 was
able to make a simple model for the fluctuations and non-flow and show that 〈v2〉
measured by the different methods are compatible to an extremely good precision.
This work should be extended to the CuCu system where non-gaussian flucutations
are stronger and ultimately corroborate the PHOBOS analysisRef.39,37. This is a
worthwile goal because it will clarify the transition into the hydrodynamic regime
57.

2.4. Summary

In this section we have gone into considerable experimental detail – perhaps more
than necessary to explain the basic ideas. The reason for this lengthy summary is
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FIG. 7: (color online) Energy density and three times the pressure calculated on lattices with temporal extent Nτ = 4, 6 [4],
and 8 using the p4 action (left). The right hand figure compares results obtained with the asqtad and p4 actions on the Nτ = 8
lattices. Crosses with error bars indicate the systematic error on the pressure that arises from different integration schemes as
discussed in the text. The black bars at high temperatures indicate the systematic shift of data that would arise from matching
to a hadron resonance gas at T = 100 MeV. The band indicates the transition region 185 MeV < T < 195 MeV. It should be
emphasized that these data have not been extrapolated to physical pion masses.

where O1 (O2) are estimates with the p4 (asqtad) action. We find that the relative difference in the pressure ∆p for
temperatures above the crossover region, T>∼200 MeV, is less than 5%. This is also the case for energy and entropy
density for T>∼230 MeV with the maximal relative difference increasing to 10% at T " 200 MeV. This is a consequence
of the difference in the height of the peak in (ε−3p)/T 4 as shown in Fig. 1. Estimates of systematic differences in the
low temperature regime are less reliable as all observables become small rapidly. Nonetheless, the relative differences
obtained using the interpolating curves shown in Figs. 7 and 8 are less than 15% for T>∼150 MeV. We also find that
the cutoff errors between aT = 1/6 and 1/8 lattices are similar for the p4 action, i.e., about 15% at low temperatures
and 5% for T>∼200 MeV. For calculations with the asqtad action, statistically significant cutoff dependence is seen
only in the difference (ε− 3p)/T 4.

We conclude that cutoff effects in p/T 4, ε/T 4 and s/T 3 are under control in the high temperature regime
T>∼200 MeV. Estimates of the continuum limit obtained by extrapolating data from Nτ = 6 and 8 lattices differ
from the values on Nτ = 8 lattices by at most 5%. These results imply that residual O(a2g2) errors are small with
both p4 and asqtad actions.

We note that at high temperatures the results for the pressure presented here are by 20% to 25% larger than those
reported in [2]. These latter results have been obtained on lattices with temporal extent Nτ = 4 and 6 using the
stout-link action. As this action is not O(a2) improved, large cutoff effects show up at high temperatures. This
is well known to happen in the infinite temperature ideal gas limit, where the cutoff corrections can be calculated
analytically. For the stout-link action on the coarse Nτ = 4 and 6 lattices the lattice Stefan-Boltzmann limits are a
factor 1.75 and 1.51 higher than the continuum value. In Ref. [2] it has been attempted to correct for these large cutoff
effects by dividing the numerical simulation results at finite temperatures by these factors obtained in the infinite
temperature limit. As is known from studies in pure SU(N) gauge theories [21], this tends to over-estimate the actual
cutoff dependence.

Finally, we discuss the calculation of the velocity of sound from the basic bulk thermodynamic observables discussed
above. The basic quantity is the ratio of pressure and energy density p/ε shown in Fig. 9, which is obtained from the
ratio of the interpolating curves for (ε − 3p)/T 4 and p/T 4. On comparing results from Nτ = 6 and 8 lattices with
the p4 action, we note that a decrease in the maximal value of (ε− 3p)/T 4 with Nτ results in a weaker temperature
dependence of p/ε at the dip (corresponding to the peak in the trace anomaly), somewhat larger values in the transition
region and a slower rise with temperature after the dip.

From the interpolating curves, it is also straightforward to derive the velocity of sound,

c2
s =

dp

dε
= ε

d(p/ε)
dε

+
p

ε
. (9)

Again, note that the velocity of sound is not an independent quantity but is fixed by the results for Θµµ/T 4. The

Fig. 8. Figure from Ref.27 illustrating the energy density and pressure of QCD computed with

Nτ = 8 lattice data.

because the trends seen in Fig. 5 were not always so transparent. The relatively co-
herent hydrodynamic and kinetic interpretation of the observed elliptic flow (which
was previewed in Section 2.2 and discussed more completely below) is the result of
thoughtful experimental analysis.

3. The Transport coefficients of QCD

In this section we will discuss thermal QCD in equilibrium with the primary goal
of collecting various theoretical estimates for the shear viscosity in QCD.

The prominent feature of QCD at finite temperature is the presence of an ap-
proximate phase transition from hadrons to quarks and gluons. The equation of
state e(T ) from lattice QCD calculation is shown in Fig. 8 and shows rapid change
for the temperature range T ' 170 − 220 MeV. As estimated in Section 4, the
transition region is directly probed during high energy heavy ion collisions.

Well below the phase transition, the gas of hadrons is very dilute and thermody-
namics is dominated by the measured particle spectrum. For instance the number
of pions in this low temperatures regime is

nπ = dπ

∫
d3p

(2π)3

1
eEp/T − 1

, (18)

where Ep =
√
p2 +m2

π and dπ = 3 accounts for the three fold isospin degener-
acy, π+, π−, π0, in the spectrum. If all known particles are included up to a mass
mres < 2.5 GeV the resulting Hadron Resonance Gas (HRG) equation of state does
a reasonable job of reproducing the thermodynamics up to about T ' 180 MeV.
However the validity of this quasi-particle description is unclear above a tempera-
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ture of T ' 140,MeV 14. As the temperature increases, the hadron wave functions
overlap until the medium reorganizes into quark and gluon degrees of freedom. Well
above the transition the QCD medium evolves to a phase of massless quarks and
gluons and the energy density is approximately described by the Stefan-Boltzmann
equation of state

eglue = dglue

∫
d3p

(2π)3

Ep

eEp/T − 1
, equark = dquark

∫
d3p

(2π)3

Ep

eEp/T + 1
, (19)

where dglue = 2×8 counts spin and color, and dquark = 2×2×3×3 counts spin, anti-
quarks, flavor, and color. Performing these integrals we find eSB = eglue + equark '
15.6T 4 as illustrated by the line in the top-right corner of the figure.

We have described the particle content well above and well below the transition.
Near the approximate phase transition the validity of such a simple quasi-particle
description is not clear. The transition is a rapid cross-over where hadron degrees
of freedom evolve into quark and gluon degrees of freedom rather than a true phase
transition. All correlators change smoothly, but rapidly, in a temperature range
of T ' 170 − 210. From a phenomenological perspective the smoothness of the
transition suggests that the change from quarks to hadrons should be thought of a
soft process rather than an abrupt change.

To address whether the heavy ion reactions produce enough material, over a
large enough space-time volume to be described in thermodynamic terms, the rel-
evant medium property is not the equation of state but the transport coefficients.
The shear and bulk viscosities govern the transport of energy and momentum and
are clearly the most important.

In Section 4 and Section 5 we will describe the role of shear viscosity in the
reaction dynamics. The purpose here is to summarize the results of various compu-
tations of shear viscosity. A good way to implement this summary is to form shear
viscosity to entropy ratio, η/s 66. To motivate this ratio we remark that it seems
difficult to transport energy faster than a quantum time scale set by the inverse
temperature,

τquant ∼ ~
kBT

.

A sound wave propagating with speed cs will diffuse (spread out) due to the shear
viscosity. Linearized hydrodynamics shows that this process is controlled by the
momentum diffusion coefficient Dη = η/(e + p) (see for example 115.) Noting the
diffusion coefficient has units of (distance)2/time, a kinetic theory estimate for the
diffusion process yields

η

e+ p
∼ v2

thτR , (20)

where τR is the particle relaxation time and v2
th ∼ c2s is the particle velocity. Dividing

by the v2
th and using the thermodynamic estimates

sT ∼ ev2
th ∼ p ∼ nkBT , (21)
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we see that

η

s
∼ τRT ∼ ~

kB

τR
τquant

, (22)

Thus η/s is the ratio between the medium relaxation time and the quantum time
scale τquant in units of ~/kB , i.e. a measure of the transport time in “natural untis”.

In the dilute regime the ratio between the medium relaxation time and the
quantum time scale is long and kinetic theory can be used to calculate the shear
viscosity to entropy ratio. First we consider a simple classical massless gas with
particle density n and a constant hard sphere cross section σo. The equation of
state of this gas is e = 3p = 3nT and the shear viscosity is computed using kinetic
theory

η ' 1.2
T

σo
(23)

The entropy is s = (e+ p)/T and the shear to entropy ratio is

η

s
' 0.3

T

nσo
(24)

In what follows, this calculation will provide a qualitative understanding of more
sophisticated kinetic calculations.

In the dilute hadronic regime, η/s was calculated in Ref.100 using measured
elastic cross sections for gas of pions and kaons. In the ππ phase shifts there is a
prominent ρ resonance, while in the πK channel there is a prominent K∗ resonance.
Thus the equation of state of this gas is well modeled by an ideal gas of π,K, ρ and
K∗ 30,31. The viscosity of this mixture was computed in Ref.100 and the current
author digitized this viscosity, computed the entropy, and determined the η/s ratio.
This is shown in Fig. 9. Similar though slightly larger values were obtained in Ref.14

which also estimated the range of validity for hadronic kinetic theory, T <∼ 140 MeV.
Finally a more involved Kubo analysis of the UrQMD hadronic transport model 26

(which includes many resonances) is also displayed in Fig. 9.
At asymptotically high temperatures the coupling constant αs is weak and the

shear viscosity can be computed using perturbation theory. Initially, only 2 →
2 elastic scattering was considered, and the shear viscosity was computed in a
leading log plasma with self consistent screening 64. Later it was recognized 28,29

that that collinear Bremsstrahlung processes are important for the calculation of
shear viscosity and this realization ultimately resulted in a complete leading order
calculation 63. We can estimate η/s in the perturbative plasma using Eq. (23) with
s ∝ T 3 and σ ∝ α2

s/T
2,

η

s
∼ 1
α2
s

. (25)

The final result from a complete calculation is reproduced in Fig. 9. There are many
scales in the problem and it is difficult to know what precisely to take for the Debye
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Fig. 9. (Color Online) A compilation of values of η/s. The results from Prakash et al are from
Ref.100 and describe a meson gas of pions and kaons (and indirectly K∗ and ρ) computed with

measured cross sections. The black points are based on a Kubo analysis of the UrQMD code

which includes many higher resonances 26. The red lines are different implementations of the
AMY (Arnold, Moore, Yaffe) calculation of shear viscosity 63. In each curve the Debye scale is

fixed mD = 2T . In the dashed red curves the (one loop three flavor) running coupling is taken
at the scale µ. In the solid red curves αs is kept fixed. The two loop running coupling is shown

with µ = 2πT for comparison. In the AMY curves, changing the Debye mass by ±0.5T changes

η/s by ∼ ±30%. Finally the thin dashed line indicates a simple model discussed in the text with
`mfp = 1/T .

mass and the coupling constant. At lowest order in the coupling the Debye mass
is25

m2
D =

(
Nc
3

+
Nf
6

)
g2T 2 , (26)

which is too large to be considered reliable. For definiteness we have evaluated the
leading coupling constant at a scale of πT and set the Debye mass to mD = 2T . The
resulting value of η/s is shown in Fig. 9. Various other alternatives are explored in
the figure and underscore the ambiguity in these numbers.

Clearly all of the calculations presented have a great deal of uncertainty around
the phase transition region. On the hadronic side there are a large number of inelas-
tic reactions which become important On the quark gluon plasma side, the strong
dependence on the Debye scale and the coupling constant is disconcerting. It is
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very useful to have a strongly coupled theory where the shear viscosity to entropy
ratio can be computed exactly. In strongly coupled N = 4 Super Yang Mills theory
with a large number of colors η/s can be computed using gauge gravity duality and
yields the result 65,66

η

s
=

1
4π

. (27)

From the perspective of heavy ion physics this result was important because it
showed that there exist field theories where η/s can be this low. Although N =
4 has no particle interpretation, we note that extrapolating Eq. (23) by setting
`mfp = 1/nσo = 1/πT yields a value for η/s which is approximately equal to the
SYM result. In Fig. 9 we have displayed this numerology with `mfp = 1/T for
clarity.

There are many aspects of transport coefficients which have not been reviewed
here. For instance, there is an ongoing effort to determine the transport coefficients
of QCD from the lattice 12,11. While the precise determination of the transport coef-
ficients is very difficult 61,116,115, the lattice may be able to determine enough about
the spectral densities to distinguish the orthogonal pictures represented by N = 4
SYM theory and kinetic theory. This is clearly an important goal and we refer to
Ref.10 for theoretical background. Also throughout this review we have emphasized
the shear viscosity and neglected bulk viscosity. This is because on the hadronic
side of the phase transition the bulk viscosity is a thousand times smaller than the
shear viscosity in the regime where it can be reliably calculated 100. Similarly on
the QGP side of the phase transition the bulk viscosity is a thousand times smaller
than the shear viscosity 101. However near a second order phase transition the bulk
viscosity can become very large 103,16,102. Nevertheless the rapid cross-over seen in
Fig. 8 is not particularly close to a second order phase transition and universality
arguments can be questioned (see Ref.27 for a discussion in the context of chiral
susceptibility.) Given the ambiguity at this moment it seems prudent to leave bulk
viscosity to future review.

4. Hydrodynamic Description of Heavy Ion Collisions

In the previous sections we analayzed the phase diagram of QCD and esimated the
transport coefficients in different phases. In this section we will study the hydrody-
namic modelling of heavy ion collisons.

In Section 4.2 we will consider ideal hydrodynamics and assume that the mean
free paths are small enough to support this interpretation. Subsequently we will
study viscous hydrodynamics in Section 4.3. Section 4.4 will analyze the ratio of the
viscous terms to the ideal terms and use the estimates of the transport coefficients
given above to asses the validity of the hydrodynamic interpretation. Section 4.6
will discuss the recent advances in intepreting the hydrodynamic equations beyond
the Navier Stokes limit. This work will lay the foundation for the more detailed
hydrodynamic models presented in Section 6.
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4.1. Ideal Hydrodynamics in Heavy Ion Collisions

The stress tensor of an ideal fluid and its equation of motion are simply

Tµν = euµuν + P∆µν , ∂µT
µν = 0 . (28)

where e is the energy density and P(e) is the pressure. Here we will use the metric
(−,+,+,+) and define the projection tensor, ∆µν = gµν + uµuν . This decomposi-
tion of the stress tensor is simply a reflection of the fact that in the local rest of
a thermalized medium the stress tensor must have the form, diag(e,P,P,P) . In
developing viscous hydrodynamics we will define two derivatives which are the time
D, and spatial derivatives ∇µ in the local rest frame

D ≡ uµ∂µ , ∇µ ≡ ∆µν∂µ . (29)

The ideal equations of motion can be written

De = −(e+ P)∇µuµ , (30)

Duµ = − ∇
µP

e+ P . (31)

The first equation says that the change in energy density is due to the PdV work
or equivalently that entropy is conserved. To see this we assosciate ∇µuµ with
the fractional change in volume per unit time, dV/V = dt × ∇µuµ, and use the
thermodynamic identity, d(eV ) = Td(sV ) − PdV . The second equation says that
the acceleration is due to the gradients of pressure. The enthalpy plays the role
of the mass density in a relativistic theory. Notice that hydrodynamics does not
depend on possible (divergent) vacuum contributions to the pressure; it involves
only pressure gradients and the enthalpy.

4.2. Ideal Bjorken Evolutions and Three Dimensional Estimates

In this section we will follow an analysis due to Bjorken 81 and apply ideal hy-
drodynamics to heavy ion collisions. Bjorken’s analysis was subsequently extended
in important ways 82,56,83. In high energy heavy ion collision the two nuclei pass
through each other and the partons are scarcely stopped. This statement under-
lies much of the interpretation of high energy events and an enormous amount of
data is consistent with this assumption. For a time which is short compared to the
transverse size of the nucleus, the transverse expansion can be ignored.

Given that the nuclear constituents pass through each other, the longitudinal
momentum is much much larger than the transverse momentum. Because of this
scale separation there is a strong identification between the space-time coordinates
and the typical z momentum. For example a particle with typical momentum pz
and energy E will be found in a definite region of space time

vz =
pz

E
' z

t
. (32)
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This kinematics is best analyzed with proper time and space-time rapidity variables,
τ and ηs

a

τ ≡
√
t2 − z2 , ηs ≡ 1

2
log
(
t+ z

t− z
)
.

At a proper time τ particles with rapidity y are predominantly located at space
time rapidity ηs

y ≡ 1
2

log
pz + E

E − pz '
1
2

log
t+ z

t− z ≡ ηs (33)

Fig. 10 illustrates these coordinates and shows schematically the indentification
between ηs and y. At an initial proper time τo, in each space time rapidity slice
there is a collection of particles predominantly moving with four velocity uµ.

1
2

log
(
u0 + uz

u0 − uz
)
' ηs (34)

The beam rapidity at RHIC is ybeam ' 5.3 and therefore roughly speaking the
particles are produced in the space-time rapidity range −5.3 < ηs < 5.3. It is
important to realize that (up to about a unit or so) each space-time rapidity slice
is associated with a definite angle in the detector. For ultra-relativistic particles
E ' p we have

ηs ' y ' 1
2

log
(
p+ pz
p− pz

)
=

1
2

log
(

1 + cos θ
1− cos θ

)
≡ ηpseudo (35)

where a particular θ is shown in Fig. 1. Bjorken used these kinematic ideas to
estimate initial energy density in the ηs = 0 rapidity slice at an initial time, τo '
1 fm. The estimate is based on fairly well supported assumption that the energy
which finally flows into the detector dET

dηpseudo
largely reflects the initial energy in a

given space-time rapidity slice

εBj ' 1
A

∆E
∆z
' 1
τo

∆E
∆ηs

' 1
Aτo

dE⊥
dηpseudo

(36)

' 5.5
GeV
fm3 (37)

In the last line we have estimate the area of a gold nucleus as A ' 100 fm2 and
taken τo ' 1 fm and used the measured dET /dη ' 6.4GeV × Np where Np ' 340
is the number of participants 15. The estimate is generally considered a lower limit
since during the expansion there is PdV work as the particles in one rapidity slice
push agains the particles in another rapidity slice 56,82,83 (See Fig. 10). Using the
equation of state in Fig. 8 we estimate an initial temperature T (τo) ' 250 MeV.
As mentioned above this estimate is somewhat low for hydrodynamic calcluations

aHere ηs denotes the space time rapidity, ηpseudo denotes the psuedo-rapidity (see below), η denots

the shear viscosity. In raised space time indices in τ, ηs coordinates we will omit the “s” when
confusion can not arise, e.g. πηη = πηsηs .
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Fig. 10. A figure motivating for the Bjorken model. The space between the dashed lines of constant

ηs are referred to as a space-time rapidity slice in the text. Lines of constant proper time τ are

given by the solid hyperbolas. The collection of particles in the ηs = 0 rapidity slice is indicated
by the small arrows for the central (ηs = 0) rapidity slice only. The solid arrows indicates the

average four velocity uµ in each slice. The spectators are those nucleons which do not participate

in the collision and lie algong the light cone.

and a more typical temperature is T ' 310 MeV, which has the roughly twice the
Bjorken energy density, 13.

The distribution of the energy density e(τo, η) at τo in space-time rapidity slice is
not necessarily uniform. In the color glass picture for instance, the final distribution
of multiplicity is related to the x distribution of partons inside the nucleus 80.
Bjorken made the additional simplifying assumption that the energy density is
uniform in space-time rapidity, i.e. e(τo, η) ' e(τo). With this simplification, the
identification between the fluid and space time rapidities remains fixed as the fluid
flows into the forward light cone.

We have discussed the motivation for the Bjorken model. Formally the model
consists of the following ansatz for the hydrodynamic variables

e(t,x) = e(τ) uµ(t,x) = (u0, ux, uy, uz) = (cosh(ηs), 0, 0, sinh(ηs)) . (38)

We will use curvlinear coordinates where

xµ = (τ,x⊥, ηs) gµν = diag(−1, 1, 1, τ2) (uτ , ux, uy, uη) = (1, 0, 0, 0) .

Substituting this ansatz into the conservation laws yields the following equation for
the energy density

de

dτ
= −e+ P

τ
. (39)

The energy per unit space-time rapidity (τe) decreases due to the PdV work.
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This equation can be solved for a massless ideal gas equation of state and the
time dependence of the temperature is

T (τ) = To

(τo
τ

)1/3

, (40)

where To is the initial temperature. The temperature decreases rather slowly as a
function of proper time during the initial one dimensional expansion. This will turn
out to be important when discussing equilibration. For a massless ideal gas, the
entropy is s ∝ T 3 and decreases as

s(τ) = so
τo
τ
. (41)

Now we discuss what happens when the initial energy density the distribution is
not uniform rapidity. Due to pressure gradients in the longitudinal direction, there
is some longtidunal acceleration This changes the strict identification between the
space time rapidity and the fluid rapidity given in Eq. (34). It also changes the
temperature dependence given above. One way to quantify this effect is to look at
the results of 3D ideal hydrodynamic calculations and study the differences between
the initial energy distribution

∫
d2x⊥ e(τo,x⊥, η) and the final energy distribution∫

d2x⊥ e(τf ,x⊥, η). Generally, the final distribution in space-time rapidity is sim-
ilar to the initial distribution in space-time rapidity 51,50. Therefore, the effect of
longitudinal acceleration is unimportant until late times.

The nuclei have a finite transverse size RAu ∼ 6 fm. After a time of order

τ ∼ RAu

c
,

the expansion becomes three dimensional. To estimate how the temperature evolves
during the course of the resulting three dimensional expansion, consider a sphere
of radius R which expands in all three directions. The radius and volume increase
as

R ∝ τ V ∝ τ3.

Since for an ideal expansion the total entropy in the sphere is constant, the entropy
density decreases as 1/τ3 and the temperature decreases as

s ∝ 1
τ3
, T ∝ 1

τ
. (42)

Here we have estimated how the entropy decreases during a one and three
dimensional expansion of an ideal massless gas. Now if during the course of the
collision there are non-equilibrium processes which generate entropy that ultimately
equilibrates, the temperature of this final equilibrated gas will be larger than if the
expansion was isentropic. Effectively the temperature will decrease more slowly. To
estimate this effect in a one dimensional expansion, we imagine a free streaming
gas where the longitudinal pressure is zero. Then from Eq. (39) we have

de

dτ
∼ e

τ
. (43)
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FIG. 4: (Color online) Time evolution of the local entropy density for central Cu+Cu collisions, calculated with EOS I (left)
and SM-EOS Q (right), for the center of the fireball (r = 0, upper set of curves) and a point at r = 3 fm (lower set of curves).
Same parameters and color coding as in Fig. 3. See text for discussion.

the center towards the edge, and that this temperature
increase happens more rapidly in the viscous fluid (solid
red lines), due to the faster outward transport of matter
in this case.

Figure 4 shows how the features seen in Fig. 3 manifest
themselves in the evolution of the entropy density. (In
the QGP phase s∼T 3.) The double-logarithmic presen-
tation emphasizes the effects of viscosity and transverse
expansion on the power law s(τ)∼ τ−α: One sees that
the τ−1 scaling of the ideal Bjorken solution is flattened
by viscous effects, but steepened by transverse expan-
sion. As is well-know, it takes a while (here about 3 fm/c)
until the transverse rarefaction wave reaches the fireball
center and turns the initially 1-dimensional longitudinal
expansion into a genuinely 3-dimensional one. When this
happens, the power law s(τ)∼ τ−α changes from α =1 in
the ideal fluid case to α > 3 [1]. Here 3 is the dimension-
ality of space, and the fact that α becomes larger than
3 reflects relativistic Lorentz-contraction effects through
the transverse-flow-related γ⊥-factor that keeps increas-
ing even at late times. In the viscous case, α changes
from 1 to 3 sooner than for the ideal fluid, due to the
faster growth of transverse flow. At late times the s(τ)
curves for ideal and viscous hydrodynamics are almost
perfectly parallel, indicating that very little entropy is
produced during this late stage.

In Figure 5 we plot the evolution of temperature in
r−τ space, in the form of constant-T surfaces. Again
the two panels compare the evolution with EOS I (left)
to the one with SM-EOS Q (right). In the two halves
of each panel we directly contrast viscous and ideal fluid
evolution. (The light gray lines in the right halves are re-
flections of the viscous temperature contours in the left
halves, to facilitate comparison of viscous and ideal fluid
dynamics.) Beyond the already noted fact that at r = 0
the viscous fluid cools initially more slowly (thereby giv-
ing somewhat longer life to the QGP phase) but later

more rapidly (thereby freezing out earlier), this figure
also exhibits two other noteworthy features: (i) Moving
from r =0 outward, one notes that contours of larger ra-
dial flow velocity are reached sooner in the viscous than
in the ideal fluid case; this shows that radial flow builds
up more quickly in the viscous fluid. This is illustrated
more explicitly in Fig. 6 which shows the time evolution
of the radial velocity 〈v⊥〉, calculated as an average over
the transverse plane with the Lorentz contracted energy
density γ⊥e as weight function. (ii) Comparing the two
sets of temperature contours shown in the right panel of
Fig. 5, one sees that viscous effects tend to smoothen any
structures related to the (first order) phase transition in
SM-EOS Q. The reason for this is that, with the dis-
continuous change of the speed of sound at either end of
the mixed phase, the radial flow velocity profile develops
dramatic structures at the QGP-MP and MP-HRG inter-
faces [44]. This leads to large velocity gradients across
these interfaces (as can be seen in the right panel of Fig. 5
in its lower right corner which shows rather twisted con-
tours of constant radial flow velocity), inducing large vis-
cous pressures which drive to reduce these gradients (as
seen in lower left corner of that panel). In effect, shear
viscosity softens the first-order phase transition into a
smooth but rapid cross-over transition.

These same viscous pressure gradients cause the fluid
to accelerate even in the mixed phase where all thermo-
dynamic pressure gradients vanish (and where the ideal
fluid therefore does not generate additional flow). As a
result, the lifetime of the mixed phase is shorter in vis-
cous hydrodynamics, as also seen in the right panel of
Figure 5.

Fig. 11. Figure from Ref.79 showing the entropy density s in CuCu simulations as a function

of proper time τ using ideal and viscous hydrodynanics. During an initial one dimensional the
entropy density decreases as s ∝ 1/τ . Subsequently the entropy decreases as s ∝ 1/τ3 when the

expansion becomes three dimensional at a time, τ ∼ 5 fm. The lines indicated by (0 + 1) ideal and

(0 + 1) viscous are representative of the ideal and viscous Bjorken results Eq. (39) and Eq. (50)
respectively.

In the sense discussed above, this equation may be integrated to estimate that the
temperature and entropy decrease as

T ∝ 1
τ1/4

, s ∝ 1
τ3/4

. (44)

Similarly in a three dimensional expansion we can estimate how entropy production
will change the powers given in Eq. (42). Again consider a sphere of radius R which
expands in all three directions, such that R ∝ τ and V ∝ τ3. For a free expansion
without pressure the total energy in the sphere is constant, and the energy density
decreases as 1/τ3. Similarly, we estimate that the temperature and entropy density
decrease as

T ∝ 1
τ3/4

, s ∝ 1
τ9/4

. (45)

In summary we have estimated how the temperature and entropy density de-
pend on the proper time τ during the course of an ideal and non-ideal 1D and 3D
expansion. This information is recorded in Table 1. These estimates are also nicely
realized in actual hydrodynamic simulations. Fig. 11 shows the dependece of en-
tropy density as a function of proper time τ . The figure indicates that the entropy
decreases as 1/τ during an initial one dimensional expansion and subsequently de-
creases as 1/τ3 when the expansion becomes three dimensional at a time of order
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Quantity 1D Expansion 3D Expansion

T
(

1
τ

)1/3÷1/4 (
1
τ

)1÷3/4

s ∝ T 3
(

1
τ

)1÷3/4 (
1
τ

)3÷9/4

Table 1. Dependence of temperature and entropy as a function of time in a 1D and 3D expansion.

The indicated range, for instance 1/3÷1/4, is an estimate of how extreme non-equilibrium effects
could modify the ideal power from 1/3 to 1/4.

∼ 5 fm. These basic estimates will be useful when estimating the relative size of
viscous terms in what follows.

4.3. Viscous Bjorken Evolution and Three Dimensional Estimates

This section will analyze viscosity in the context of the Bjorken model with the
primary goal of assesing the validity of hydrodynamics in heavy ion collisons. In
viscous hydrodynamics the stress tensor is expanded in all possible gradients of the
conserved changes. Using lower order equations of motion any time derivatives of
conserved quantities can be rewritten as spatial derivatives. The stress tensor can
be decomposed into ideal and viscous pieces

Tµν = Tµνideal + πµν + Π∆µν , (46)

where Tµνid is the ideal stress tensor (Eq. (28)) and Π is the bulk stress. πµν is
symmetric traceless shear stress tensor and satisfies the orthogonality constraint,
πµνuµ = 0. The equations of motion are the conservation laws ∂µTµν = 0 together
with a constituent relation. The constituent relation expands πµν and Π in terms
gradients of conserved charges T 00 and T 0i or their thermodynamic conjugates,
temperature T and four velocity uµ . To first order in this expansion, the equations
of motion and the constituent relation are

∂µT
µν = 0 , πµν + Π∆µν = −ησµν − ζ∇µuµ , (47)

where η and ζ are the shear and bulk viscosities respectively, and we have defined

σµν = ∇µuν +∇νuµ − 2
3

∆µν∇λuλ . (48)

For later use we also define the bracket 〈. . .〉 operation

〈Aµν〉 ≡ 1
2

∆µα∆νβ (Aαβ +Aβα)− 1
3

∆µν∆αβAαβ , (49)

which takes a tensor and renders it symmetric, traceless and orthogonal to uµ. Note
that σµν = 2 〈∂µuν〉.

We now extend the Bjorken model to the viscous case following Ref.56. The
bulk viscosity is neglected in the following analysis and we refer to Section 3 for
a more complete discussion. Substituting the Bjorken ansatz (Eq. (38)) into the
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conservation laws and the associated constituent relation (Eq. (47)), yields the
time evolution of the energy density

de

dτ
= −e+ P − 4

3η/τ

τ
. (50)

The system is expanding in the z direction and the pressure in the z direction is
reduced from its ideal value. Formally this arises due to the gradient ∂zuz = 1/τ
and the constituent relation Eq. (47)

T zz = P − 4
3
η

τ
. (51)

4.4. The applicability of hydrodynamics and η/s

We have written down the viscous Bjorken model. Comparing the viscous equa-
tion of motion Eq. (50) to the ideal equation of motion Eq. (39), we see that the
hydrodynamic expansion is controlled by

η

e+ p

1
τ
� 1 . (52)

This is a very general result and is a function of time and temperature. Using the
thermodynamic relation e+ p = sT , we divide this condition into a constraint on a
medium parameter η/s and a constraint on an experimental parameter 1/τT

η

s︸︷︷︸
medium parameter

× 1
τT︸︷︷︸

experimental parameter

� 1 . (53)

If the experimental conditions are favorable enough, it is appropriate to apply
hydrodynamics regardless of the value of η/s. This is the case for sound waves
in air where although η/s is significantly larger than the quantum bound, but
hydrodynamics remains a good effective theory. However, for the application to
heavy ion collisions, the experimental conditions are so unfavorable that only if η/s
is close to the quantum bound will hydrodynamics be an appropriate description.

For instance, in heavy ion collision we estimated the experimental condition in
Section 4.1

1
τoTo

= 0.66
(

1 fm
τo

)(
300 MeV

To

)
. (54)

Here we have evaluated this experimental parameter at a specific initial time τo
and will discussion of the time evolution in the next section. In Section 3 estimated
the medium parameter η/s and can now place these results in context

0.2
(
η/s

0.3

)(
1 fm
τo

)(
300 MeV

To

)
� 1 . (55)

Thus hydrodynamics will begin to be a good approximation for η/s <∼ 0.3 or so.
This estimate is born out by the more detailed calculations presented in Section 6.
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Reexamining Fig. 9, we see that the value of η/s ' 0.3 is at the low end of the
perutrbative QGP estimates given in the figure and it is difficult to reconcile the
observation of strong collective flow with a quasi-particle picutre of quarks and
gluons. Thus the estimates of η/s coming from the RHIC experiments, which are
based on the hydrodynamic interpretation of the observed flow, should be accepted
only with considerable care.

4.5. Time Evolution

In the previous section we have estimated the relevance of hydrodynamics at a time
τo ≈ 1 fm. In this section we will estimate (again using hydrodynamics) how the
size of the viscous terms depends on time. For this purpose we will keep in mind a
kinetic theory estimate for the shear viscosity

η ∼ T

σo
, (56)

and estimate how the gradient expansion parameter in Eq. (50) depends on time.
First consider a theory where the temperature T is the only scale and also

consider a 1D Bjorken expansion. The shear viscosity is proportional to T 3 and the
entropy scales as T 3 so the hydrodynamic expansion parameter scales as

η

(e+ p)
1
τ
∼ 1
τT
∼ 1
τ2/3

. (57)

In the last step we have used the fact that for a scale invariant gas undergoing an
ideal Bjorken expansion the temperature decreases as 1/τ1/3. In general if we have
some non equilibrium processes which produce entropy during the course of the
expansion, the temperature will decrease more slowly than estimated in the ideal
gas case. This was estimated above and is recorded in Table 1. The result is that
we do not expect the temperature (or more properly some typical momentum scale
as a function of time) to decrease more slowly than 1/τ1/4, and we can estimate
that the hydrodynamic expansion parameter evolves as

η

(e+ p)
1
τ
∝ 1
τT
∝ 1
τ2/3÷3/4

. (58)

Compare this scale invariant conformal gas, to a gas with a very definite cross
section σo. There are clearly important scales in the quark gluon plasma as the
medium approaches the transition point. For instance spectral densities of current-
current correlators near the point show a very discernible correlation near where
the ρ meson will form in the hadron phase 59,58,11. Thus the intent of studying
this extreme limit with constant cross section is show some of the possible effects
of these scales. Further the constant cross section kinetic theory is often used in
arguments regarding the impact parameter dependence of elliptic flow 57.

For a constant cross section gas the hydrodynamic expansion parameter evolves
as

η

(e+ p)
1
τ
∝ 1
sστ

∝ τ0÷1/4 . (59)
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Thus, a gas with a constant cross section undergoing a one dimensional isentropic
expansion will move neither away nor toward equilibrium as a function of time.
Non-equilibrium effects will make the matter evolve slowly toward equilibrium.

Now we will compute the analogous effects for a three dimensional expansion.
In the conformal case η ∝ T 3 and T ∝ 1

τ , so that the final result is

η

(e+ p)
1
τ
∝ 1
τT
∝
(

1
τ

)0÷1/4

. (60)

Thus a conformal gas expanding in three dimensions moves neither away nor to-
wards equilibrium. Similarly for gas with a constant cross section the hydrodynamic
parameter evolves as

η

(e+ p)
1
τ
∝ 1
sστ

∝ τ2÷5/4 . (61)

In estimating this last line we have use Table 1. Thus we see that a gas with fixed
cross-sections which expands in three dimensions very rapidly breaks up.

The preceding results are summarized into Table 2. Essentially the heavy ion
collision proceeds along the following line of reasoning. First, there is a one dimen-
sional expansion where temperature (or “effective” temperature) is the dominant
scale in the problem. The parameter which controls the applicability of hydrody-
namics η/[(e+ p)τ ] decreases as a function of time; hydrodynamics gets better and
better, evolving according to the upper left corner of Table 2. As the system ex-
pands and cools toward the transition region additional scales enter the problem.
Typically at this point τ ∼ 4 fm/c the expansion also becomes three dimensional.
The system then enters the lower right corner of Table 2 and very quickly the nu-
cleus nucleus collision starts to break up. We note that it is necessary to introduce
some scale into the problem in order to see this freezeout process. For a conformal
liquid with η ∝ T 3 the system never freezes out even for a 3D expansion. This
can be seen by looking at the upper-right corner of the table and noting that the
hydrodynamic expansion parameter behaves as

η

(e+ p)τ
∝
(

1
τ

)0÷1/4

, (62)

and therefore approaches a constant (or slowly equilibrates) at late times. From this
discussion we see that the temperature dependence of the shear viscosity ultimately
is ultimately responsible for setting the duration of the hydrodynamic expansion.

4.6. Second Order Hydrodynamics

In first-order relativistic viscous hydrodynamics there are reported instabilities
which are related to the treatment of the gradient expansion 86. In the first-order
theory, the stress tensor is instantly specified by the constituent relation and this
leads to acausal propagation 87. Nevertheless, it was generally understood that one
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Model 1D Expansion 3D Expansion

η ∝ T 3 η
(e+p)τ ∝

(
1
τ

)2/3÷3/4 η
(e+p)τ ∝

(
1
τ

)0÷1/4

η ∝ T
σo

η
(e+p)τ ∝

(
1
τ

)0÷1/4 η
(e+p)τ ∝ τ2÷5/4

Table 2. Dependence of the hydrodynamic expansion parameter η/[(e+ p)τ ] as a function of time

for two different functional forms for η (η ∝ T and η ∝ T 3) and two expansion types (1D and 3D).
A range of powers is given; the first power corresponds to ideal hydrodynamics and the second

power corresponds to an estimate of non-equilibrium evolution.

could write down any model relaxation model which conserved energy and mo-
mentum, which included some notion of entropy, and the results of such a model
would be indistinguishable from the Navier Stokes equations 114,96,95. Many hydro-
dynamic models were written down 90,91,92,93,94 starting with a model by Israel and
Stewart 89,90 and Müller 85. For example in the authors own work the strategy was
to write down a fluid model (based on Ref.93) which relaxed on some time scale
to the Navier Stokes equations, solve these model equations on the computer, and
finally to verify that the results are independent of the details of the model 73.
Thus the goal was to solve the Navier Stokes equations and to estimate the effects
of higher order terms.

Recently an important work by R. Baier, P. Romatschke, D. T. Son,
A. O. Starinets and M. A. Stephanov (hereafter BRSSS) clarified and classified the
nature of these higher order terms 75. An important impetus for this work came
from the AdS/CFT correspondence 75,76,77. Many of the fluid models discussed
above were motivated by kinetic theory. However in the strongly coupled N = 4
Super Yang Mills plasma kinetic theory is not applicable and the precise meaning
of these models was vague. BRSSS determined precisely in what sense these second
order viscous equations are theories and in what sense they are models. The Tatta
group completed the calculation of the second order transport coefficients in N = 4
SYM theory and clarified the hydrodynamic nature of black branes in the process
76.

The spirit of the BRSSS analysis is the following:

(1) Write the stress tensor as an expansion in all possible second order gradients
of conserved charges which are allowed by the symmetries with arbitrary coef-
ficients.

(2) In general one may use lower order equations of motion to rewrite the temporal
derivatives of conserved quantities into spatial derivatives.

(3) The resulting equation of motion ∂µT
µν = 0 for the conserved charges will

be able to match or reproduce all retarded correlators of the full microscopic
calculation by adjusting the coefficients of the gradient expansion.

In general, for a theory with conserved baryon number there are many terms. By
focusing on a theory without baryon number and also assuming that the fluid is
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conformally invariant, the number of possible second order terms is relatively small.
The classification of gradients in terms of there conformal transformation properties
was very useful, both theoretically and phenomenologically. At a theoretical level
there are a managable number of terms to write down. At a phenomenological
level it is the gradient expansion converges more rapidly when only those second
order terms which are allowed by conformal invariance are included (see Section 6).
Subsequently when additional conformal breaking terms are added the conformal
classification provides a useful estimate for the size of these terms, i.e. quantities
that scale as Tµµ = e − 3p should be estimated differently than those that scale as
energy density itsself. In retrospect, this classification is an “obvious” generalization
of the first order Navier-Stokes equations.

Proceding more technically, in analogy to the constituent relation of the Navier-
Stokes theory Eq. (47), BRSSS determine that the possible forms of the gradient
expansion in a conformal liquid are

πµν = −ησµν + ητπ

[
〈Dσµν〉+

1
d− 1

σµν∂ · u
]

+λ1

〈
σµλσ

νλ
〉

+ λ2

〈
σµλΩνλ

〉
+ λ3

〈
ΩµλΩνλ

〉
, (63)

where the vorticity tensor is defined as

Ωµν =
1
2

∆µα∆νβ (∂αuβ − ∂βuα) . (64)

and d = 4 is the number of space-time dimensions. We note for the reader that∇µ in
BRSSS denoted covariant derivative rather than the spatial derivative ∇µ = ∆µν∂ν
defined here. Conformal invariance forces a particular combination of gradients to
have a single coefficient

τπ

[
〈Dσµν〉+

1
d− 1

σµν∂ · u
]

(65)

The time derivative Dσµν may be expanded out using lower order equations of mo-
tion if desired. The constituent relation in Eq. (63) together with the conservation
law are the second order equations of motion of a conformal fluid. They are pre-
cisely analogous to the first order theory. As in the first order case, these equations
are also acausal.

To circumvent this issue, BRSSS (following the spirit of earlier work by Israel
and Stewart 89,90 and Müller 85) promote the constituent relation to a dynamical
equation for the viscous components of the stress tensor πµν . Using the lower order
relation πµν = −ησµν , the (conformal) dependence of η on temperature η ∝ T d−1,
and the ideal equation of motion Eq. (30), the following equation of motion arises
for πµν

πµν = −ησµν − τπ
[
〈Dπµν〉+

d

d− 1
πµν∇ · u

]
+
λ1

η2

〈
πµλπ

νλ
〉
− λ2

η

〈
πµλΩνλ

〉
+ λ3

〈
ΩµλΩνλ

〉
. (66)
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From a numerical perspective the resulting equation of motion is now frist order
in derivatives, hyperbolic and causal. The modes in this (and similar) models have
been studied in Refs.95,87,75

Nevertheless it should be empasized that the domain of validity of the resulting
equations is still the same as Eq. (63), i.e. the hydrodynamic regime. Thus for
instance the second order equations should be used in a regime where

|−πµν + ησµν | � |ησµν | .
Outside of this regime there is no guarantee that entropy production predicted by
this model will be positive during the course of the evolution 75. It should also be
emphasized that this is not a unique way to construct a hydrodynamic model which
reduces to Eq. (63) in the long wavelength limit – see Ref.10 for an example discussed
in these terms. What is guaranteed is that any conformal model or dynamics (such
as conformal kinetic theory 8,9 or the dynamics predicted by AdS/CFT 75,76) will
in the long wavelength limit be expressible in terms of the gradient expansion given
above.

There is an important distinction between the first and second order theories
114,10,96. In the first order theory, the ideal motion is damped, and there are cor-
rections to the ideal motion of order

η

(e+ p)L2
∆t ,

where L is the characteristic spatial dimension of the system and ∆t is the time of
observation. Thus for sufficiently long times the viscous corrections become large
and must be ressummed by solving the Navier-Stokes equations. Once this is done
however, the remaining higher order terms (which are captured by the second order
theory) are uniformly small and modify the Navier-Stokes solution by an amount
of order

`2mfp/L
2 .

Often this makes these higher order terms difficult to measure in normal laboratory
liquids 10.

For completeness we record the model equations which have been discussed in
the heavy ion litterature 72,78,79,69.

(1) The first of these is the simplified Israel-Stuart equation,

πµν = −ησµν − τπ 〈Dπµν〉 . (67)

Since the derivatives do not appear as the combination

〈Dπµν〉+
d

d− 1
πµν∇ · u , (68)

but rather involve 〈Dπµν〉, this model does not respect conformal invariance.
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Quanity N = 4 SYM QCD Kinetic Theory Relaxation Time

ητπ 4− 2 ln(2) ' 2.61 5.9 to 5.0 (due to g) 6

λ1 2 5.2 to 4.1 (due to g) 6 (≡ ητπ)

λ2 −4 ln(2) ' −2.77 -11.8 to -10 (≡ −2ητπ) -12 (≡ −2ητπ)

λ3 0 0 0

Table 3. Compliation of values of (rescaled) second order transport quantitites (ητπ , λ1, λ2, λ3).

All numbers in this table should be multiplied by η2/(e + P). The complete strong coupling
results are from an amalgamation Ref.75 and Ref.76. The weak coupling results are from Ref.8

and the relaxation time approximation was studied in Ref.75 and clarified in Ref.8. Hydrodynamic

simulations of the heavy ion event are not sensitive to these values.

(2) The second model is the full Israel-Stewart equation which has the following
form 99

πµν = −ησµν − τπ 〈Dπµν〉+
1
2
πµν

ηT

τπ
∂ρ

(
τπ
ηT

uρ
)

+ 2τπ πα(µΩν)
α , (69)

→ −ησµν − τπ
[
〈Dπµν〉+

d

d− 1
πµν∇ · u

]
+ 2τπ πα(µΩν)

α . (70)

In the last line we have used the conformal relation, ηT/τπ ∝ T d+1 and equation
of motion, D(lnT ) = −1/(d − 1)∇ · u . The model is equivalent to taking
λ1 = λ3 = 0 and λ2 = −2ητπ .

There has been some effort to compute these coefficients both at strong and
weak coupling. The gradient expansion in Eq. (63) implies that the relative size
of the coefficients (`mfp/L)2 which in a relativistic theory is of order [η/(e + p)]2.
The strong coupling results are listed in Table 4.6 and derivation of results clarified
the hydrodynamic approximation in gauge gravity duality 76. At weak coupling the
results of detailed kinetic calculations are 8 (see also Ref.9) are also listed in the
table. In kinetic theory the physics of these terms is the following: (1) The τπ and
λ2 are a result of streaming of the first viscous correction Pµ∂µf1. The common
origin of these terms ultimately explains their common value. (2) The contribution
to the λ1 (the visco-elastic ππ term) reflects the streaming Pµ∂f1 and the non-
linearities of the collision integral. (3) Finally the vorticity-vorticity term does not
appear on the LHS of the Boltzman equation and therefore this term vanishes in
kinetic theory 75,9,8. In the strong coupling limit the absence of a vorticity-vorticity
coupling is not understood.

In the relaxation time approximation discussed in Section 5 (with τR ∝ Ep) the
coefficient τπ is readily calculated with linearized kinetic theory for a massless gas
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75

(e+ P)ητπ
η2

= 6 , (71)

The kinetic thoery relations λ2 = −2ητπ and λ3 = 0 are respected for the same
reasons as the full theory. Also in the relaxation time approximation approximation
one finds λ1 = ητπ This relation which is not respected by the full kinetic theory
since the non-linear terms in the collision integral are not captured by the linear
relaxtion time approximation. Nevertheless, the relation almost holds indicating the
dominance of the streaming term. Overall relaxation time approximation provides
a good first estimate of these coefficients.

From a practical perspective a majority of simulations have used the full Israel-
Stewart equations72,78,70 and treated τπ as a free parameter, varying [η/(e+ p)τπ]
down from the relaxation time value by a factor of two. While it is gratifying
that higher order transport coeffcients can be computed and classified, the final
phenomenological results (see Section 6) are insensitive to the precise value of all
second order terms for η/s <∼ 0.3 74,78,73. Thus, the full hydrodynamic simulations
corroborate the estimate given in Section 4.4 for the range of validity of hydrody-
namics.

5. Kinetic Theory Description

In Section 4 we discussed various aspects of viscous hydrodynamics as applied to
heavy ion collisions. Since ultimately the experiments measure particles, there is a
need to convert the hydrodynamic information into particle spectra. This section
will provide an introduction to the matching between the kinetic and hydrodynamic
descriptions. This will be important when comparing the hydrodynamic models to
data in Section 6. In addition, Section 3 discussed various calculations of the shear
viscosity in QCD. Also in this section we will sketch briefly how these kinetic
calculations are performed. Good summaries of these set of steps are provided by
Refs.118,101,119.

In kinetic theory the spectrum of particles in a volume Σ is given by the Cooper-
Frye formula112

E
d3N

d3p
=

1
(2π)3

∫
Σ

dΣµpµ f(−P · u) , (72)

Note that when Σ is a three volume at fixed time, dΣµ = (dV, 0, 0, 0), and this
formula reduces to the traditional result. Four vectors are denoted with capitol
letters Pµ = (Ep,p), and the equilibrium distribution funciton is denoted with

n(−P · u) =
1

exp(−P · u/T )± 1
. (73)

We will also use a suffix notation, np = n(−P · U) and fp = f(−P · u). The
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distribution function obeys the Boltzman equation

∂tfp +
p
Ep

∂xfp = −
∫

234

Γ12→34 (f1f2 − f3f4) , (74)

where we have assumed 2→ 2 scattering and used classical statistics for simplicity,
fp = exp(−Ep/T ). The momenta are labelled as f2 = fp2 and f1 = fp1 with
p1 ≡ p. The integral over the phase space is abbreviated∫

234

=
∫

d3p2

(2π)3

d3p3

(2π)3

d3p4

(2π)3
, (75)

and the transition rate Γ12→34 for 2→ 2 scattering is related to the usual Lorentz
invariant matrix element |M|2 as

Γ12→34 =
|M|2

(2E1)(2E2)(2E3)(2E4)
(2π)4δ4(P1 + P2 − P3 − P4) . (76)

The generalization of what follows to a multi-component gas and quantum statistics
is left to the references118.

During a viscous evolution the spectrum will be modified from its ideal form
and this has important phenomenological consequences71

f = np + δf . (77)

The modification of the distribution function depends on the details of the micro-
scopic interactions. In a linear approximation the deviation is proportional to the
strains and can be calculated in kinetic theory. When the most important strain is
shear, the deviation δf is propotional σij . Traditionally we parametrize the viscous
correction to the distribution in the rest frame of the medium b

δfp = −np χ(|p|) p̂ip̂jσij . (78)

Then the stress tensor in the local rest frame at point xo

T ij = pδij − ησij =
∫

d3p
(2π)3

pipj

Ep
[fe + δf ] (79)

Substituting this form into the distribution function and using rotational symmetry
we have

η =
2
15

∫
d3p

(2π)3

p2

Ep
χ(|p|)np . (80)

Thus we see that the form of the viscous correction to the distribution function
determines the shear viscosity.

bWhen quantum statistics are taken into account this should be written

δf = −np(1± np)χ(|p|)p̂ip̂jσij ,
where the overall minus is introduced because in the Navier-Stokes theory πµν = −ησµν
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To calculate the transport coefficients the Boltzman equaiton is analyzed in
the rest frame of a particular location xo. In a neighborhood of this point the
temperature and flow fields are

uµ(x, t) ' (1, ui(x, t)) T (x, t) ' To + δT (x, t) (81)

where ui(xo, t) = δT (xo, t) = 0. The equlibrium distribution function in this neigh-
borhood is

n(−P · u) ' nop + nop

(
Ep

T 2
o

δT (x, t) +
piui(x, t)

To

)
, (82)

where we have used the short hand notation nop = exp(−Ep/To). We can now sub-
stitute the distribution function into the Boltzmann equation and find an equation
the δf . The left hand side of the Boltzmann equation involes gradients, and there-
fore only the equilibrium distribution needs to be considered. Substituting Eq. (82)
into the l.h.s. side of the Boltzmann equation using the ideal equations of motion,

∂tu
i = − ∂iP

(e+ P)
(83)

∂te = −(e+ P)∂iui (84)

and several thermodyanic relationships

cv =
de

dT
, (85)

n

e+ P d(µ/T ) =
1

T (e+ P)
dP + d

(
1
T

)
= 0 , (86)

we find thatc

∂tfe + vp · ∂xfe =
np

Ep

[(
|p|2
3T
− E2

p

T

(e+ P)
Tcv

)
∂iu

i +
pipj

2T
σij

]
. (87)

The result is proportional to two strains ∂iui and σij which are ultimately respon-
sible for the bulk and shear viscosity respectively. For a massless conformal gas we
have |p|2 = E2

p, Tcv = 4e and e + p = (4/3)e. The result is that the term propor-
tional to ∂iui vanishes and consequently the bulk viscosity is zero in this limit. We
will subsequently only consider only the modifications due to the shear viscosity
and refer to Section 3 for a more complete discussion.

In Eq. (87), the l.h.s. of the Boltzmann equation is evaluated at the point xo.
We also evalaute the r.h.s. of the Boltzman equation at the point xo to linear order
in δf

nop
pipj

2TEp
σij = −

∫
234

Γ12→34 n
o
pn

o
2

[
δf(p)
nop

+
δf2

no2
− δf3

no3
− δf4

no4

]
. (88)

cWe have tacitly assumed that the dispersion curve does not depend on the temperature. This is
fine as long as we are not considering the bulk viscosity 101.
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In writing this equation we have made use of the detailed balance relation

n1n2Γ12→34 = n3n4Γ12→34 . (89)

Eq. (88) should be regarded as a matrix equation for the distribution function
δf(p). Although δf(p) or χ(p) can be determined numerically by straight forward
discretization and matrix inversion, in practice a variational method is preferred
64,118. After determining δf(p) or χ(|p|) the shear viscosity can be determined from
Eq. (80).

This numerical work requires a detailed knowledge of the microscopic interac-
tions. Lacking such detailed knowledge one can resort to a relaxation time approx-
imation, writing the Boltzman equation as

∂tf + vp · ∂xf = − 1
τR(−P · U)

(−P · U)
Ep

δf (90)

where τR(−P ·U) is a momentum dependent relaxation time. In the local rest frame
this reduces to

∂tf + vp · ∂xf = − 1
τR(Ep)

δf . (91)

By fiat the correction to the distribution function is simple

δf = −np
τR(Ep)
2TEp

pipjσij . (92)

First we consider the case where the relaxation time grows with energy

τR(Ep) = Const× Ep

T
δf = −Const× np

pipj

2T 2
σij (93)

The form of this correction is known as the quadratic ansatz and was used by all
hydrodynamic simulations so far72,73,74,78. Substituting this form into Eq. (80) one
determines that for a classical gas of arbitrary mass the constant is

Const =
η

e+ P , with τR(Ep) ∝ Ep . (94)

For a Bose or Fermi gas we have the replacement np → np(1 ± np), and Eq. (94)
is approximate holding at the few percent level. For a mixture of different clas-
sical particles with one common relaxation time Eq. (94) also holds. In practical
simulations this correction is written covariantly and the phenomenological field
πµν = −ησµν is used, leading to the final result

δf =
1

2(e+ P)T 2
PµP νπµν . (95)

The quadratic ansatz may seem arbitrary, but it is often a good model of colli-
sional energy loss and weak scattering. For instance an analysis of the leading-log
Boltzmann equation (along the lines of Eq. (88)) shows that the quadratic ansatz
describes the full results to 10-15% accuracy 118. However, this agreement is in part
an artifact of the leading-log, or soft scattering, approxmiation. For example, in the
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leading-log plamsa the energy loss of a “high” pT quark from the bath is given by
6

dp

dt
=
(
Nc +

Nf
2

)
CF g

4T 2

24π
log (T/mD) . (96)

From this formula we see that the energy loss is constant at high momentum and
therefore the relaxation time scales as τR ∝ p in agreement with Eq. (93). In re-
ality Eq. (96) is decidely wrong at large momentum where radiative energy loss
becomes increasingly significant and can shorten the relaxation time. Indeed when
collinear radiation is included in the Boltzman equation the quadratic ansatz be-
comes increasingly poor 120. In Section 6 we will consider a relaxation time which
is independent of energy as an extreme alternative

τR ∝ Const , (97)

and explore the phenomenological consequences of this ansatz.
As discussed in Section 6, the differential elliptic flow v2(pT ) is sensitive to the

form of these corrections, while the integrated v2 is constained by the underly-
ing hydrodynamic variables, and is largely independent of these details. This last
remark should be regarded with caution as it has not been fully quantified.

6. Viscous Hydrodynamic Models of Heavy Ion Collisions

At this point we are in a position to discuss several viscous hydro models which
have been used to confront the elliptic flow data. To initiate discussion, we show
simulation results for v2(pT ) from Luzum and Romatschke in Fig. 12. Comparing
the simulation to the “non-flow corrected” data for pT <∼ 1.5 GeV, we can estimate
an allowed range for the shear viscosity, η/s ≈ 0.08 ↔ 0.16. Below we will place
this conclusion in context by culling figures from related works.

A generic implementation of viscous hydrodynamics consists of several parts:

(1) At an intial time τo the energy density and flow velocities are specified. For
Glauber initial conditions, one takes for example

e(τo,x⊥) ∝ dNcoll

dxdy
, (98)

where the overall constant is adjusted to reproduce the multiplicity. The sim-
ulations assume Bjorken boost invariance and zero initial transverse velocity

uµ(τo,x⊥) = (uτ , ux, uy, uη) = (1, 0, 0, 0) . (99)

The strains are taken from the Navier stokes theory for example

πµν(τo,x⊥) = diag
(
πττ , πxx, πyy, τ2πηη

)
=
(

0,
2
3
η

τ
,

2
3
η

τ
, −4

3
η

τ

)
, (100)

and reflect the traceless character of shear stress.
(2) The equations of motion are solved. Viscosity modifies the energy and momen-

tum and the associated thermodynamic conjugates T and uµ. The viscosity
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FIG. 8: (Color online) Comparison of hydrodynamic models to experimental data on charged hadron integrated (left) and
minimum bias (right) elliptic flow by PHOBOS [4] and STAR [5], respectively. STAR event plane data has been reduced by
20 percent to estimate the removal of non-flow contributions [5, 6]. The line thickness for the hydrodynamic model curves
is an estimate of the accumulated numerical error (due to, e.g., finite grid spacing). The integrated v2 coefficient from the
hydrodynamic models (full lines) is well reproduced by 1

2
ep (dots); indeed, the difference between the full lines and dots gives

an estimate of the systematic uncertainty of the freeze-out prescription.

Initial condition η/s Ti [GeV] Tf [GeV] τ0 [fm/c] a [GeV−1]

Glauber 10−4 0.340 0.14 1 2

Glauber 0.08 0.333 0.14 1 2

Glauber 0.16 0.327 0.14 1 2

CGC 10−4 0.310 0.14 1 2

CGC 0.08 0.304 0.14 1 2

CGC 0.16 0.299 0.14 1 2

CGC 0.24 0.293 0.14 1 2

TABLE I: Summary of parameters used for the viscous hydrodynamics simulations
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FIG. 8: (Color online) Comparison of hydrodynamic models to experimental data on charged hadron integrated (left) and
minimum bias (right) elliptic flow by PHOBOS [4] and STAR [5], respectively. STAR event plane data has been reduced by
20 percent to estimate the removal of non-flow contributions [5, 6]. The line thickness for the hydrodynamic model curves
is an estimate of the accumulated numerical error (due to, e.g., finite grid spacing). The integrated v2 coefficient from the
hydrodynamic models (full lines) is well reproduced by 1

2
ep (dots); indeed, the difference between the full lines and dots gives

an estimate of the systematic uncertainty of the freeze-out prescription.

Initial condition η/s Ti [GeV] Tf [GeV] τ0 [fm/c] a [GeV−1]

Glauber 10−4 0.340 0.14 1 2

Glauber 0.08 0.333 0.14 1 2

Glauber 0.16 0.327 0.14 1 2

CGC 10−4 0.310 0.14 1 2

CGC 0.08 0.304 0.14 1 2

CGC 0.16 0.299 0.14 1 2

CGC 0.24 0.293 0.14 1 2

TABLE I: Summary of parameters used for the viscous hydrodynamics simulations

Fig. 12. Figure from Ref.74 which shows how elliptic flow depends on shear viscosity. The theory
curves are most dependable for pT <∼ 1.5 GeV and should be compared to the “non-flow corrected”

data.

also modifies off diagional components of the stress tensor through the viscous
corrections πµν .

(3) A freezeout condition is specified either by specifying a freezeout temperature or
a kinetic condition. During the time evolution a freezeout surface is constructed.
For instance the freezeout surface in Fig. 12 is the space-time three volume Σ
where T ' 150 MeV.

(4) Finally, in order to compare to the data, particle spectra are computed by
matching the hydrodynamic theory onto kinetic theory. Specifically final parti-
cle spectra are computed using Eq. (111). This procedure is similar to running
hydro up to a particular propper time τf and demanding that the spectrum of
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particles at that moment is the measured particle spectrum.

There are many issues associated with each of these items. The next subsections
will discuss them one by one.

6.1. Initial Conditions

First we note that the hydrodynamic fields are initialized at a time τ0 ' 1 fm/c,
which is arbitrary to a certain extent. Fortunately, both in kinetic theory and
hydrodynamics the final results are not particularly sensitive this value 44,74. Also,
all of the current simulations have assumed Bjoken boost inariance. While this
assumption should be relaxed, past experience with ideal hydrodynamics shows
that the mid-rapidity elliptic flow is not substantially modified 51. Above we have
discussed one possible initialization of the hydro which makes the energy density
proportional to the number of binary collisions, e.g. the Glauber curves of Fig. 12.
Another reasonable option is to make the entropy proportional to the number of
participants 73

s(τ0,x⊥) ∝ dNp
dxdy

. (101)

As a limit one can take the CGC model discussed in Section 2. Finally it is generally
assumed that the intial transverse flow is zero

ux(τ0,x⊥) = uy(τ0,x⊥) = 0 . (102)

This assumption should probably lifted in future calculations and a more reasonable
(but still small) estimate is given in Ref.45.

Examining Fig. 12 and Fig. 6 we see see that there is a significant and predictable
linear dependence on the eccentricity. When extracting the shear viscosity from the
data, this uncertainty in the eccentricity leads to a factor of two uncertainty in the
final results for the the shear viscosity. As emphasized in Section 2, the CGC model
should be thought of as an upper limit to the anisotropy that can be produced in the
initial state. Therefore, the uncertainty in η/s is probably not as large as dispersion
in the curves would indicate. In ideal hydrodynamics, the spread in v2(pT ) resulting
from the different initializations specified by Eq. (101) and Eq. (98) was studied46,
and is small compared to the difference between the Glauber and CGC curves in
Fig. 12.

Once the intial conditions for the temperature and flow velocities are specified,
the off diagonal components of the stress tensor πµν are determined by spatial gra-
dients in these quantities. To second order this is given by Eq. (63) and there is no
ambiguity in this result. Time derivatives may be replaced with spatial derivatives
using lower order equations of motion to second order accuracy. In the phenomeno-
logical theory πµν is promoted to a dynamical variable. Clearly the appropriate
initial condition for this variable is something which deviates from −ησµν by sec-
ond order terms. However, the extreme choice πµν = 0 was studied to estimate
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FIG. 17: (Color online) Similar to Figure 13, but now comparing runs with different initial conditions. The thick lines
reproduce the results from Figure 13, obtained with πmn = 2ησmnat initial time τ0, while thin lines of the same type show
the corresponding results obtained by setting initially πmn = 0. The right panel shows the full viscous source terms, without
approximation: 〈|Sτx|〉 (dashed), 〈|Sτy|〉 (dotted), and 〈Sττ 〉 (dash-dotted).

sure tensor and viscous hydrodynamic source terms for
the two different initializations. Differences with respect
to the results shown Fig. 13 (which are reproduced in
Fig. 17 for comparison) are visible only at early times
τ−τ0

<∼ 5τπ ≈ 1 fm/c. After τπ ∼ 0.2 fm/c, the initial dif-
ference πmn−2ησmn has decreased by roughly a factor
1/e, and after several kinetic scattering times τπ the
hydrodynamic evolution has apparently lost all memory
how the viscous terms were initialized.

Correspondingly, the final spectra and elliptic flow
show very little sensitivity to the initialization of πmn,
as seen in Fig. 18. With vanishing initial viscous pres-
sure, viscous effects on the final flow anisotropy are a
little weaker (dotted lines in Fig. 18), but this difference
is overcompensated in the total elliptic flow by slightly
stronger anisotropies of the local rest frame momentum
distributions at freeze-out (dashed lines in Fig. 18). For
shorter kinetic relaxation times τπ, the differences result-
ing from different initializations of πmn would be smaller
still.

B. Kinetic relaxation time τπ

While the finite relaxation time τπ for the viscous pres-
sure tensor in the Israel-Stewart formalism eliminates
problems with superluminal signal propagation in the
relativistic Navier-Stokes theory, it also keeps the vis-
cous pressure from ever fully approaching its Navier-
Stokes limit πmn = 2ησmn. In this subsection we ex-
plore how far, on average, the viscous pressure evolved
by VISH2+1 deviates from its Navier-Stokes limit, and
how this changes if we reduce the relaxation time τπ by
a factor 2.

In Figure 19 we compare, for central Cu+Cu colli-
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FIG. 18: (Color online) Differential elliptic flow v2(pT ) for
pions from b= 7 fm Cu+Cu collisions with SM-EOS Q. Thick
lines reproduce the pion curves from Figure 12, obtained with
πmn = 2ησmnat initial time τ0, while thin lines of the same
type show the corresponding results obtained by setting ini-
tially πmn =0.

sions, the time evolution of the scaled viscous pressure
tensor, averaged in the transverse plane over the thermal-
ized region inside the freeeze-out surface, with its Navier-
Stokes limit, for two values of τπ, τπ = 3η/sT = τclass

π /2
and τπ = τclass

π /4. For the larger relaxation time, the de-
viations from the Navier-Stokes limit reach 25-30% at
early times, but this fraction gradually decreases at later
times. For the twice shorter relaxation time, the frac-
tional deviation from Navier-Stokes decreases by some-
what more than a factor 2 and never exceeds a value of
about 10%.

Figure 20 shows that, small as they may appear, these

Fig. 13. Figure from Ref.79 studying the independence of the final results on the initialization of

πµν .

how initial non-euilbrium effects could alter the final results. This is just an esti-
mate since the relaxation of these fields far from equilibrium is not well captured
by hydrodynamics. Nevertheless, even with this extreme choice, the stress tensor
relaxes to the expected form πµν = −ησµν relatively quickly. The result is that
v2(pT ) is insenstive to the different initializations of πµν . This can be seen clearly
from Fig. 13.

6.2. Corrections to the Flow

Once the initial conditions are specified, the equations of motion can be solved. First
we adress the size of the viscous corrections to the temperature and flow velocities.
The magnitude of the viscous corrections depends on the size of the system and the
shear viscosity. Fig. 14 shows a typical result for the AuAu system. As seen from
the figure the effect of viscosity on the temperature and flow velocities is relatively
small.

An explanation for this result is the following105: In the first moments of the
collision the system is expanding in the longitudinal direction and the pressure in
the longitudinal directions is reduced

τ2T ηη = p− 4
3
η

τ
. (103)

At first sight, this means that the system cools more slowly and indeed this is
initially true. However, since the shear tensor is traceles there is an increase in the
transverse pressure which is uniform in all directions

T xx = T yy = p+
2
3
η

τ
, (104)
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Figure 1. A comparison of the viscous and inviscid (Euler) solutions for a
Bjorken expansion with radial symmetry. The initial conditions are from P. Kolb’s
hydrodynamic model [9]. The equation of state is p = 1

3e. The viscosity is proportional
to the entropy η/s = 1

5 . (a) The energy density multiplied by τ for various times (b)
The fluid velocity for various times.

The viscosity is made proportional to the entropy η/s = 1/5. The viscous solution is

compared with the inviscid (Euler) solution shown in Fig. 1. Examine the energy density

in Fig. 1(a). First the viscous solution does less longitudinal work since the longitudinal

pressure is reduced by the longitudinal expansion (see e.g. [4]). Consequently, the energy

density initially decreases more slowly for the viscous case. However, the transverse

pressure is increased by longitudinal expansion. This causes the transverse flow to rise

more rapidly in the viscous case as seen in Fig. 1(b). This larger transverse flow velocity

subsequently causes the energy density to fall more rapidly in the viscous case. By a

time of ≈ 6 fm the viscous and inviscid solutions are similar. In summary, viscous

corrections do not integrate to yield an order one change to the inviscid flow.

Next, I compare two simple models for the viscosity. The first model for the viscosity

is taken from a classical ideal gas with a constant cross sections. In this case η = 1.264 T
σ0

with σ0 = 10 mb. This model of the viscosity has been studied within the domain of

kinetic theory by Gyulassy and Molnar [3].

The second model for the viscosity is referred to as the Minimal Model below. In

this model we take

η =

{
1.264 T

σ0
for e < ec

1
5
s for e > ec

(1)

where ec = 1 GeV/fm3 and σ0 = 10 mb. This model of the shear viscosity has η ∝ T 3

for high temperatures but has a fixed scale σ0 (i.e. Λ−2
QCD) at low temperatures. The

shear viscosity of the Minimal Model is always larger than the fixed cross section model.

Fig. 14. A central AuAu simulation with an ideal gas equation of state p = e/3 and η/s = 0.2
which compares the viscous and Euler evolution105. The left figure shows the energy density (×τ)

for different times. The right figure shows the velocity for different times.

and which ultimately increases the radial flow. Since the radial flow is larger in the
viscous case, the system ultimately cools faster.

Having discussed the dependence of T and uµ, we turn to a quantity which
largely dictates the of the final elliptic flow – the momentum anisotropy 106. The
momentum anisotropy is defined asd

e′p =
〈T xx − T yy〉
〈T xx + T yy〉 =

∫
d2x⊥ (T xx − T yy)∫
d2x⊥ (T xx + T yy)

, (105)

Fig. 15 illustrates how this momentum anisotropy icreases as a function of time
in the CuCu and AuAu systems. Although the flow fields T (x, τ) and uµ(x, τ) are
quite similar between the ideal and viscous cases, the ideal anisotropy is significantly
reduced by viscous effects. The reason for this reduction is becuase the viscous stress
tensor anisotropy, involves the difference

Πxx −Πyy ,

in addition to the temperature and flow velocities. This additional term is ultimately
responsible for the deviation of e′p between the ideal and viscous hydrodynamic
calculations. At later times there is some modification of e′p, due to the flow itself,
but this is dependent on freezeout. The deviation ∆Π = Πxx − Πyy will have
important phenomenological consequences in determining the viscous correction to
the elliptic flow spectrum.

dNote there is a misprint in the original definition of ε′p in Ref.106. Eq. (3.2) of that work used a

double bracket notation indicating an energy density weight which should only be a single bracket
as above. This double bracket definition (rather than Eq. (105)) was subsequently used in Ref.73
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FIG. 2: (Color online) Time evolution of the total momentum anisotropy ε′
p for two collision systems (left: Cu+Cu; right:

Au+Au), three equations of state (top: EOS I; middle: SM-EOS Q; bottom: EOS L), and three values of the kinetic relaxation
time τπ as indicated (dotted, dashed and solid curves, respectively). The insets in the two top panels show the τπ-dependence
of the momentum anisotropy εp at fixed time τ − τ0 = 4 fm/c. See text for discussion.

In Fig. 3 the effects of changing the system size, EOS,
and form of I-S equations on the differential elliptic flow
v2(pT ) for directly emitted pions is shown. The largest
viscous suppression of elliptic flow (by almost 70% be-
low the ideal fluid value at pT = 2GeV/c) is seen for

the small Cu+Cu system, evolved with SM-EOS Q and
the simplified I-S equation. This is the result reported
by us in [3]. The middle panel of Fig. 3 shows that this
large v2 suppression is almost cut in half by going from
Cu+Cu to Au+Au, the system studied in [1], even with-

Fig. 15. Figure from Ref.78 comparing the development of the flow anistropy e′p (Eq. (105)) in

viscous hydrodynamics relative to the ideal hydrodyanmics. The lower band of curves are all repre-

sentative of viscous hydro and differ only in how the second order corrections are implemented. The
anisotropy differs from ideal hydro because the anistropy involves the viscous differece, Πxx−Πyy .

6.3. Convergence of The Gradient Expansion

Fig. 15 also compares the simplified Israel-Stewart equation Eq. (68) to the full
Israel-Stewart equation Eq. (69) as a function of the relaxation time parameter τπ.
The result supports much of the discussion given in Section 4.6. In the roughest
approximation neither the simplified Israel-Stewart equation nor the full Israel-
Stewart equation depend on the relaxation time parameter τπ. When an ideal gas
equation of state is used the dependence on τπ is stronger especially for the sim-
plified Israel-Stewart equation 78. Note also that the dependence on τπ is stronger
in the smaller CuCu system than AuAu. However, in the conformally invariant full
Israel-Stewart equation the dependence on τπ is neglible, indicating that the result
is quite close to the first order Navier Stokes theory. The more rapid convergence
of the gradient expansion of the conformally invariant fluids is a result of the fact
that the derivatives in the conformal case come together as

τπ

[
〈Dπµν〉+

4
3
πµν∇ · u

]
.

We have selected one figure out of many 78,73,74. The result of the analysis is that
the flow fields and v2(pT ) are largely independent of the details of the second order
terms at least for η/s <∼ 0.3. For this range of parameters hydrodynamics at RHIC
is an internally consistent theory.

which is why the associated curve differs from other recent works 74,78.
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6.4. The Edge and Freeezeout

Clearly viscous hydrodynamics is an approximation which is not valid at early
times and near the edge of the nucleus. This failure afflicts the current viscous
calculations at a practical level right at the moment of initialization. For instance,
the longitudinal pressure

τ2T ηη = p− 4
3
η

τ0
, (106)

eventually becomes negative near the edge of the nucleus indicating the need to
transition to a kinetic description7. (Note that p ∝ T 4 while η ∝ T 3 , so at suf-
ficiently low temperatures the viscous term is always dominant regardless of the
magnitude of η/s.) The current calculations simply limit the size of this correction
through the phenomenological Israel-Stewart model. For example, one approach
would be to take

τ2T ηη = p− τ2Πηη , (107)

with

τ2Πηη =

{
− 4

3
η
τo

while 4/3η/τ0 < 0.9p

0.9 p otherwise
. (108)

This adhoc fix is clearly not nice and points to the larger problem of freezeout
which is difficult to adress with hydrodynamics itsself.

Freezeout is the colloquial term for the transition from a hydrodynamic to a
kinetic regime and is impossible to separate cleanly from the viscosity itsself in a
realistic nucleus-nucleus collision. Clearly as the shear viscosity is made smaller and
smaller, a larger and larger space time volume is described by hydrodynamics. To
estimate the size of the relevant space time region we remark that hydrodynamics is
valid when the relaxation time τR is much smaller than the inverse expansion rate,
τR∂µu

µ � 1. Therefore, in the simulations one can estimate the region of validity
by monitoring the expansion rate relative the relaxation time 109,110. Specifically,
freezeout is signaled when

η

P ∂µu
µ ∼ 1

2
. (109)

This combination of parameters can be motivated from the kinetic theory estimates
111. The pressure is P ∼ e 〈v2

th

〉
, with

〈
v2

th

〉
the typical quasi-particle velocity. The

viscosity is of order η ∼ e 〈v2
th

〉
τR with τR the relaxation time. Thus hydrodyanmics

breaks down when
η

P ∂µu
µ ∼ τR∂µuµ ∼ 1

2
. (110)

Fig. 16 estimates the space-time region described by viscous hydrodynamics. Ex-
amining this figure we see that the time duration of the hydrodynamic regime
is a relatively strong function of η/s at least for a conformal gas. In reality the
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Fig. 16. This figure estimates for a conformal gas with equation of state p = e/3 and con-

stant η/s the space time region described by viscous hydrodynamics 73. The contours are where
(η/p) ∂µuµ = 0.6 for different values of η/s. For the smallest value η/s = 0.05 the system freezes

out at a time of order ∼ 40 fm. This unrealistically long time reflects the conformal nature of the

gas as discussed in Section 4.5. For comparison we have shown the (η/p) ∂µuµ = 0.225 contour
for η/s = 0.05.

behaviour of the shear viscosity near the transition region will control when the
hydrodynamics will end.

Clearly the surface to volume ratio in Fig. 16 is not very small. Hydrodynamics is
a terrible approximation near the edge. There is a need for a model which smoothly
transitions from the hydrodynamic regime in the center to a kinetic or free streaming
regime at the edge. Near the phase transition kinetic theory may not be a good
model for QCD, but it has the virtue that it gracefully implements this hydro to
kinetic transition. Although the interactions and the quasi-particle picture of kinetic
theory may be decidedly incorrect, this is unimportant in the hydrodynamic regime.
In the hydrodynamic regime the only properties that determine the evolution of the
system are the equation of state, P(ε), and the shear viscosity and bulk viscosities,
η(ε) and ζ(ε). In the sense that they provide a reasonable guess as to how the
surface to volume ratio influences the forward evolution, kinetic models can be
used to estimate the shear viscosity and the estimate may be more reliable than the
hydrodynamic models. A priori one should demand that the kinetic models have the
same eqation of state and the same shear viscosity as expected from QCD, η ∝ T 3.
For instance in a kinetic model of massless particles with a constant cross section
σo (such as studied in Ref.57,68,69) the shear viscosity scales as η ∝ T/σo. This
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Dissipative effects from transport and viscous hydrodynamics 4

Figure 2. Left: Elliptic flow as a function of pT for Au + Au at√
sNN ∼ 200 GeV and b = 8 fm from ideal hydrodynamics (dotted) and IS

hydrodynamics with Cooper-Frye freezeout ignoring (dashed) or incorporating
(solid) dissipative corrections to the local momentum distributions (see text) for
η/s ≈ 1/(4π). Right: Comparison of v2(pT ) from covariant transport (squares)
and IS hydrodynamics (lines) for η/s ≈ 1/(4π) (open squares vs dashed), and
σgg→gg ≈ 47 mb (filled squares vs solid). The ideal hydro reference is also shown
(dotted).

IS hydro somewhat underpredicts the transport results at higher pT > 1.5 GeV. We
caution that the hydro results at high pT are also sensitive to the freezeout prescription,
which deserves further investigation.

The modest ∼ 30% dissipative corrections found agree well with [2] and are
much smaller than the effect in [3]. We suspect that this is because [3] ignored the
first term in the second line of (2). If the system is near global equilibrium, that is
appropriate. On the other hand, RHIC-like initial conditions have large gradients, and
our comparison to kinetic theory shows that in that case those terms are important.

4. Conclusions

See abstract.
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Fig. 17. Fig from Ref.70.

difference with QCD should be born in mind when extracting conclusions about
the heavy ion reaction. Further many transport models conserve particle number
which is an additional conservation law not inherent to QCD; this also changes
the dynamics. Keeping these reservations in mind we examine Fig. 17. This figure
shows a promising comparison between kinetic theory with contant cross section
(σo = Const) and a viscous hydrodynamic calculation with η ∝ T/σo. The case
with σ ∝ τ2/3 will not be discussed in this review but is an attempt to mimic a
fluid which has η ∝ T 3 70

What is excititing about this figure is the fact that the hydrodynamic conclu-
sions are largely supported by the results of a similar kinetic theory. This gives
considerable confidence that the surface to volume effects are small enough that
the hydrodynamc conclusions presented in Fig. 12 are largely unchanged by parti-
cles escaping from the central region. More formally the opacity is large enough to
support hydrodynamics.

There have been other kinetic calculations which are working towards extracit-
ing η/s from the heavy ion data 2,1,19. In particular Refs.20,21,23,24 uses a kinetic
theory implementation of 2 → 2 and 2 → 3 interactions motivated by weak cou-
pling QCD19. It also chooses calculates the Debye scale self consistently, i.e. in
equlibrium one sets m2

D ∝ g2T 2 and T changes with time. Out of equilbrium this
mass scale mD is determined from the momentum distribution of particles. Con-
sequently this model respects the symmetry properties of high temperature QCD,
i.e. the model has η ∝ T 3 and does not conserve particle number. For the model
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parameter αs = 0.3↔ 0.5 (which is only schematically related to the running cou-
pling) the shear to entropy ratio is η/s = 0.16 ↔ 0.08 24,23. The model (known as
BAMPS) is conformal and never freezes out as discussed in Section 4.5. The current
implementation of BAMPS simply stops the kinetic evolution when the energy den-
sity reaches a critical value, ec ' 0.6↔ 1.0 GeV/fm3. This parameter is an abrupt
way to introduce a needed scale into the problem and schematically approximates
the rapid variation of the shear viscosity in this energy density range. Fig. 18 shows
the time development of elliptic flow in this model and which can reproduce the
observed flow only for η/s = 0.16 ↔ 0.08, depending on the model parameter ec.
The time development of v2 seen in Fig. 18 shows that it is very difficult to separate
precisely the shear viscosity in the initial stage from the freezeout process.

Clearly the transition from a hydrodynamic regime to a kinetic regime is
important to clarify in the future. In the meantime most hydrodynamic groups
have invoked an ad-hoc freezeout perscription. In Refs.72,74,78,79 the hydrodynamic
codes were run until a typical freezeout temperature Tfo ' 150 MeV. Technically
the freezeout surface is construced the temperature is constant is constructed by
marching forward in time and triangulating the space-time surface with constant
temperature In Ref.70 a surface of constant density particle density was chosen
n ' 0.365/fm3 and in Ref.73 the surface chosen was motivated by the kinetic ki-
netic condition Eq. (109) given above. Ideally in the future this could be impoved
by dynamically coupling the hydrodynamic evolution to a kinetic description or by
simulating the entire event with a kinetic theory which closely realizes the equation
of state and transport coefficients used in the hydrodynamic simlations.

6.5. Particle Spectra

Finally we turn to the particle spectra in viscous hydrodynamics. Ideally the sys-
tem would evolve through the approximate phase transition down to sufficiently
low temperatures where the dynamics could be described either with viscous hy-
drodynamics or with the kinetic theory of a Hadron Resonance Gas (HRG). In
reality this does not seem particularly likely since the system is already expanding
three dimensionally and the scales are approximately fixed (see Section 4.5). The
estimates of the shear viscosity to entropy ratio in a hadronic gas are reliable for
T <∼ 130 MeV and do not support this optimistic picture (see Section 3). In seems
quite unlikely that there is equilibrium evolution in the HRG below a temperature of
T ' 150 MeV. Clearly the dynamics is extremely complex during the quark-hadron
transition which takes in place for an energy density of e ' 0.5 ↔ 1.2 GeV/fm3.
In this range the temperature changes by only ∆T ' 20 MeV. However, the hydro-
dynamic simulations evolve this complicated region for a significant time period,
τ ' 4 fm↔ 7 fm. This transition region can be seen in the AuAu plots in Fig. 15.

The pragmatic approach to this complexity is to compute the quasi-particle
spectrum of hadrons at a temperature of T ' 150 MeV. Since the HRG describes
the QCD thermodyanmics well, this pragmatism is fairly well motivated. The ap-
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we have performed calculations with ec = 0.6 GeV fm−3 in addition to those with ec = 1

GeV fm−3. The results are shown in Figs. 1−3 and 5 by green curves with open triangles

(αs = 0.3) and purple curves with open diamonds (αs = 0.6).

We realize that the v2 results with αs = 0.3 and ec = 0.6 GeV fm−3 (green curves with

open triangles) are almost identical to those with αs = 0.6 and ec = 1 GeV fm−3 (red curves

with open squares). Stronger interactions or longer QGP phase leads to the same final values

of v2. Figure 6 shows the v2 generation as a function of time in a Au+Au collision with

an impact parameter of b = 8.6 fm. No decrease of v2 is observed. This indicates that the

FIG. 6: (Color online) Time evolution of the elliptic flow from the BAMPS calculations in Au+Au

collisions at
√

sNN = 200 GeV at an impact parameter of b = 8.6 fm.

freezeout occurs before the initial spatial anisotropy vanishes. The saturation of v2 begins

at 2.5 fm/c for ec = 1 GeV fm−3 and later at 3 fm/c for ec = 0.6 GeV fm−3. The continuous

increase of v2 after 2.5 fm/c in the case for ec = 0.6 GeV fm−3 is as strong as that before.

The difference of the pressure gradient between the x and y directions is still large at 2.5

fm/c, whereas at this time the freezeout at ec = 1 GeV fm−3 is nearly complete. Therefore,

the uncertainty in the final elliptic flow due to the different freezeout condition is not small.

In addition to the hadronization, the time scale when the hadronization occurs affects also

the absolute value of v2 as well as the transverse momentum dependence of v2.

A detailed study of the elliptic flow is important, because this collective effect of QCD

matter quantitatively constrains the shear viscosity of the medium. In Ref. [12] we have

14

large test particle numbers Ntest.

Figure 1 shows the elliptic flow v2 = 〈(p2
x − p2

y)/p
2
T 〉 as a function of the number of

participating nucleons, Npart. The points are STAR [13] and PHOBOS [14] data for charged

FIG. 1: (Color online) Elliptic flow vs Npart for Au+Au collisions at
√

sNN = 200 GeV. The

points are STAR [13] and PHOBOS [14] data for charged hadrons within |η| < 0.5 and |η| < 1,

respectively, whereas the curves with symbols are results for gluons within |η| < 1, obtained from

the BAMPS calculations with αs = 0.3 and 0.6 and with two freezeout energy densities, ec = 0.6

and 1 GeV fm−3.

hadrons within the pseudorapidity intervals |η| < 0.5 and |η| < 1, respectively. The symbols,

which are connected with colored straight lines, are results for gluons within |η| < 1 (η being

identical to the momentum rapidity y for massless gluons) from the BAMPS calculations for

two values of the coupling constant αs and for two values of the critical energy density ec

for the freezeout. Especially, the blue curve with open circles and the red curve with open

squares are the results for (αs = 0.3, ec = 1 GeV fm−3) and (αs = 0.6, ec = 1 GeV fm−3),

respectively. These are exactly the same as shown in Fig. 2 of Ref. [12]. The new results

for ec = 0.6 GeV fm−3 will be discussed in the next section.

Figure 2 shows the elliptic flow as a function of the transverse momentum v2(pT ) for the

most central 50% of Au+Au collisions at
√

sNN = 200 GeV. The points are PHOBOS data

[14] for charged hadrons within 0 < η < 1.5, whereas the curves with symbols are results

for gluons within |η| < 1.5 from BAMPS calculations. Figure 3 shows v2(pT ) in different

7

Fig. 18. (Top) The development of elliptic flow v2 as a function of time in the BAMPS model20.

(Bottom) The final elliptic flow as a function of centrality. The shear viscosity to entropy ratio

η/s corresponding to the model parameter αs = 0.3 ↔ 0.6 was estimated in Ref.24,23 and is
η/s = 0.16 ↔ 0.08. The evolution is stopped with the energy density reaches a critical value of
ec.

proach conserves energy and momentum and when viscous corrections are included
also matches the strains across the transition. In ideal hydrodynamics simulations
the subsequent evolution of the hadrons has been followed with hadronic cascade
models 55,52,51. The result of these hybrid models is that the hadronic rescattering
is essentially unimportant for the v2(pT ) observables presented here.

Technically, the procedure is the following: along the freezeout surface the spec-
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trum of particles is computed with the Cooper-Frye formula

E
dNa

d3p
=

ga
(2π)3

∫
Σ

dΣµPµ fa(−P · u/T ) , (111)

where a labels the particle species,

fa(−P · u) = na(−P · u/T ) + δfa(−P · u/T ) , (112)

is the distribution function (see Section 5), and ga the spin-isospin degeneracy
factor for each particle included. In practice, the Boltzman approximation is often
sufficient. In Ref.74 all particles where included up to mass of mres < 2.0 GeV and
then subsequently decayed. In other works a simple gas was used to study various
aspects of viscous hydrodynamics divorced from this complex reality73,70.

All of the viscous models used the quadratic ansatz discussed in Section 5,
writing the change to the distribution function of the a-th particle type as

fa → na + δfa , (113)

with δfa given by

δfa =
1

2(e+ P)T 2
na(1± na)PµP νπµν . (114)

In the simple gas models there was only one particle type73,70. In Refs.72,79 the
constant was taken to be the same for all particle species.

Before continuing we review the elements that go into a complete hydrody-
namic calculation. First initial conditions are specified (see Section 6.1.) Then the
equations are solved with the viscous term (see Section 6.2.) After this a freezeout
surface is specified (see Section 6.4 for the limitations of this.) Finally we compute
spectra which using Eq. (111) and Eq. (114). This particle spectra can ultimately be
compared to the observed elliptic flow. With this oversight we take a more nuanced
look at Fig. 12.

To isolate the viscous modifications due to the flow and the viscous modifica-
tions due to the distribution function, we turn to Fig. 19. Examining this figure
we see that a significant part of the corrections due to the shear viscosity are from
the distribution function rather than the flow. Although the magnitude of the flow
modifications depends on the details of freezeout, this dependence on δf is the typ-
ical and somewhat distressing result. We emphasize however that it is inconsistent
to drop the modifications due to δf . The result of dropping the δf means that
the energy and momentum of the local fluid cell Tµνuν is matched by the particle
content, but the off diagonal strains πµν are not reproduced. The assumption un-
derlying the comparison of viscous hydrodynamics to data is that the form of these
off diagonal strains is largely unmodified from the Navier Stokes limit during the
freezeout process. As the particles are “freezing out” this is a reasonable assump-
tion. However, since these strains are only partially constrained by conservation
laws, this assumption needs to tested against kinetic codes as already emphasized
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Fig. 1. Effect of shear viscosity on p⊥ spectra (left) and v2(p⊥) (right) of massless
particles. The thin black curves in the left plot show the rescaled ideal result for
comparison to the viscous result.

Let us now compare the results from a constant temperature freezeout
surface to one of constant χ. In fig. 2 we show the integrated v2 over
eccentricity as a function of centrality (expressed as 1/SdNch/dy) where
S is the transverse overlap area of the collision region. It was found in
[27] that to a good approximation the dependence on system size, impact
parameter and collision energy can be absorbed into how these parameters
change the final multiplicity. See the paper by Song and Heinz [12] for a
nice description of multiplicity scaling and the effect of viscosity on scaling
violations.

Going back to fig. 2 the blue band is indicative of the data from various
experiments at different system sizes and beam energies. The green curve
is the result using a constant temperature freezeout surface. This should
be contrasted to the blue curve which uses a freezeout surface of constant
χ. We find that by changing the freezeout criteria to a more natural one,
χ = const., that the elliptic flow is closer to the data. A full analysis using
a more realistic equation of state still needs to be done.

3.3. Dileptons

In this section I discuss how shear viscosity modifies the thermally pro-
duced dileptons. The leading order contribution to dilepton production
comes for qq annihilation. From a kinetic theory point of view the rate is
calculated from

dN

d4q
=

∫
d3k1

(2π)3
d3k2

(2π)3
f(E1, T )f(E2, T )v12σ(M2)δ4(q − k1 − k2) , (19)

Fig. 19. v2(pT ) from Ref.73 showing the dependence on the flow fo and the dependence on the

viscous modification of the distribution function δf . The result depends to a certain extent on

freezeout.

above. This freezeout problem is clearly an obstacle to a reliable extraction of η/s
from the data.

Although the dependence on δf in v2(pT ) is undesirable, the viscous modifica-
tions of itegrated elliptic flow v2 largely reflects the modifications to the stress tensor
itself. The observation is that the stress anistropy e′p (see Eq. (105)) determines the
average flow according to a simple rule of thumb106

v2 ' 1
2
e′p . (115)

Fig. 20 shows e′p and v2 as a function of centrality. The figure supports this rule
and suggests that sufficiently integrated predictions from hydrodynamics do not
depend on the detailed form of the viscous distrbution.

To corroborate this conclusion we turn to an analysis originally presented
by Ollitrault107 and subsequently generalized to the viscous case73,18. First we
parametrize the single particle spectrum dN/dpT with an an exponential and v2(pT )
as linearly rising, i.e.

1
pT

dN

dpT
' Ce−pT /T , and v2 ∝ pT . (116)

With this form one finds quite generally that the p2
T weighted elliptic flow is twice

the average v2

2v2 ' A2 ≡
〈
p2
x − p2

y

〉〈
p2
x + p2

y

〉 . (117)
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FIG. 8: (Color online) Comparison of hydrodynamic models to experimental data on charged hadron integrated (left) and
minimum bias (right) elliptic flow by PHOBOS [4] and STAR [5], respectively. STAR event plane data has been reduced by
20 percent to estimate the removal of non-flow contributions [5, 6]. The line thickness for the hydrodynamic model curves
is an estimate of the accumulated numerical error (due to, e.g., finite grid spacing). The integrated v2 coefficient from the
hydrodynamic models (full lines) is well reproduced by 1

2
ep (dots); indeed, the difference between the full lines and dots gives

an estimate of the systematic uncertainty of the freeze-out prescription.

Initial condition η/s Ti [GeV] Tf [GeV] τ0 [fm/c] a [GeV−1]

Glauber 10−4 0.340 0.14 1 2

Glauber 0.08 0.333 0.14 1 2

Glauber 0.16 0.327 0.14 1 2

CGC 10−4 0.310 0.14 1 2

CGC 0.08 0.304 0.14 1 2

CGC 0.16 0.299 0.14 1 2

CGC 0.24 0.293 0.14 1 2

TABLE I: Summary of parameters used for the viscous hydrodynamics simulations

Fig. 20. Dependence of elliptic flow versus some centrality from Ref.74. The lines show the results

of viscous hydrodynamics and corresponding points show the anistropy of the stress tensor 0.5 e′p
(see Eq. (105)) for different values of η/s. The sensitivity to the quadratic ansatz is estimated in

the text and corresponds to half the difference between the red and blue curves. The huerstic rule

v2 ' 0.5 e′p is motivated in the text.

The p2
T weighted elliptic flow has a much closer relationship to the underlying

hydrodynamic variables. Indeed we will show how this simple rule of thumb arises
and that it is largely independent of the details of δf .

To this end we evaluate the sphericity tensor which will have a simple relation-
ship to A2

Sµνρ = SµνρI + SµνρV =
∫

d3p
(2π)3Ep

PµP νP ρ [n(−P · u) + δf(−P · u)] (118)

Then using the Cooper-Frye formula (with dΣµ = (τd2x⊥, 0, 0, 0) ) the assymetry
at any given moment in time is

A2 =
∫
d2x⊥ (S0xx − S0yy)∫
d2x⊥ (S0xx + S0yy)

. (119)

The sphericity tensor consists of an ideal piece and a viscous piece

f → n+ δf , Sµνρ → SµνρI + SµνρV . (120)

First we consider the ideal piece and work in a classical massless gas approximation
for ultimate simplicity. The tensor is a third rank symmetric tensor and can be
decomposed as

SµνρI = A(T )uµuνuρ +B(T ) (uµgνρ + perms) . (121)
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Here A(T ) and B(T ) are thermodyanmic functions and are given n by

A

6
= B =

∫
d3p

(2π)3

p2

3
np = (e+ p)T . (122)

For Bose and Fermi gasses this relation is approximate. Thus the ideal piece of the
sphericity tensor is largely constrained by thermodynamic functions. The viscous
piece is largely constrained by the shear viscosity. As discussed in Section 5 we
parametrize the δf with χ(p)

δf = −np
χ(p)

(P · U)2
PµP νσµν . (123)

While the precise form of the viscous correction χ(p) depends on the details of the
microscopic interactions, it is constrained by the shear viscosity

η =
2
15

∫
d3p

(2π)3
pχ(p)np . (124)

Substituting the viscous parametrization into the definition of the sphericity we
find

S0xx = −C(T )
[
u0σxx + 2uxσx0

]
, (125)

' −C(T )u0σxx , (126)

where C(T ) is

C(T ) =
2
15

∫
d3p

(2π)3
p2χ(p)np . (127)

For simplicity we have assumed that the flow is somewhat non-relativistic so that
uxπx0 is O(v2) compared to u0πxx. To get a feeling for how sensitive the results
are to the quadratic ansatz we will work with a definite functional form

χ(p) = Const× p2−α . (128)

In a relaxation time approximation discussed in Section 5, α = 0 corresponds to a
relaxation time which increases with pT while α = 1 corresponds to a relaxation
time indepent of pT . Substituting this ansatz we find

C(T ) ' (6− α)Tη 0 < α < 1 , (129)

Having assembled the ingredients we can write down an approximate formula
for A2

A2 '
∫

d2x⊥ Tu0
[
(e+ p)(uxux − uyuy) + (1− α

6 ) (πxx − πyy)
]∫

d2x⊥ Tu0
[
(e+ p)(uxux + uyuy) + (e+ p)/3 + (1− α

6 ) (πxx + πyy)
] ,
(130)

with 0 < α < 1. This is the desired formula which expresses the observed elliptic
flow in terms of the hydrodynamic variables. To reiterate the coefficient α changes
the functional form the viscous distribtuion function and 0 < α < 1 is a reasonable



May 4, 2009 10:3 WSPC/INSTRUCTION FILE hydro

Viscous Hydrodynamics and the Quark Gluon Plasma 49

range; α = 0 is the usual quadratic ansatz. It might be useful to compare this to
the formula to the definition of ε′p

e′p =
∫

d2x⊥ [(e+ p)(uxux − uyuy) + (πxx − πyy)]∫
d2x⊥ [(e+ p)(uxux + uyuy) + 2p+ (πxx + πyy)]

. (131)

Thus while e′p is not exactly equal to the A2 of Eq. (130), it is close enough to
explain the hueristic rule, 2v2 ' e′p.

The overall symmetries and dimensions of the sphericity tensor suggests a defi-
nition for an analgous quantity in hydrodynamics

Sµνρhydro = T

[
(e+ p)uµuνuρ +

1
6

(e+ p)(uµgνρ + perms) + (uµπνρ + perms)
]
.

(132)
In fact in a classical massless gas approxmation with the quadratic ansatz, the
analysis sketched above shows that

Sµνρhydro =
1
6
Sµνρ . (133)

The important point for this review is that from Eq. (130) we see that the integrated
elliptic flow is relatively insensitive to the quadratic form for the viscous distribution
function. More specifically the uncertainty is ∼ 15% of Aideal

2 −Aviscous
2 , i.e. about

half the difference between the blue and red curves in Fig. 20. The quadratic ansatz
(which has been used by all hydrodynamic simulations) can be a poor approxima-
tion when collinear emission processes are included in the Boltzman description17.

Clearly adressing more completely the uncertainties associated with the particle
content and microscopic interactions in Fig. 20 is a task for the future. Nevertheless,
it does seem that sufficiently integrated quantities will reflect rather directly the
bulk properties of the hydrodynamic motion in a way that can be quantified.

7. Summary and Outlook
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