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I review the main predictions for the heavy-ion programme at the Large Hadron Collider
(LHC) at CERN, as available in early April 2009. I begin by remembering the standard
claims made in view of the experimental data measured at the Super Proton Synchrotron
(SPS) at CERN and at the Relativistic Heavy Ion Collider (RHIC) at the BNL. These
claims will be used for later discussion of the new opportunities at the LHC. Next I
review the generic, qualitative expectations for the LHC. Then I turn to quantitative
predictions: First I analyze observables which characterize directly the medium produced
in the collisions - bulk observables or soft probes -: multiplicities, collective flow, hadro-
chemistry at low transverse momentum, correlations and fluctuations. Second, I move to
calibrated probes of the medium i.e. typically those whose expectation in the absence of
any medium can be described in Quantum Chromodynamics (QCD) using perturbative
techniques (pQCD), usually called hard probes. I discuss particle production at large
transverse momentum and jets, heavy-quark and quarkonium production, and photons
and dileptons. Finally, after a brief review of pA collisions, I end with a summary and a
discussion about the potentiality of the measurements at the LHC - particularly those
made during the first run - to further substantiate or, on the contrary, disproof the pic-
ture of the medium that has arisen from the confrontation between the SPS and RHIC
data, and theoretical models.

1. Introduction

The experimental programme for the study of ultra-relativistic heavy-ion collisions
started in 1986 at the Super Proton Synchrotron (SPS) at CERN. It accelerated
protons and ions (up to Pb), at piap < 158 GeV per nucleon in the case of Pb?.
The next step was the Relativistic Heavy Ion Collider (RHIC) at the BNL, which
began in 2000, accelerating protons and ions up to AuAu collisions at /syn = 200
GeV. Both experimental programmes have allowed for the extraction of important
conclusions about the properties of the strongly interacting matter produced in

such collisions 12345,

@Natural units h = c =1, and kp = 1 will be used throughout this manuscript.
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The next step in the near future, apart from RHIC upgrades 6 and the energy
and collision species scan at the SPS 7, is the heavy-ion programme at the Large
Hadron Collider (LHC) at CERN 8. It will accelerate ions as heavy as Pb (A = 208,
Z = 82), with energies

Z
VSNN = ZZ x 7 TeV ~55 TeV for PbPb, (1)

with a total center-of-mass energy of 1.15 PeV. The nominal peak luminosity will
be Lo = 10" em™ 257!, with (£)/Ly = 0.5 and a estimated running time 105
s/yearP. Collisions of other ions and asymmetric collisions like pPb ? are possible,
the latter with a shift in the center-of-mass rapidity with respect to the rapidity in
the laboratory given by

1. Z1As

oy = 3 In 7oA, (2)

for éllA éjB collisions. While the first proton beams circulated along the LHC ring
in September 2008 and the first pp collisions are expected for autumn 2009, the
first PbPDb collisions are only expected for the second half of 2010.

Three out of the four large experiments at the LHC: ALICE, ATLAS and CMS,
will measure PbPb collisions 10:11:12:13 While ALICE is a dedicated experiment
to nucleus-nucleus collisions, both ATLAS and CMS will offer detector capabilities
complementary to each other and to ALICE. They will provide a wide range of

measurements covering all the main relevant observables in heavy-ion collisions.
Measurements in pp and nucleus-nucleus collisions at roughly the same unexplored
top energy will be, for the first time, performed using the same accelerator and
detectors.

The increase in center-of-mass energy of almost a factor 30 with respect to
RHIC, together with the complementary detector capabilities, will offer new mea-
surements with respect to those presently available. As evident examples:

e The yield of particles with large mass or transverse momentum - hard
probes %14:15,16
measured for the first time (with high statistics) in heavy-ion collisions,
like T or Z° + jet production (see Fig. 1, taken from 7-18).

o Calorimeter capabilities of ATLAS and CMS 213 will allow for measur-
ing jets both at central and non-central rapidities®. ALICE will also be
equipped with an electromagnetic calorimeter 2.

- will be much more abundant, and some of them will be

e The kinematical coverage of the parton densities inside proton and nuclei

will greatly exceed that available at the SPS and RHIC (see Fig. 2, taken

from %21),

bThese numbers are to be compared with those for pp collisions: £g = 103% cm~2s~1, with (L)/Lo
closer to 1 and a estimated running time 8 - 106 s/year.

©Jets in heavy-ion collisions have been measured for the first time by the STAR Collaboration at
RHIC 19,20,
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Fig. 1. Left: Cross sections for various hard processes (01}3%’1}{) = A2ogg’"d) in PbPb minimum bias
collisions in the range /sy = 0.01+14 TeV. Figure taken from 17 Right: Expected annual yields
in the ALICE EMCal acceptance for various hard processes for minimum bias PbPb collisions at
5.5 TeV. Figure taken from 18.
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Fig. 2. Left: Approximate pr —n coverage of current and proposed spectrometers and calorimeters
at the LHC. Figure taken from 2!. Right: Resolution power (Q?) x momentum fraction (z)
coverage of the SPS, RHIC and LHC experiments for parton densities (grey bands and solid lines),
compared with the regions covered by previous lepton-nucleus and proton-nucleus experiments

(colored markers). Figure taken from °.

The aim of this review is to present a comprehensive compilation of the existing
predictions for the heavy -ion programme at the LHC, not to discuss the current
interpretation of available experimental data. Nevertheless, I will briefly indicate
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the main, ’standard’ claims extracted from the experimental programmes at the
SPS and RHIC. Let me stress that none of these claims are devoid of alternative
explanations, and that their presentation will doubtlessly contain some personal
bias. 1 will use them only to motivate the discussion of the new opportunities at
the LHC and the discriminating power of the forthcoming measurements there.
The standard claims at RHIC are the following (the reader may find extensive

discussions and references to the relevant experimental data in 1:2:3:4,5,22,23,24,25);

o Multiplicities at RHIC are much lower than pre-RHIC expectations 2627,
The standard interpretation is that particle production in the collisions
shows a large degree of coherence due to initial state effects.

e The elliptic flow measured in the collisions can be well reproduced by cal-
culations within ideal hydrodynamics with a very early thermalization (or
isotropization) time and small room for shear viscosity. This is currently
interpreted in terms of the creation of some form of matter which (nearly)
equilibrates very early and behaves like a quasi-ideal fluid.

e The yield of high transverse momentum particles of different species mea-
sured at RHIC is strongly depleted in comparison with the expectations of
an incoherent superposition of nucleon-nucleon collisions (as suggested by
the collinear factorization theorems and confirmed by experimental data on
weakly interacting perturbative probes). This fact, named jet quenching,
together with the absence of such depletion in dAu collisions, is understood
as the creation of a partonic medium, very opaque to energetic partons
traversing it.

On the basis of these observations, it has been claimed that partonic matter,
with an energy density larger than required by lattice QCD (see e.g. 28:29:39) for the
phase transition from hadronic matter to the Quark-Gluon Plasma (QGP) to occur,
has been formed. Such matter is extremely opaque to fast color charges traversing it,
and its collective expansion closely resembles that of an ideal fluid. These two latter
facts suggest that the produced matter is strongly coupled, which is in opposition
to the naive picture of the QGP as an ideal parton gas and is not contradicted by
lattice data which show some deviation from the Stefan-Boltzmann law and a finite
value of the conformal anomaly up to temperatures larger than several times the
deconfinement temperature.

Many questions remain open both in the experiment (e.g. suppression of heavy-
flavor production or unbiased jet measurements, in nucleus-nucleus collisions) and
on the theory sides (can the observed phenomena be explained within pQCD or do
they require strong coupling?; what is the correct implementation and actual role
of bulk and shear viscosity in hydrodynamical calculations?; how can such an early
isotropization be achieved?; can the initial state - the nuclear wave function - be
described by perturbative methods?; how can we compute particle production in
such a dense environment?;...).
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In this review of predictions for the heavy-ion programme at the LHCY T will
classify them into different groups according to the following scheme: Those ob-
servables which characterize the produced medium itself, which T will call bulk
observables (or soft probes, as they refer to particles with momentum scales of the
order of the typical momentum scale of the medium - the temperature if thermal-
ization were achieved); and those whose expectation in the absence of any medium
can be calculated by perturbative methods in QCD (pQCD) (thus characterized
by a momentum scale much larger than both Agcp and the temperature’ of the
medium), commonly referred to as hard probes 9141516 Not being the subject of
this review, I will provide few references to introduce the different subjects - I refer
the reader to 31:32:33,

I will start this review by some qualitative expectations for the LHC, based
on simple arguments (in this respect see also 34). Through such discussion I aim
to show how a single observable - charged multiplicity at mid-rapidity - strongly
influences most other predictions. Then I will turn to detailed predictions on bulk
observables. I will review those on multiplicities, collective flow, hadrochemistry at
low transverse momentum, correlations and fluctuations. Next I will discuss hard
and electromagnetic probes: particle production at large transverse momentum and
jets, heavy quarks and quarkonia, and photons and dileptons®. Then I will review
briefly pA collisions Y. I will conclude with a summary and a discussion about the
potentiality of the measurements at the LHC - particularly those made during the
first run - to further substantiate or, on the contrary, disproof the picture of the
medium that has arisen from the SPS and RHIC.

Most of the material that I will review is based on what was presented at
the CERN Theory Institute on Heavy Ion Collisions at the LHC - Last Call for
Predictions, held at CERN from May 14th to June 8th 2007, co-organized by Nicolas
Borghini, Sangyong Jeon, Urs Achim Wiedemann and myself 3%36. T apologize in
advance to those whose contributions I may unwillingly skip. I also apologize for not
including any prediction for ultra-peripheral collisions (UPC) - see recent excellent

reviews in 3738,

2. Qualitative expectations

In principle, the reliability of the predictions for a given observable made within the
framework of a given model is as good as the understanding of the existing experi-
mental situation on that observable and related ones - provided the model contains
the physical ingredients relevant for the extrapolation. It turns out that predictions
for most observables, both for soft and hard probes, demand some parameter fixing
which, in the most favorable case, can be related to a single measurable quantity.

dSimilar efforts done for RHIC can found in 26:27,

¢Concerning photons, their production at low momentum cannot not be described within pQCD
but they have customarily become part of the general item of hard and electromagnetic probes.
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Such a quantity is usually the charged multiplicity at mid-rapidity or pseudora-
pidity which, in a more or less model-dependent way, can be related with energy
densities, temperatures,. .. of the medium at some given time.

In this Section, I will review some qualitative or semi-quantitative expectations
for central PbPb collisions at the LHC. The aim here is not to provide realistic
or definite numbers (actually I will be most conservative in the estimates, so very
probably the quantities for the LHC are underestimated in comparison to those
at RHIC), but more or less stringent bounds, and to show explicitly how different
predictions become affected or determined by a single observable, namely charged
multiplicity at mid-rapidity. Let me note that a collection of data-driven predictions
can be found in 2*. While this latter collection, in its aim to being as model-
independent as possible, is complementary to the one to be presented in the next
Sections, it overlaps in spirit what will be presented here.

In Table 1 I show the results within the Monte Carlo code 3° for the number of
participants, of collisions and the charged multiplicity at mid-rapidity and pseudo-
rapidity in central PbPb collisions at /sy~ = 5.5 TeV. While these quantities are
obtained in the framework of a given simulator, they will serve for the purpose of
illustration in this Section. They will also be employed to better allow a comparison
among different predictions for multiplicities at mid-(pseudo)rapidity in Subsection
3.1.

Table 1. Results in the Monte Carlo code in 39 for the mean impact parameter, number of par-
ticipants and binary nucleon-nucleon collisions, and charged multiplicity at mid-(pseudo)rapidity,
for different centrality classes defined by the number of participants, in central PbPb collisions at

JENN = 5.5 TeV.
% (0) (fm) | (Npart) | (Neou) | dNen/dyly=o0 | dNen/dnly=o
0+3 1.9 390 1584 3149 2633
0+5 2.4 375 1490 2956 2472
0+-6 2.7 367 1447 2872 2402
0+75 3.0 357 1390 2759 2306
0-+8.5 3.1 350 1354 2686 2245
0+-9 3.2 347 1336 2649 2214
0-+10 3.4 340 1303 2583 2159

For the purpose of fixing one reference centrality class, I will define it by a
number of participants Npqr: = 350. In the following and unless otherwise stated,
when referring to RHIC and the LHC I will be making reference to AuAu collisions
at top RHIC energy, and PbPb collisions at the LHC, for a central centrality class
defined by Npqre = 350.

Let me start with multiplicities, as they are a key observable which will de-
termine many other predictions. As stated previously, expectations for other ob-
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servables from collective flow to jet quenching, depend on the scaling of certain
quantities e.g. initial energy density, which are related in some more or less di-
rect way with the final multiplicity measured in the event. Thus, many predictions
are provided for some specific values of parameters which may be linked with a
multiplicity.

Predictions for multiplicities can be discussed in the following way: A lower
bound comes from the wounded nucleon model 4° in which the multiplicity in nu-
clear collisions is expected to be proportional to the number of participant nucleons.
This proportionality is also the limiting value expected by models which consider
extremely strong shadowing effects. On the other hand, an upper limit can be set
by the proportionality to the number of binary nucleon-nucleon collisions N,
as expected both in models of particle production which suppose a dominance of

41,42 inclu-

hard, perturbative processes (using the collinear factorization theorem
sive particle production is proportional to the product of the fluxes of partons in
projectile and target which in the totally incoherent limit is proportional to the
number of nucleon-nucleon collisions) and in soft models of particle production in
absence of shadowing corrections (see e.g. 43) through the cutting rules 44,

On the basis of these considerations, the multiplicity can then be written in the

following way (see also the discussions in 27):
dN4A dNAN 1-
2Vch — ch [ x Npart + Neont| , 0< <1, (3)
dn |, dn |, L 2

with the superscript NN referring to nucleon-nucleon collisions - an average of
pp, pn and nnf. Shadowing effects and energy-momentum constraints > tend to
decrease x. As an example, values extracted from RHIC data at /syn = 19.6
and 200 GeV 4° are 2 ~ 0.13. For nucleon-nucleon collisions, I will use the proton-
(anti)proton data shown in Fig. 3. The three lines correspond to the parametrization
of SppS and Tevatron data by CDF 46

dNAN

i (CDF) = 2.5 — 0.25Insyx + 0.0231n” sy, (4)
n=0
to the parametrization in 47
ANGN 0.144 0.089 0.144
ﬁ (ASW) =047 (SNN) ' (Npart) ' =0.50 (SNN) ’ (5)
n=0
and to the PHOBOS parametrization in the contribution by Busza in 3%,
ANNN
d—‘;Y (PHOBOS) = —0.540.39Insyn (6)
n=0

f At large energies and at central rapidities, particle production should be determined by partons
with small momentum fraction (which can be estimated using 2 — 1 kinematics as * ~ mr/\/SNN,

with mp = 1/p% + m?2 the transverse mass of the produced particle). At such small momentum
fractions, isospin symmetry is expected to hold.
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(note that this parametrization was obtained from fits to nucleus-nucleus data and
thus it was not intended to describe nucleon-nucleon data). I will also assume, as
suggested by RHIC data %°, that the energy and centrality dependences of charged
particle yields at mid-rapidity decouple. Considering all this, I show in Table 2 some
naive predictions for the LHC®. The predictions from the wounded nucleon model
(x = 0) lie in the range 900 <+ 1100, while those from a scaling with the number of
collisions lie in the range 6800-+8400. The latter agree with the expectations in 1995
as shown in the ALICE Technical Proposal *°. The former roughly coincide with the
expectations (1100, 3*) from limiting fragmentation (extended longitudinal scaling)
and a self-similar trapezoidal shape of the n-distribution between RHIC and LHC
energies. Let us note that, as discussed in 3%, charged multiplicities larger than
~ 1650 will be difficult to reconcile with limiting fragmentation.

dNGy/dn|

10

of triangle: PYTHIA6.4 (pp) 1
oF- square: PSM (pp)

,E solid: CDF (pp)

dashed: ASW (NN)

a1
.}l\\\\‘\\\\‘HH‘HH‘HH‘HH‘HH‘HH

1 L . Ll

10 10° Ecem (GeV) 10*

Fig. 3. Charged multiplicity at mid-pseudorapidity in nucleon-nucleon collisions versus center-of-
mass energy, from different parametrizations (CDF for pp collisions 46, ASW 47 and PHOBOS
35 for nucleon-nucleon collisions) and Monte Carlo simulators (PSM1.0 3%, and PYTHIA6.4 %8 as
shown in 12, for pp collisions; these two points are included just for the purpose of illustration as
they depend on the set of parameters used for the simulation).

Now one can try to estimate a lower bound for the energy density in this ref-
erence centrality class defined by Npe-+ = 350. For this and for the forthcoming
discussions in this Section, I will consider three possibilities for multiplicities:

e Case I, the smallest one in Table 2, 900;

gFor the same centrality class defined by Npart = 350, the corresponding charged multiplicity at
1 =0 at top RHIC energy from the PHOBOS parametrization 3° is 635.
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Table 2. Charged multiplicity at central pseudo-rapidity in PbPb collisions at LHC energy for
Npart = 350 (Neoyy = 1354) from Eq. (3), for three different predictions of the corresponding
multiplicity in pp collisions, see Fig. 3.

pp extrapolation | dN*F/dn|,—o | x | ANEPF?/dn|,—o
ASW 5.97 0 1050
ASW 5.97 0.13 1950
ASW 5.97 1 8100
CDF 5.02 0 900
CDF 5.02 0.13 1650
CDF 5.02 1 6800
PHOBOS 6.22 0 1100
PHOBOS 6.22 0.13 2050
PHOBOS 6.22 1 8400
o Case II, the maximum multiplicity allowed by limiting fragmentation 34,

1650;
e And Case III, a value of 2600 which is representative of the highest recent
predictions for the LHC (see Subsection 3.1).

I use the Bjorken estimate °° and the arguments about the average formation
(proper) time for particle production, (Tform), in 2:

({rsorm) 2 T (meoret

measurad>2

(m7
7TR?4

deeasured
dn
deheasured
c
dn

n=0

%

3
: 7

n=0

In this equation (Topy) & (mmeesured)=1" A = 7R2 is an upper bound for the
overlapping area for central collisions with R4 = 1.12 A/3 fm the nuclear ra-
dius, mr is the transverse mass and the super-index measured indicate that these
are the final quantities measured in the detectors. For top RHIC energy, using
(mmeasured) — (.57 GeV as given by PHENIX 2 (this quantity is weakly depen-
dent on centrality), and taking dN7peesured /dp|,_ = 635 as given by the PHOBOS
parametrization in 35, T get (€)((Tform) = 0.35 fm) > 12 GeV/fm3. For the LHC,
one has to estimate the increase in (mmeesured) with collision energy. For that, I
use the parametrization for (pr) (y/s) by UA1 5! and adjust the hadron mass to

get the value given by PHENIX i.e.
(pr) (v/s) = 0.4—0.031n (\/E/GeV) 4 0.0053 In? (\/E/GeV) [GeV], (8)

and m = 0.42 GeV. Then I get, for Case I, (€)((Tform) = 0.29 fm) > 22 GeV /fm3.
Therefore, the most conservative estimates for the LHC indicate a multiplicity
increase of a factor 900/635 ~ 1.4 and an increase of a factor ~ 2 in energy density
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at formation time, with respect to top RHIC energy (or (€)((Tform) = 0.29 fm) > 42
and 66 GeV/fm? for Cases II and III respectively).

Now, and for the purpose of illustrating some qualitative behaviors, I turn to
the eventual equilibration and dynamical evolution of the created system. For that
I will use generic arguments based on the Bjorken ideal hydrodynamical scenario
in one spatial dimension %9, see 33:52

of heavy-ion collisions. First, one needs the energy density at the time when hy-

for reviews of the hydrodynamical description

drodynamical evolution is initialized, i.e. a thermalization or isotropization time.
The estimates at RHIC lie in the range 0.17 + 1 fm 2345:33:53 in ideal hydro (0.17
fm is the crossing time of two Au nuclei at RHIC), and similar values for studies
including viscosity 545568 T will take an intermediate time 752IC ~ 0.6 fm as a
reference value. To extrapolate to the LHC, it looks plausible that a system with
larger density thermalizes faster. Using the ideas %% in the Color Glass Conden-
sate (CGC, see the review in 33)!, I will assume that the thermalization time scales
like the inverse square root of the multiplicity at n = 0. Therefore one expects
(Tihcrm)

(Tiherm )

~ 0.85, 0.62, 0.49 (9)

for Cases I, II, III respectively. So the thermalization time at the LHC is Typerm S
0.5 fm. Assuming free streaming (e < 1/7 in the one-dimensional case) from forma-
tion time to thermalization, the corresponding lower bound for the energy density

1S
(Y ((THHEC Y ~ 0.5 fm) > 12 GeV/fm?, (10)

again factor ~ 2 larger than the one obtained for RHIC. If one assumes that the
thermalization time decreases with increasing particle density, then larger multi-
plicities at the LHC will favor smaller thermalization times and thus larger en-
ergy densities at thermalization. For example, in the model used for illustration,
one-dimensional free streaming plus CGC, (€)((Ttnerm) o< (dNTeasured /dn|, _q)3/2
(modulo logarithmic corrections).

Now I will consider the evolution of the system, in order to illustrate the typical
scales for the different phases of the system. To do so, I assume an ultra-relativistic
ideal gas of 3 light quarks and gluons in the deconfined phase, and of 8 pseudo-
scalar mesons in the confined phase. Using Bjorken estimate (7) and the Stefan-
Boltzmann law, the values of the relevant quantities at (Ttperm ) are given in Table
3. Then I consider the evolution of the system using the Bjorken ideal hydrody-
namical scenario in one spatial dimension ®° (see 50 for recent developments in 141
ideal hydrodynamics) for both the confined and deconfined phases, but with a free

hOn viscous hydrodynamics, see the recent review 57.
'In the CGC, the multiplicity is proportional to the saturation scale squared Qg and its energy and
centrality dependences roughly factorize, while the thermalization time is expected to be inversely

proportional to Qs.
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Table 3. Values of the energy density, the temperature and the entropy density at (T¢perm) for
RHIC and the LHC.

dANAA/dnly=o | (Ttherm) (fm) | (€) (GeV/fm3) | T; (GeV) | so (fm™3)
RHIC 635 0.6 6.8 0.241 38
LHC 900 (I) 0.51 12.6 0.281 60
LHC 1650 (II) 0.37 32.7 0.356 123
LHC 2600 (I11) 0.30 64.4 0.422 204

parameter o to mimic a larger dilution rate due to transverse expansion:

T
To

) - ()

B (7-0)4a/3
== ,

ey

(11)

with o = 1 corresponding to a pure longitudinal expansion. For a first-order phase
transition, and assuming a deconfinement temperature of 170 MeV and a freeze-out
temperature of 140 MeV, the evolution of the temperature is shown in Fig. 4. While
the numbers shown in both the Figure and in Table 3 are most rough estimations,
the plot illustrates some features common to more involved calculations: at the
LHC the deconfined phase will last longer than at RHIC. The hadronic phase is
not comparatively shorter than at RHIC (in this very schematic calculation using
power-law evolutions of thermodynamical quantities), but its impact on some final
observables (e.g. on photon or dilepton emission) could be expected to be smaller
than at RHIC, due to the fact that the hadronic phase is restricted to the same
range of temperatures but the partonic phase reaches higher 7" at the LHC than
at RHIC. On the other hand, it clearly shows that the larger the multiplicities, the
longer-lived the deconfined phase will be.

Now I will focus on the dependence on multiplicity of the elliptic flow vy in-
tegrated over transverse momental. According to general arguments, see e.g. 6!,
in the low-density limit the distortion of the azimuthal spectra with respect to
the reaction plane XZ (and thus the elliptic flow vy) is proportional to the space
anisotropy

€r = <y2 — 1‘2> (12)

(y? + 22)
and to the density of scattering centers (or particle density) in the transverse plane
XY

3

chh

dy y=0 ’

(%) 1

(13)

0.8
€z Sover

JThe discussion of the behavior of v2 (pr) requires a parallel discussion of the hadronization process
which is far more involved.
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Fig. 4. Temperature versus proper time in the Bjorken model for the four scenarios in Table 3 and
for two values of a in Eq. (11): o =1 and 1.2.

with Sy the overlap area for a given centrality class and the average in (12) is done
over the transverse energy density profile and, eventually, over the number of events.
This relation is fulfilled by experimental data from lowest SPS to highest RHIC
energies, see 52, and is illustrated in Fig. 5 left. It allows for a semi-quantitative
relation between the multiplicity and the elliptic flow: I will assume that for AuAu or
PbPb collisions at a given centrality class the spatial anisotropy, mainly determined
by the geometry of the collision, and the overlap area are approximately the same
and do not vary substantially with energy. Taking the slope of the experimental
trend ~ 0.005 and for a point lying at (22,0.16)%, increases in multiplicity by factors
1.5, 2.5, 4! translates into increases in va /€, of ~ 35,100, 205 % respectively.

On the other hand, ideal hydrodynamics calculations 64:%° indicate a saturation
or limiting value of va/e versus (1/Sover)dNen/dy|y=0. The detailed value depends
on the equation of state, on the details of initialization (see e.g. 56 for a study of the

KThese values are roughly those of the experimental data (ve = 0.051, ¢ = 0.319) 3 for a 2030
% centrality class, which corresponds 53 to an impact parameter ~ 7.5 fm and Npqrt ~ 160 both
for RHIC and the LHC.

IThese numbers are illustrative of the predictions for charged multiplicities at mid-pseudorapidity
for Npart = 350 at the LHC, 900, 1650 and 2600 - Cases I, II and III respectively -, compared
with 635 at RHIC, and are applicable to other centralities provided the factorization between the
centrality and energy dependences holds, see previous discussions.
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Fig. 5. Left: schematic plot showing the experimental trend (black) and the hydrodynamical limit
(red line) of va /ey versus (1/Sover)dNep, /dyly—o. Right: schematic behavior of the spatial e, and
momentum €, anisotropies versus proper time 7 for lower (dashed) and higher (solid lines) energy
densities at a fixed initial space anisotropy.

influence of different initial conditions on the spatial anisotropy) and hadronization
prescription, and on the treatment of the confined phase. The inclusion of viscous
effects further reduces such limiting value °*. Besides, as illustrated in Fig. 5 right,
for a fixed initial spatial anisotropy, higher initial energy densities or temperatures
imply larger density gradients which increase the final momentum anisotropy 332
defined as

o e =T) )

(Tow + Tyy)

and thus increase vy /€, as this momentum anisotropy is known °° to be related with
the observed vz =~ €, /2. Numerical results ®>%7 within ideal hydrodynamics indicate
increases in the transverse momentum integrated vo at b ~ 7.5 fm from RHIC to
the LHC, ranging from ~ 15 % 97 for charged multiplicities at mid-rapidity around
1200, to ~ 40 = 60 % in ®3 for twice this multiplicity for central PbPb collisions.
Results in viscous hydro ®* yield increases ~ 10 % for a charged multiplicity of
1800.

Let us finally discuss very briefly the influence of multiplicities on the standard
observable for jet quenching, namely single inclusive particle suppression usually
studied through the nuclear modification factor, defined for a given particle k =
h*(ch), 70, ... as

dNPAA

dyd
Raaly,pr) = —"" (15)
< coll>w

with (Neo) the average number of binary nucleon-nucleon collisions in the consid-
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ered centrality class. A simple model™ to discuss this is the following: Let us assume
for a fized geometry (i.e. fixed length or eventual dynamical expansion) that partons
can escape the medium without losing any energy with probability po, while they
may lose some energy AE with probability 1 — pg. Considering a spectrum o 1/p%
(n = 8 roughly describes the spectrum in pp collisions at mid-rapidity at RHIC 2)
I get

1-— Po - AE

Raa(y,pr) =po+ —=

Ao’ e—pT. (16)

solid: pe=0.1, €=0.3
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Fig. 6. Ratio of nuclear modification factors at the LHC and at RHIC from Eq. (16). Different line
styles refer to different parameters pg and € or AFE, see the legends in the plot, while lower and
upper lines of each style correspond to spectral power-law exponents n = 6 and 5 respectively.

In Fig. 6 I show the ratio of nuclear modification factors at the LHC and at
RHIC. For RHIC, T have chosen py = 0.1 and ¢ = 0.3 which produce a flat

™This simplistic model, whose sole aim is allowing for a discussion of the competing effects of
density increase and different biases, is by no means quantitative. For example, it does not consider
in any detail geometrical biases like the surface bias, it does not take into account fragmentation
and it assumes a pure power law behavior of the hadronic spectra which is true neither in data
nor in pQCD. It is based on ideas developed in models of radiative energy loss in e.g. 48:69 but not
restricted to these models - e.g. models with collisional energy loss also result in some probability
of no energy loss.
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Raa(pr) ~ 0.21 which qualitatively corresponds with that observed for 7°’s in
central AuAu collisions at RHIC for 10 GeV < pr < 20 GeV. To extrapolate to the
LHC situation, I have chosen two values of n = 6,5 and either the same values of
po and €, or these values modified by the expected ratio of multiplicities in Cases I
and IT (Case IIT is not illustrated for clarity of the plot), or a modification in which
AE, and not e, scales with multiplicity at mid-rapidity. Different options produce
evidently different results (e.g. the flatter the spectrum, n = 5 compared to n = 6,
the larger the ratio; the larger the multiplicity, the smaller the ratio), a fact which
stresses the need of a control of the reference spectrum and of the geometry or dy-
namical behavior of the medium in order to extract quantitative conclusions about
the medium properties from measurements of the nuclear modification factor.

3. Bulk observables

Now I turn to the predictions for observables which directly characterize the medium
produced in the collisions. These bulk observables correspond to particles with
momentum scales of the order of the typical scales of the medium - the temperature
if thermalization is achieved -, thus the name of soft probes that has been used to
designate them.

In the following, the use of names of authors will correspond usually to those
predictions contained in the compilation 3%:36, while those predictions not contained
there will be referenced in the standard way. I refer the reader to the compilation 3°
for further information and model description of the former - a given contribution
in 3% can be found by looking for the name of the authors in the Section devoted
to the corresponding observable.

In this Section I will review consecutively: multiplicities, collective flow, hadro-
chemistry at low transverse momentum, correlations and fluctuations.

3.1. Multiplicities

Charged particle multiplicity at mid-(pseudo)rapidity is a first-day observable at
the LHC. Many groups have produced such predictions, see a compilation in Fig.
7 where 25 predictions are shown™.

Different groups provide predictions for different centrality classes. For a more
accurate comparison, I re-scale them to a common observable (dNcp/dn|,=0) and
centrality class ((Npart) = 350) using the model 3°. The re-scaling factors can be
read off Table 1 and the corrected results found in Fig. 8. The re-scaling being
made using a given model, its accuracy cannot be taken as very high, but it should
reduce the uncertainties in the comparison to a 10 % level.

Let me start by describing briefly the different predictions presented in the
plots. A rough classification, for mere organizational purposes, can be made into
the following items:

" A compilation containing a smaller number of predictions can be found in 36.
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Charged multiplicity for n=0 in central PbPb at 5.5 TeV
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Fig. 7. Predictions for multiplicities in central Pb-Pb collisions at the LHC. On the left the name
of the authors can be found. On the right, the observable and centrality definition is shown. The
error bar in the points reflects the uncertainty in the prediction. See the text for explanations.

(1) Monte Carlo simulators of nuclear collisions. These models include many dif-
ferent physical ingredients to be combined in a consistent manner. They all
take into account energy-momentum and quantum number conservation in a
detailed way. While sometimes the physical ingredients are similar between
different models, the details of the implementation lead to different results.

e The PSM model ?° contains a soft component with contributions from both
the number of collisions and of participants which lead to the creation of
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Fig. 8. Predictions for multiplicities in central Pb-Pb collisions at the LHC. On the left the name
of the authors can be found. On the right, I indicate whether a correction has been applied or not,
and provide a brief indication of some key ingredients in the model. The error bar in the points
reflects the uncertainty in the prediction. See the text for explanations

color strings, satisfying roughly Eq. (3) with  calculable within the model
and tending to 1 as energy constraints becomes less and less important
with increasing energy. It also contains a hard component using standard
pQCD, in which nuclear parton densities (npdf’s) are used. Finally, string
fusion is introduced as a collective mechanism in the soft component.

e The HIJING/BB 35 model contains a soft component proportional to
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the number of participants, and a hard component proportional to the
number of collisions which also considers npdf’s. It includes mechanisms
for baryon number transport from the fragmentation to the central ra-
pidity regions (string junctions), and introduces collectivity through an
enhanced string tension - color ropes. The different predictions reflect the
uncertainties in the increased string tension.

e The DPMJET model 7*3% is similar to the PSM, but it includes string
junction transport, percolation of strings as a collective mechanism and
the strong shadowing proposed for the soft sector in 43,

e The AMPT model 735 considers a parton cascade initialized by HIJING
™3 with subsequent hadronization via strings and a hadron transport. The
different predictions correspond to the different npdf’s used.

e The HYDJET++ model 7 contains a soft, thermalized component which
is treated hydrodynamically, and a hard component treated through
PYTHIA (and PYQUEN, see Subsection 4.1). The error bar corresponds
to a variation of the minimum transverse momentum for the hard compo-
nent from 7 GeV (larger multiplicity) to 10 GeV (smaller multiplicity).

e The UrQMD model 7 contains a soft component, and a hard compo-
nent through PYTHIA 48 with a detailed space-time evolution of the
pre-hadronic and hadronic degrees of freedom.

e The EPOS model 7635 contains similar ideas to those of PSM and DP-
MJET but aims to account for energy-momentum conservation at the
level of the cross sections (usually the cross sections are computed ignor-
ing energy-momentum constraints which are applied a posteriori on the
mechanism of particle production), and contains a detailed model for the
soft-hard transition, for the treatment of the hadronic remnants and a
separation between a dense core, eventually treated via hydrodynamical
evolution, and a dilute corona which hadronizes via strings.

e The PACIAE model 7" contains a parton cascade initialized by PYTHIA
with hadronization via string formation and decay and a hadron trans-
port. Collective effects are introduced through the increase of the string
tension which, in this case, produces both a harder spectrum in transverse
momentum and higher masses - as in previous approaches which consider
increased string tensions -, and an enhancement of particle production
with large longitudinal momentum.

(2) Models based on saturation ideas.

e Abreu et al. ®3% is based on a non-linear, logistic evolution equation
which resembles the Balitsky-Kovchegov (BK) equation in high-density
QCD (see the review in 33), for fixed-size dipoles. It admits an analytic
solution and shows limiting fragmentation for some restricted parameter
space.

e Albacete 73 is a prediction based on the running-coupling BK equation,
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with multiplicities computed through the use of kp-factorization and local
parton-hadron duality (LPHD). The error bar reflects the uncertainties in
the extrapolation coming from the freedom to fix the parameters at RHIC.
1. 4735 is a prediction based on the extension of the geometric
scaling observed in lepton-proton collisions to proton-nucleus and nucleus

e Armesto et a

collisions, and on LPHD. It provides a pocket formula for multiplicities,
Eq. (5), in which the energy and centrality dependences explicitly factor-
ize. The error bar reflects the uncertainties in the nuclear size dependence
of the saturation scale extracted from lepton-nucleus data.

e Eskola et al. 3% use a pQCD approach supplemented with a geometric
saturation ansatz. The obtained multiplicities and energy densities are
used as input for an ideal hydrodynamical calculation.

e Fujii et al. 3° use the fixed-coupling BK equation plus limiting fragmenta-
tion together with kp-factorization and LPHD. The error bar corresponds
to the different initial conditions for evolution.

e Kharzeev et al. 893% use the saturation ideas together with kp-factorization
and LPHD. The error bar corresponds to the different options in which
the saturation scale grows with energy or saturates.

(3) Data-driven predictions.

e Arleo et al. 3° is a logarithmic extrapolation of multiplicities at RHIC
which is used as input for ideal hydrodynamical calculations at low trans-
verse momentum coupled to pQCD at large transverse momentum.

3% is a data-driven extrapolation based on the logarithmic increase

of particle densities from SPS to RHIC and on the factorization of energy

and geometry dependences.

e Busza

e Chaudhuri ° is a data-driven extrapolation based on the logarithmic in-
crease of multiplicities at RHIC which is used as input for a viscous hy-
drodynamical calculation.

e Jeon et al. 3% is a data-driven extrapolation based on limiting fragmen-
tation (considering not only the slope of the pseudorapidity distribution
near beam rapidity but also the curvature) and the logarithmic increase
of particle densities from SPS to RHIC. A small, not visible error bar is
due to the different choice of parameters in the fits to existing data.

(4) Others.

e Bzdak 3! uses a variant of the wounded nucleon model #° in which the
relevant degrees of freedom are not nucleons but quarks and diquarks. In
order to obtain predictions for multiplicity, the results in the model for
the number of wounded quarks and diquarks have been supplemented by
the multiplicities for nucleon-nucleon collisions in Table 2, with the error
bar reflecting the uncertainty in the latter.

e Capella et al. 35 is a soft model in which the multiplicity gets contributions
from both the number of collisions and of participants, supplemented with
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a very strong shadowing® related with diffraction in lepton-proton colli-

sions 43.

e Dias de Deus et al. 3® use a model in which the multiplicity, proportional
to the number of collisions, is decreased by a geometric factor, given by
two-dimensional continuum percolation and related with the fraction of
transverse area occupied by the overlapping sources of particles (strings).

e El et al. 823% is a parton cascade initialized by CGC conditions. The
parton cascade includes both 2 < 2 and 2 < 3 processes and uses LPHD
to relate the output of the cascade with the final multiplicities. The error
bar reflects the uncertainty in the extrapolation of the saturation scale in
the CGC initial conditions from RHIC to LHC energies.

e Humanic 83

is a superposition model based on a geometrical ansatz to de-
termine the number of pp collisions, which are modeled through PYTHIA.
A space-time picture of hadronization is also included which allows a link
to a hadron cascade.

e Sarkisyan et al. 8 is a model based on the constituent quark model which
leads to a participant-like picture similar to that in the model of Bzdak,
with the energy deposition in the collision considered within Landau hy-
drodynamics (see e.g.  for a recent review).

e Wolschin et al. 863% is a relativistic diffusion equation in rapidity and time
of the Fokker-Planck type. The error bar reflects the uncertainties in the
extrapolation of the diffusion parameters from RHIC to the LHC.

From the plots one can conclude that most predictions lie in the range 1000 =+
2000. It should be noted than a value lower than 1000 could be, depending on the
corresponding value for pp collisionsP, in conflict with participant scaling. On the
other hand, a value larger than 2000 will be a challenge for saturation physics.
Monte Carlo simulators, due to their complexity, do not include yet many recent
theoretical developments, e.g. none implements saturation effects. This might be
the reason why they tend to give the largest values.

Finally, multiplicities show a decreasing tendency with time from 1995 49,
through pre-RHIC predictions 27, until now. This is due to the inclusion of col-
lective effects which imply a large degree of coherence in particle production like
saturation, strong color fields, percolation, or strong gluon shadowing. This strong
coherence can be understood as a decrease in the number of sources which con-
tribute independently to multiparticle production. Proposals to find evidence of
these ideas in correlations will be discussed in Subsection 3.4. They would also

©This very strong shadowing corresponds to ideas very close to those of saturation but formulated
in a soft domain in which pQCD techniques are not applicable and phenomenological models are
required.

Ppp collisions at the same energy as PbPb may not occur before several year of successful pp
data-taking. Therefore, for the first runs an interpolation between pp collisions at Tevatron and
pp collisions at LHC energies could be required.
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leave an imprint in multiplicity distributions, see Bopp et al. in 3°. Also the pseu-
dorapidity distributions are informative: for example, the model by Abreu et al.
78,35 shows a extremely wide plateau in rapidity (along ~ 8 units).

Now I review the predictions for baryon transport. Since this is an important
observable from the point of view of the hadrochemistry, it could be included in
Subsection 3.3. But it is also a global characteristic of the collision which goes
beyond the single number, dN¢/dn|,=0, mainly discussed so far.

The general prediction for the net proton number (p —p) at mid-rapidity is
smaller than 4 for central PbPb collisions at the LHC, to be compared with the
value 5 + 8 in central AuAu at top RHIC energy 87. This is so in models of differ-
ent kinds, ranging from approaches with the baryon junction mechanism or other
baryon transport effects, as HIJING /BB, DPMJET or the EPOS model, hydrody-
namical models like Eskola et al., the diffusion equation of Wolschin et al., the statis-
tical model of Rafelski et al., see Subsection 3.3, the saturation model in 8% (see Fig.
9 for the energy evolution of the mean rapidity shift (0y) = [(Unet baryon) — Ybeam |
in this approach), or the model ?° based on string formation with momentum frac-
tions taken from parton distribution functions and string fragmentation through
the Schwinger mechanism.

Fig. 9. Mean rapidity shift of net baryons as a function of beam rapidity Ypeqm in the model in
88 Solid and dashed lines correspond to different options for the behavior of the saturation scale.
The solid straight line shows the prediction for the position of the fragmentation peaks. The star
at Ypeam = 8.5 is the prediction for central PbPb collisions at the LHC. Experimental data can
be found in 89. Figure taken from 88.

Note that I have focused on predictions for charged multiplicities at mid-rapidity
well covered by all heavy-ion detectors at the LHC and, thus, a true first-day ob-
servable. Predictions for the total charged multiplicity in all phase space also exist,
see e.g. Busza in 3% (or even ! for predictions in strongly coupled super-symmetric
Yang-Mills theories computed through the use of the AdS/CFT correspondence).
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3.2. Collective flow

Here I turn to collective flow - another first-day observable. Specifically, I will discuss
elliptic flow at mid-rapidity, both integrated over and as a function of transverse
momentum. In this Subsection I will concentrate on elliptic flow for hadrons, while
that for photons will be discussed in the corresponding Subsection 4.3.
Concerning the pp-integrated vs, the expectation both from data-driven esti-
mations and from more involved, model-dependent calculations, is for it to increase
when going from RHIC to the LHC. Such increase, as discussed in Section 2 and
in 34, looks stronger in data-driven extrapolations than in hydrodynamical models.

53,67 within ideal hydrodynamics indicate increases in the trans-

Numerical results
verse momentum integrated vy at b ~ 7.5 fm from RHIC to the LHC, ranging from
~ 15 % ©7 for charged multiplicities at mid-rapidity around 1200, to ~ 40 + 60 %
in 53 for twice this multiplicity in central PbPb. Results in viscous hydro 5* yield
increases ~ 10 % for a charged multiplicity of 1800. Let me note that by viscous
hydro I mean calculations considering shear viscosity but neglecting bulk viscosity.
Studies on the impact of the latter are at the very beginning 92:93:94,

Concerning the difference between ideal hydrodynamics and non-ideal scenarios,
a consequence of a larger density of the medium is that the ideal hydrodynamical
behavior will be better fulfilled at the LHC than at RHIC 2, as a higher density
implies a smaller mean free path and a faster thermalization. Thus the behavior of
the medium at the LHC is expected to be closer to that of an ideal fluid than at
RHIC, if one assumes that the medium at RHIC shows only partial thermalization
i.e. that the mean free path is not yet much smaller than the system size. This is

illustrated in Fig. 10, where
€ _ g dNtot 1
IR — 17
1+ K/07 Sover dy /3’ (17

with K the Knudsen number, S, the overlap area, o the typical cross section

V2

between constituents of the medium and 1/ /3 comes from the speed of sound of an
ideal ultra-relativistic gas. The ideal hydrodynamical limit is reached for K — 0,
and Syyer, €, and dN,p /dy are provided through initial conditions, see Drescher et
al. in 3® for details.

Now I turn to ve(pr). First I will discuss the expectations within the framework
of hydrodynamical models. From the matching of pQCD with hydrodynamical spec-
tra, see e.g. Eskola et al. in 3553 hydrodynamical calculations are expected to be
valid up to larger transverse momentum, pr < 3 + 4 GeV, at the LHC than at
RHIC. In ideal hydrodynamical calculations, a very similar va(pr) at RHIC and
at the LHC is expected for pions at pr < 2 GeV, while the va(pr) for protons is
expected smaller (as illustrated in Fig. 11), see Bluhm et al., Kestin et al., Eskola
et al. 35 and 236797 for computations corresponding to initial charged multiplicities
which range, in central PbPb, from ~ 1200 in Kestin et al. to ~ 2300 in Eskola et
al. Note that even a decrease of v2(pr) does not necessarily imply a decrease in the
pr-integrated v, - actually all models show the opposite behavior -, as it has to be
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Fig. 10. va versus Npart at RHIC (lower line) and at the LHC (upper lines), for different values
of the parameters in Eq. (17). The normalization is not determined in the model. Experimental
data are from PHOBOS 96. Figure taken from 35.

convoluted which a pp-spectrum which is harder at the LHC than at RHIC. If fact
the small increase of va(pr) shown in ®3, less than 10 %, translates into a much
larger increase of pr-integrated vo than other predictions, as discussed above. On
the other hand, the available calculation within viscous hydrodynamics ®> shows a
decrease.
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Fig. 11. v2 versus pr from ideal hydrodynamical calculations for different entropy densities corre-
sponding to RHIC and LHC situations, for positive pions and protons, for b = 7 fm. Figure from
67
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The difference between different predictions comes not only from the different
initial conditions? (as illustrated in %), but also from details of the calculations
(made in either two 53 or three (all others) spatial dimensions), the equation of
state in both the confined and deconfined phases and its matching (see e.g. Bluhm
et al. for a study of the influence of the equation of state), the treatment of the
hadronic phase, the hadronization procedure (e.g. a statistical method in °7),. ..

Now I focus on other approaches. The Monte Carlo simulators AMPT 72 and
EPOS 70 give results ® at the LHC which are very close to those at RHIC for
pions, while the former shows a decrease of vao(pr) for protons. The simulator in
83 gives sizably smaller va(pr) at the LHC than at RHIC in spite of the fact that
this model contains hadronic rescattering which, naively thinking, should increase
va(pr) due to the larger densities at the LHC.

The parton cascade MPC by Molnar 9935 which considers 2 « 2 partonic
collisions, provides interesting information on the relation between viscous hydro-
dynamical calculations and transport results. The author chooses the parameters
in the transport equation so as the shear viscosity is fixed to be n/s < (47)~1
(the equality corresponds to the so-called minimal viscosity bound 1%9). The results
show a decrease in vo(pr) when going from RHIC to the LHC, see Fig. 12, with
all dependence on multiplicity encoded in the relation of the saturation scale with
multiplicity.

Finally, the absorption model of Capella et al. 3° considers the absorption of the
produced particles moving along paths in the medium, with increasing absorption
with increasing length of traversed matter. Such model predicts a strong increase
when going from RHIC to the LHC, due to the increasing medium density (as
indicated in the previous Subsection, this model predicts a charged multiplicity at
mid-pseudorapidity ~ 1800 for Npqre = 350).

Therefore, data on both pr-integrated vy and on ve(pr), together with the
measurements of the multiplicity, may help to verify whether the origin of the
elliptic flow is a collective expansion (and thus thermalization or isotropization
has been achieved and hydrodynamical models are applicable) or thermalization
has been achieved only partially. In the latter case, a sizable increase is expected in
va(pr) for pr < 2 GeV, while in the former a decrease or a mild increase generically
results. A sizable decrease would favor some viscosity effects, though the issue of
the dependence on the initial conditions for hydrodynamical evolution should be
settled for firm conclusions to be extracted. Note that, while finite temperature
pQCD calculations (valid for T' > Tye,, see e.g. 197 and references therein) indicate

that the shear viscosity to entropy ratio should increase with temperature,
n 1
- X 18
s a(T)Inas (T) (18)

with a,(T') decreasing with increasing temperature, the behavior of this and other

9For example, the importance of the initial conditions for the application of hydrodynamical
calculations has been recently discussed in 8.
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Fig. 12. va versus pr from the MPC parton cascade of Molnar, for RHIC and LHC situations for
b = 8 fm. Figure taken from 35.

transport coefficients (like e.g. the bulk viscosity) for realistic temperatures close
to the deconfinement temperature Ty, is not clear yet.

3.3. Hadrochemistry at low transverse momentum

Hadrochemistry is a key observable to disentangle the mechanism of particle pro-
duction. Statistical models constitute the most popular framework to discuss it.
Within statistical models, predictions are done normally in the grand-canonical en-
semble valid for large systems’. The relevant parameters, fireball temperature and
baryochemical potential pp® are extrapolated from the results extracted at lower
energies. The results obtained by different groups (Andronic et al. and Kraus et al.
n 35 and 192) are shown in Fig. 13 and Table 4. It can be observed that even the p/p
ratio takes values very close to 1 in the expected range of T' ~ 160 = 175 MeV and
up ~ 0+ 6 MeV. Concerning these extrapolations, p/p is particularly sensitive to
the value of pup, while the ratios of multi-strange baryons to non-strange particles
are particularly sensitive to the temperature, see e.g. 192.

For smaller systems, e.g. smaller nuclear sizes or peripheral collisions, the grand-
canonical ensemble is not expected to provide a good description of particle pro-
duction. While the traditional way of addressing the question for strangeness pro-
duction is the use of a strangeness suppression factor - thus assuming a chemically

TIn the grand-canonical ensemble it is possible to predict the particle ratios without any reference
to the total multiplicity i.e. to the total volume of the system. This case is one of the very few in
which predictions can be done in absence of such information.
SThe strangeness suppression factor used at lower energies within the grand-canonical ensemble
is 1 at RHIC energies and this value is assumed for the LHC.
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Fig. 13. Antiparticle/particle ratios R as a function of pp for T = 170 MeV (left) and as a
function of T for ug = 1 MeV (right). The horizontal line at 1 is meant to guide the eye. The
p/p ratio (averaged over the data of the 4 RHIC experiments at \/syn = 200 GeV) is displayed
(gray horizontal line) together with its statistical error (gray band). As illustrated, up ~ 27 MeV
(dashed line) can be read off the Figure directly within the given accuracy (vertical gray band).
Figure taken from 102,

Table 4. Predictions of the thermal model for hadron ratios in central Pb+Pb collisions at LHC,
for up = 0.8 MeV and T' = 161 MeV. The numbers in parentheses represent the error in the last
digit(s) of the calculated ratios. Table taken from Andronic et al. in 3°.

a7~ /at | K7 /KT p/p A/A /= Q/Q
1.001(0) | 0.993(4) | 0.9487000s | 0.997 0004 | 1.005000; | 1.013(4)
p/mt K*/nt K= /n~ AJjm~ = /m O /m~
0.074(6) | 0.180(0) | 0.179(1) 0.040(4) | 0.0058(6) | 0.00101(15)
102,103

non-equilibrated system, the proposal in is to keep strangeness conservation

in smaller volumes, called clusters. The effects on particle ratios of the consideration
of clusters of different sizes can be seen in Fig. 14 and in 193,

Another proposal within statistical models is the non-equilibrium scenario of
Rafelski et al. in %4, This scenario shows a sensitivity to the total multiplicity in

the central region and predicts, with respect to the chemically equilibrated one, an
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Fig. 14. Predictions for various particle ratios using different values for the cluster size R¢. Figure
taken from 102,

enhancement of multi-strange and single strange resonance yields, and a decrease of
non-strange resonances (the prediction for net-baryon yields has been commented
in the Subsection 3.1). Results can be seen in Table 5 35,

The different scenarios for statistical production lead to marked differences in
particle yields in heavy-flavor production, which will be commented on in Subsection
4.2.

Now I turn to non-statistical models. These models mainly focus on the baryon-
to-meson ratios, whose large values measured at intermediate pr ~ 3 GeV at
RHIC?3%5 much larger than those measured in nucleon-nucleon collisions, con-
stitute the (anti)-baryon anomaly which has triggered many new ideas.

There are several available predictions: by ideal hydrodynamical models (Kestin
et al. 97:3%) by recombination models as implemented in AMPT (Chen et al. 3%) and
by models which consider a higher string tension like percolation models (Cunqueiro
et al. 3°) and HIJING /BB by Topor Pop et al. 3, see Figs. 15 and 16. In general,
hydrodynamical and recombination models predict larger baryon-to-meson ratios
than models which consider an increased string tension in nucleus-nucleus collisions
with respect to nucleon-nucleon.

Let me comment that the percolation model of Cunqueiro et al. 35 predicts
a Cronin effect - a nuclear modification factor above one - for protons at mid-
rapidity in central PbPb collisions. This is at variance with most extrapolations or
theoretical expectations which predicts a disappearance of the Cronin effect with
increasing collision energy, see e.g. 195106,

While every non-statistical prediction is linked to a multiplicity scenario, it is not
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Table 5. Predictions for particle yields at the LHC for different scenarios by Rafelski et al.: chem-
ically equilibrated (second column), chemically non-equilibrated but with the same freeze-out
temperature as the previous one (third column), and chemically non-equilibrated with a different
temperature but for the same multiplicity as the previous non-equilibrated case. The '*’ refers to
input values, while the subindex vis refers to values observable in the ALICE TPC (|n| < 0.9),
S denotes the entropy, V' the volume and b the baryon number. The slashes are used to give the
particle yields with/without weak decays. Table taken from Rafelski et al. in 3°.

T [MeV] 140 | 1407 162*
dV/dy| fm3] | 2036 | 4187 | 6200*
dsS/dy 7517 | 15262 | 18021

dNen/dyly—=o | 1150* | 2351 2430
ANYS /dy 1351 | 2797* 2797
P 25/45 | 49/95 | 66/104
b—b 2.6 5.3 6.1
(b+b)/h~ | 0.335 | 0.345 0.363
0.1.-7% 49/67 | 99/126 | 103/126

K* 94 207 175
¢ 14 33 23
A 19/28 | 41/62 | 37/50
cn 4 9.5 5.8
Q- 0.82 | 2.08 0.98
A0 AT 4.7 9.3 13.7
K (892) 22 48 52
n 62 136 127
n 5.2 11.8 11.5
p 36 73 113
w 32 64 104
fo 2.7 5.5 9.7
K+/mk, 0.165 | 0.176 | 0.148

2 /Ayis | 0.145 | 0.153 | 0.116
A(1520)/Ayis | 0.043 | 0.042 | 0.060
2(1530)°/2~ | 0.33 | 0.33 0.36

¢/K+ 0.15 | 0.16 0.13
K;(892)/K~ | 0.236 | 0.234 | 0.301

so easy to see the effect of a variation of multiplicity on the results for hadrochem-
istry of different models. In principle, hydrodynamical and recombination models
would benefit from a larger multiplicity due respectively to the larger applicability
of hydrodynamics (larger duration of the hydrodynamical phase) and due the larger
density in recombination models, with less restrictions due to finite density and vol-
ume. For models which consider a higher string tension (in nucleus-nucleus than
in pp collisions), an increase in the string tension implies a reduction of multiplic-
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Fig. 15. Left: Ratio p/m° at RHIC (black) and at the LHC (blue) from the percolation model of
Cunqueiro et al., for central (upper lines) and peripheral (lower lines) collisions. Right: Transverse
momentum spectra for various particle species in AMPT, Chen et al., at RHIC (lines) and at the
LHC (symbols joined by lines), for b < 3 fm. Figures taken from 35.

ity and an increase in baryon/strangeness production. Therefore, in these models
an increase of multiplicity originating from a smaller string tension would imply
a reduction of the effects characteristic of the enhanced string tension scenario.
Obviously these most crude expectations can only be substantiated by further cal-
culations for different multiplicity scenarios within the models.

Finally, let me mention that the possibility of producing charmed exotic states
in heavy-ion collisions at the LHC has also been addressed, see Lee et al. in 3°.

3.4. Correlations

Now I turn to correlations. First, I will indicate the predictions for the Hanbury-
Brown-Twiss (HBT) interferometry (see the recent review 107).

The generic expectation 3* is that all HBT radii Rout, Rsidze and Riong will
increase when going from RHIC to the LHC. This is substantiated by several cal-
culations using ideal hydrodynamics, like Frodermann et al. (with the transition
out-of-plane to in-plane shape clearly reflecting in the radii), or in the hydro-
kinetic approach of Karpenko et al. and Sinyukov et al. 35 (see Fig. 17). Both
these calculations consider ideal hydrodynamics but different hadronization pro-
cedures, the latter intending to consider some out-of-equilibrium features. This is
also the case in the calculations in the AMPT model by Chen et al. in 3 and the
hydro+statistical model 7198 which combines a hydrodynamical behavior with
hadronization through the statistical method. The corresponding results can be
seen in Table 6.

Within ideal hydrodynamics, the features of the HBT radii which are not in
agreement with RHIC data - too large Riong and Rout/Rside, and the behavior of
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Fig. 16. Antiparticle/particle ratios (left) and transverse momentum spectra (right) for different
particle species, in ideal hydrodynamics, for two scenarios corresponding to RHIC and the LHC.
Figure taken from 7.

Table 6. Predictions for the HBT radii at RHIC/LHC from two different models: Chen et al. in
35 for b = 0 and 0.3 < k7 < 1.5 GeV, and the hydrodynamical plus statistical model in 97, for
two pion multiplicity scenarios at the LHC, 558 and 1193.

RHIC/LHC | Chen et al. 97
Rt 3.60/4.23 | 5.4/6.0-6.5
Rside 3.52/4.70 | 4.3/5.3+6.3
Riong 3.23/4.86 | 6.1/7.6+-8.6

Rou and Rg;q. with the relative momentum of the pair - will also be present at the
LHC. A piece of knowledge still missing in this context is the effect of viscosity on
the HBT radii 1% and the effects of pre-thermalization dynamics 11°.

On the other hand, partial thermalization, which implies a departure of the
ideal hydrodynamical behavior %5, may also help to reduce the ratio Ryu:/Rside
11 in agreement with RHIC data. If this is the case, then the expectation that
the situation at the LHC will be closer to ideal hydrodynamics will reflect in an
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Fig. 17. Transverse momentum spectrum of pions and behavior of the pion HBT radii from
Sinyukov et al., for different scenarios of initial energy densities. Figure taken from 3°.

increase of this ratio when going from RHIC to the LHC. Besides, the inclusion of
minijets modifies the behavior of the HBT radii and of the chaoticity parameter
with respect to pure hydrodynamical predictions 74.

Correlations can also be useful to clarify the mechanism of particle production.
Correlations in rapidity were proposed long ago, see e.g. 112
sensitive to the distribution of particle sources. More specifically, defining two ra-
pidity intervals denoted by F' and B with multiplicities nr and np respectively, the
correlation strength b (sometimes denoted as %) is defined as

, as a measurement

Dip _ (nrnp) — (nr)(np)
D%p (n%) — (np)?

(np)(np) =a+bng, b= (19)
Predictions exist 113 for such quantity at the LHC, see Fig. 18 and Dias de Deus et
al. 3% in the framework of a two-step scenario which considers first the formation
and interaction of particle emitters (coherent along large rapidity regions) which
subsequently decay into the observed particles (see also 11?).

Many explanations try to address the existence of such long range correlations,
16 and references therein. It has been linked to the so-called ridge phe-
nomenon measured at RHIC (see e.g. 117): the existence of a two-particle correla-
tion narrow in azimuth but extended along several units of pseudorapidity in AuAu
collisions. While a quantitative description is missing, present qualitative explana-
tions are based (e.g. *®) on the coupling of particle production correlated along a
long rapidity range to the collective flow. An extended correlation as predicted by

see e.g.
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Fig. 18. Forward-backward correlation correlation strength for different values of the rapidity gap
An = nr — npbetween the forward and backward windows at RHIC and at the LHC, from a
two-step scenario. Preliminary data are from 4. Figure courtesy of the authors of 113,

e.g. the two-step scenario mentioned above, together with the fact that the collec-
tive flow is expected to last longer at the LHC than at RHIC, should make this
phenomenon more prominent at the LHC.

3.5. Fluctuations

Many types of fluctuations have been proposed and analyzed as possible signatures
of a phase transition in ultra-relativistic heavy-ion collisions: in multiplicity, charge,
baryon number, transverse momentum,... The results at SPS and RHIC energies
are not clear - the evidence of a non-statistical or non-trivial origin of fluctuations
at SPS and RHIC is still under debate -, which has prevented predictions for the
LHC. Available predictions are for the multiplicity fluctuations (Cunqueiro et al.
n 3%) quantified through the scaled variance of negative particles,

22n) () = )’ 0

(n=) (n=)

measured in a given rapidity interval dy. The predictions, shown in Fig. 19, indicate

a non-monotonic behavior at some given number of participants (a change of slope
at some Npgr+ smaller with increasing energy) which is, in the framework of this
model, indicative of the existence of a percolation phase transition. Note that in
this model, as in others, multiplicity fluctuations are linked to those in transverse
momentum.



April 2, 2009 19:13 WSPC/INSTRUCTION FILE lhcpredictionsv2

Predictions for the heavy-ion programme at the Large Hadron Collider 33

N E
§355 RHIC 5-15
W Ro) et =1.
= LHC
3
25
2
15F
1=
0.5
= ol b by b b e b b e by gy g 1y
0 50 100 150 200 250 300 350 400

par

Fig. 19. Scaled variance of negative particles versus the number of participants in PbPb at top
SPS, AuAu at top RHIC, and PbPb at LHC energies, from bottom to top, in the percolation
model of Cunqueiro et al. Figure taken from 3.

On the other hand, Torrieri in 3> proposes the use of fluctuations of particle ra-
tios e.g. of kaons and pions, as measurements sensitive to the mechanism of particle
dynamics: the fully equilibrated scenario of the grand-canonical ensemble should
show a different behavior from the other ensembles or non-statistical scenarios.

4. Hard and electromagnetic probes

In this Section I review the available predictions for those probes of the medium
whose yields can be, in the absence of a medium, computed through perturbative
techniques - hard probes. These are high transverse momentum particle production,
heavy-quark and quarkonium production, and photon and dilepton production at
large momentum or mass®. For photons and dileptons, i.e. electromagnetic probes,
I will also consider their production at low momentum or mass, though their cal-
culation lies, in principle, beyond the reach of perturbative techniques. Extensive
studies on hard probes at the LHC can be found in ? (pA collisions and benchmark
studies), 14 (particle production at high transverse momentum and jets), 1° (heavy
quarks and quarkonia) and 16 (photons and dileptons).

4.1. Particle production at large transverse momentum and jets

The suppression of the yield of hadrons at large transverse momentum measured
at RHIC 2345 _ the jet quenching phenomenon - is one of the most important
subjects of current research and debate in the field. It is most commonly quantified

tConcerning the total charm and charmonium cross sections and their production at low momen-
tum, doubts exist on whether they can be reliably computed in pQCD - either at fixed order or
via resummation techniques - or not, see e.g. 11 for a discussion on the uncertainties for charm.
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through the nuclear modification factor (15) and usually attributed to the energy
loss of the leading parton which fragments onto the measured hadron, see e.g. the
standard reviews in 33:120 121 (more specific information
about radiative energy loss which is the reference explanation can be found in
122,123 " and about studies of the energy loss in strongly coupled super-symmetric
Yang-Mills plasmas through the AdS/CFT correspondence in 124).

One comment on the definition of the region that I call of large transverse
momentum is in order. At RHIC, such region - usually taken at pr > 7 + 10
GeV -, is determined by that in which the characteristics of fragmentation become
those in absence of any medium, i.e. in pp, and where fragmentation or hadroniza-
tion is expected to be described by standard pQCD techniques so no collectivity
in hadronization (e.g. recombination) seems to be required. More specifically, the
baryon-to-meson anomaly disappears, the nuclear modification factor for different
species becomes similar, etc. Note that this definition is not free from ambiguities
as new effects included in the models (for example, in the transition from recombi-
nation to perturbative fragmentation) may shift it. At the LHC, due to the larger
densities and larger expected collectivity, such region may start at larger pr than
at RHIC, a question which only data will answer.

I start by reviewing the predictions for the nuclear modification factor in central
PbPb collisions at the LHC. In Fig. 20 I show 15 predictions for R4 at pr = 20,50
GeV from different models. Differently from the case of multiplicities, where some
easy re-scaling to a common centrality class was feasible, here such re-scaling is not
possible as there is no simple relation between a change of density /multiplicity and
the resulting energy loss and Raa. Therefore, I simply indicate in the figure the
centrality definition or the multiplicity or energy density (with respect to that at
RHIC) for which the predictions were computed.

Different models use different parameters related with the medium density and
the scattering strength of the parton with the medium. The most common one is the

transport coefficient § which can be related locally to the energy density through
125

and the more recent one

qA('r7y’Z’T) = C.€3/4(I’y7 Z7T)7 (21)

with ¢ some constant which in pQCD is expected to be of order 1" . Other models
use the gluon density, the energy density at thermalization time, the value of as,
etc.

For descriptive purposes, the predictions can be classified into the following
groups:

(1) Models which consider only radiative energy loss (see 23 for a comparison

UThis proportionality is expected in pQCD 2% and also at strong coupling through the AdS/CFT
correspondence, see Hong Liu in 3° and 126, Besides, the transport coefficient may acquire some
energy dependence, see Casalderrey-Solana et al. in 3% and 127. Attempts have been essayed to
compute it from first principles in QCD, see Antonov et al. in 35 and 128,
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Fig. 20. Predictions for the nuclear modification factor in central Pb-Pb collisions at the LHC, for
pr = 20 (red filled symbols) and 50 (when available, blue open symbols) GeV. On the right, the
name of the authors, the particle, centrality definition and some model explanation is shown. The
error bar in the points reflects the uncertainty in the prediction. See the text for explanations.

among the theoretical basis of the different models).

e Arleo et al. 35129 use fragmentation functions modified through their con-
volution with quenching weights - the probability of a given amount of
energy loss - which are evaluated using a simplified radiation spectrum.
The employed characteristic gluon frequency is w, = 50 GeV.

e Dainese et al. 35139 the PQM model, use quenching weights calculated
from the full radiation spectrum in the multiple soft scattering approxi-
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mation and a static medium modeled by the initial overlap geometry. The
different predictions correspond to different extrapolations of the trans-
port coefficient from RHIC to LHC energies.

e Renk et al. 35131 use, as the previous model, quenching weights calculated
from the full radiation spectrum in the multiple soft scattering approxima-
tion, but with a hydrodynamical modeling of the medium and the relation
(21).

e Jeon et al. 35132 yse a schematic model for the quenching weights which
considers only an average energy loss.

e Vitev 35133 uses the GLV model with quenching weights with gluon feed-
back and one-dimensional Bjorken expansion, and higher-twist shadowing
of parton densities. The different predictions correspond to different ex-
trapolations of the gluon density from RHIC to the LHC.

e Wang et al. 35134
tions and compute the yields at next-to-leading order. A Bjorken expan-
sion is considered. The error bars correspond to the different parametriza-
tion of nuclear shadowing employed in the pQCD calculations.

use a model for medium-modified fragmentation func-

(2) Models which consider radiative and elastic energy loss.

e Qin et al. 35135 yse the AMY model with radiative and collisional energy

loss in a medium which is modeled through ideal hydrodynamics. The
error bars correspond to different values of a.

e Wicks et al. 35136 yse the GLV model for radiative energy loss whose
quenching weights are convoluted with those from elastic energy loss. The
error bars correspond to different extrapolations of the gluon density from
RHIC to the LHC.

e Lokhtin et al. 35137 the PYQUEN model, is a implementation within
PYTHIA of radiative energy loss which considers a mean radiative energy
loss distributed among some gluons, which are then allowed to do vacuum
final state radiation until the branching process stops, after which they
scatter elastically.

e Zakharov 138 uses a model which consider quenching weights based on a
single radiation spectrum in the multiple soft scattering approximation,
plus elastic scattering, nuclear shadowing and Bjorken expansion of the
medium. The error bars correspond to the different values at which the
running coupling is frozen in the infra-red, and to considering a purely
gluonic or a chemically equilibrated plasma.

(3) Models with elastic energy loss plus parton conversions. Liu et al. 35139

sider production in pQCD with the possibility of elastic scattering in which
conversion channels e.g. qg — gq or gg — qq, are included. This inclusion turns

con-

out to be of importance for the hadrochemistry at large transverse momentum,
see below. For this model, the highest available pr for the predictions is 40, not
50 GeV.
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(4) Others.

e Capella et al. 3°140 use a comover absorption scenario in which energy gain
and loss terms are implemented in one-dimensional rate equations, plus
strong shadowing. The error bands correspond to the different kinematics
(considering 2 — 1 or 2 — 2 processes) to evaluate the shadowing.

e Cunqueiro et al. 35141
increase in the string tension and a strong modification of the distribution
of particle sources.

e Kopeliovich et al. 35142 consider a sudden hadronization scenario in which
hadrons are created very soon and interact strongly with the produced

consider a scenario in which percolation induces an

medium.

e Pantuev 35143

consider the medium as composed by a thin transparent
corona and a totally opaque core, which can be alternatively interpreted
in terms of a formation time for the QGP. Estimations of the variation of

this time when going from RHIC to the LHC allow for the predictions.

While no simple quantitative conclusion can be extracted from this variety of
models, it can be claimed that those which implement radiative or collisional energy
loss generically predict a nuclear modification factor between 0.15-+0.25 at pp = 20
GeV and increasing with increasing pr. Larger densities lead to larger suppressions,
but the concrete value and the quantitative behavior with increasing pr are different
for different models, a fact which is not only related with the theoretical model used
for energy loss but also with the ’embedding’ of such model in the medium.

On the other hand, jets will be very abundantly produced at the LHC, see
e.g. 1718 and Fig. 1 right. Provided the issues 2! of jet reconstruction through
some algorithm, background subtraction (see e.g. and jet energy calibration are
successfully addressed, they offer huge possibilities to verify the physical mechanism

144)

underlying the jet quenching phenomenon, both through the measurement of the
Rya of jets (see Fig. 21 left) as well as more differential observables such as jet
fragmentation functions (see Fig. 21 right), jet shapes,. ..

For such studies, and for the study of particle correlations, new theoretical
tools have to be developed” and implemented in Monte Carlo simulators (semi-
153 "see e.g. 1% for a recent study). This is
an ongoing effort with several groups involved and several Monte Carlo generators

becoming gradually available: PYQUEN 37, Q-PYTHIA %5, JEWEL '°¢| YaJem
157

quantitative ideas were pioneered in

etc.

Another aspect of great importance both to verify the origin of jet quench-
ing and to understand the interplay between the energetic particles and the soft
medium is hadrochemistry at large pr. First, within the MLLA approximation and

VE.g. the developments in the modified leading-logarithmic approximation (MLLA) approxima-
tion 145,146,147,148,149 " the modifications of Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution 150:151 or the inclusion of elastic energy loss in the parton cascade 152.
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Fig. 21. Left: Nuclear modification factor for jets with |n| < 3 (defined through a cone algorithm
with R = 0.5) versus the Er of the jet, for an integrated luminosity of 0.5 nb~1, in the PYQUEN
model. Right: Fragmentation functions defined with respect to the pr of the jet, in the PYQUEN
model. Figures taken from 3°.

modeling the medium-modification of the final state radiation pattern through a
multiplicative constant in the collinear parts of the splitting functions '#°, an en-
hancement of the ratio of baryons and strange mesons over pions due to medium
effects is found within the fragmentation of a energetic parton °®, see Fig. 22.

Second, the non-Abelian nature of radiative energy loss implies that gluons
lose more energy than quarks due to their larger color charge - i.e. the value of
the quadratic Casimir of the adjoint (3) and fundamental (4/3) representations
in QCD, respectively. Therefore, hadrochemistry is affected, as different particles
receive different contributions from the fragmentation of quarks and gluons and this
relative contribution varies with particle momentum™. This can be seen in Fig. 23
left where Barnafoldi et al. 3% show the results for particle ratios of the GLV energy
loss with different opacities L/A, with L the medium length and A the mean free
path of partons in the medium.

Finally, conversions as discussed above in the model by Liu et al. 3>!39 also
modify the hadrochemistry at large pr, see Fig. 23 right, and there is the possibility

of recombination of partons from adjacent jets 60

which may also increase the
baryon-to-meson ratio at large transverse momentum.

Now I focus on correlations at large transverse momentum and the disappear-
ance of the backward azimuthal peak observed at RHIC. It is usually quantified

through the hadron-triggered fragmentation functions for two hadrons hq,hs, a

WIn this respect, it should be noted that some fragmentation functions e.g. those of protons are
badly constrained from available experimental data in absence of any medium e.g. in etTe™ or pp.
Therefore medium-modification studies are subject to an uncertainty that can only be resolved
with a better knowledge of the vacuum fragmentation functions, see e.g. 159.
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Fig. 22. Medium modification of particle ratios within a jet versus the momentum of the particles,
in the MLLA approximation by Sapeta et al. Figure taken from 3°.
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Fig. 23. Left: Particle ratios versus transverse momentum in pQCD with GLV energy loss for
different opacities, from Barnafoldi et al. Right: p/7t ratio at the LHC in pp, and in PbPb

collisions with elastic energy loss and conversions, from Liu et al. Figures taken from

35

trigger particle hy which defines the near side hemisphere (azimuthal angle 0) with

trig
br

and an associated particle hs in the away side hemisphere (around azimuthal
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Fig. 24. Hadron-triggered fragmentation functions D44 (z7) and the corresponding medium mod-
ification factors Iaa(zr) in NLO pQCD for central Pb+Pb collisions at \/syn = 5.5 TeV, by
Wang et al. Different lines refer to pp and to PbPb with different nuclear parton densities. Figure
taken from 3°.

angle ) with p$*°, reading

dahl ha /dytrig dp?:igdyassodp%sso
dahl/dytrigdp;rig ’

__,asso / trig _trigy __ _trig
Daa(zr =p7*° /oy p17) = Drr

(22)

This quantity provides information on the conditional yield of particles in the back-
ward hemisphere for a given trigger, and offers additional constraints (other than
those coming from R4 4(pr)) on the parameters characterizing the medium in mod-
els of energy loss 134, Predictions for the LHC exist, see 161 and Wang et al. in 35134,
Fig. 24.

To conclude this Subsection, I will comment on one aspect for which no predic-
tion is yet available, namely the wide structure observed in the backward azimuthal
region when the pr of the associated particles is lowered to that of the particles in
the bulk. The standard qualitative explanations, see 2!
from deflection of jets in strong fields, to medium-induced radiation, Mach cones,
162 seem to disfavor the de-
flection of jets. But the nature of such structure has not yet been unambiguously

and references therein, go
Cherenkov radiation,... Recent experimental analysis

established, mainly because it is not yet clear how the jet energy is transferred to
the expanding medium. Much effort is currently devoted to it, see e.g. Bauchle et al.
and Betz et al. for Mach cones in a hydrodynamical medium, Dremin for Cherenkov
radiation and Mannarelli et al. for the energy evolution of the angular structure of
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the energy deposition of jets, in 3°.

4.2. Heavy quarks and quarkonia

Heavy quark and quarkonium production and suppression are other standard hard
probes, see the recent review '3, Beginning with heavy-quark production, it offers
the possibility of testing the expected hierarchy of radiative energy loss 164:16;

AE(gluons) > AE(light quarks) > AE(heavy quarks),

with the first inequality coming from the different color factors (as discussed in the
previous Subsection), and the second from the suppression of radiation due to the
mass of the parent parton. Besides, collisional energy loss is expected to be more
important for heavy quarks %6 than for light partons, and the details of medium
modeling (as a collection of static scattering centers, as a dynamical medium e.g.
in Djordjevic et al. in 3% or in 167...). The measurement by PHENIX and STAR
168,169 of a nuclear modification factor much smaller than 1 for 'non-photonic’
electrons (expected to come from the semi-leptonic decays of heavy flavors) has
triggered a lot of activity. The LHC, with the new possibilities for heavy-flavor
identification of beauty (and eventually of charm) 10-11:12
of non-photonic electrons (with the possibility of separating charm and beauty via
correlations 170171:172) " tooether with the extended transverse momentum reach,
offers an ideal testing ground for these ideas.

In Figs. 25, 26 and 27 I show available predictions for PbPb collisions at the
LHC. Specifically, in Fig 25 left I show the results of the collisional plus radiative
energy loss model of Wicks et al. 136 which uses the DGLV model for radiative en-
ergy loss of heavy quarks, whose corresponding quenching weights are convoluted
with those from elastic energy loss. The different lines correspond to different ex-
trapolations of the gluon density from RHIC to the LHC. In Fig 25 right I show the
results from a purely radiative model by Armesto et al. 173 which uses the quenching
weights for heavy quarks computed in the multiple soft scattering approximation.
The geometry in this model is considered as in the PQM model, see the previous
Subsection. In this case, the results shown are not for the nuclear modification fac-
tor but for the ratio of nuclear modification factors of bottom and charm mesons,
which clearly shows the mass effect on the energy loss in an accessible region of pr.

In Fig. 26 left the results of the model of Vitev 1™ are shown (see also 7).
This model considers a very fast hadronization for heavy-flavored mesons, which
then dissociate through collisions in the QGP. In Fig. 26 right van Hees et al. 176
consider both radiative losses of the heavy quarks and their strong scattering with
resonances in the plasma through a diffusion equation.

In Fig. 27 left the results of the collisional model of ™" are provided. This
model considers elastic energy loss for fixed and running coupling constants, with
the bands defined by different extrapolations of multiplicities. Finally, in Fig. 27
right I show the results from 17 for the R¢ p (the nuclear modification factor defined

and for the measurement
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Fig. 25. Left: Nuclear modification factor for D and B mesons in the WHDG model for different
gluon densities and as = 0.4, from Wicks et al. Right: Ratio of nuclear modification factors for
B over D mesons with radiative energy loss, for different transport coefficients and for the case
where the mass effect on radiative energy loss is switched off, from Armesto et al. Figures taken
from 35,
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Fig. 26. Left: Nuclear modification factor of charm and beauty mesons and baryons for CuCu and
AuAu collisions at RHIC, and for PbPb collisions at the LHC for two different gluon densities,
from Vitev. Right: Nuclear modification factors of D and B mesons in PbPb collisions for b = 7
fm at the LHC, from pQCD and from scattering with resonances in the QGP, from van Hees et
al. Figures taken from 3.

not with respect to nucleon-nucleon collisions but with respect to a peripheral class
of events) for muons coming both from semi-leptonic decays of heavy flavors and
from decays of electro-weak bosons. For the former an energy loss model equivalent
to that in 1™ is used. The latter are expected to show no medium (hot matter)
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Fig. 27. Left: Nuclear modification factor for B mesons in central PbPb collisions at the LHC
versus transverse momentum, in a model with collisional energy loss with fixed (model C) and
running (model E) coupling constant. Bands are defined by different charged multiplicities at
mid-rapidity. Figure taken from 77. Right: Nuclear modification factor R¢ p(pr) for muons at
the LHC, for different transport coefficients and for the case where the mass effect on radiative
energy loss is switched off. Figure taken from 178,

effect, thus this measurement contains its own self-calibration with respect to cold
nuclear matter effects.

All results presented here show a large suppression at pr ~ 10 + 20 GeV (they
have been computed at mid-rapidity except those in !”® which has been done for
the ALICE muon arm covering 2.5 < n < 4), and a gradual increase of the nuclear
modification factor with pr.

On the other hand, in a strongly coupled super-symmetric Yang-Mills plasma,
the dominant energy loss mechanism for a heavy quark, computed through the use
of the AdS/CFT correspondence, is a drag force (valid for small velocities of the
heavy quark), see 121:122:124 " Calculations show 7717 that this drag force results
in a nuclear modification factor much flatter with py than in pQCD-based models
with elastic or radiative energy losses.

Besides, the effects of different shadowing mechanisms (Kopeliovich et al. 3%),
of light-to-heavy conversions ¥ and of thermal production (see Chen et al. in 3°)
have been considered. Also, the possible characterization of the plasma through the
de-correlation of D mesons coming from back-to-back charm-anticharm pairs 181182
is under investigation, see Fig. 28. Further, soft effects can modify the charm cross
section with respect to usual expectations: an enhanced string tension as introduced
in the HIJING /BB ™ model leads to an enhancement of the charm cross section in
heavy-ion collisions ¥ which amounts to a 60 +~ 70 % at RHIC energies and to an
order of magnitude at the LHC.

Now I turn to the suppression of quarkonium - one of the canonical signatures of



April 2, 2009 19:13 WSPC/INSTRUCTION FILE lhcpredictionsv2

44 N. Armesto

LA B B B L [ EO S B AL B B B
08 - Au+Aucollisions |  Pb+ Pbcollisions -
Vs = 200 GeV Vs = 5500 GeV

o
=)
T

(o R RIS
[T T TR TR
® o A~NO

dN/dAg (rad.)™

o
)

5T
PR ST Y [ N N i Sy vy o A i B
0 05 1 15 2 25 3 0 05 1 15 2 25 3

A (rad.)

Fig. 28. DD correlation as a function of relative azimuth angle A¢ with different drag parameter a
for central Au+Au collisions at RHIC (left) and Pb+Pb collisions at LHC (right). The unit of the
drag coefficient a is [107%(fm)~'MeV~2]. No pr cut has been applied. The initial temperature
To and thermalization time 7¢ are, respectively, 340 MeV and 0.6 fm at RHIC and 610 MeV and
0.3 fm at LHC. Figure taken from 181.

QGP formation since its proposal in 1986 34, Unfortunately, this signal is plagued
with uncertainties from cold nuclear matter effects, both from the lack of knowledge
of the nuclear parton densities (see Section 5) and the lack of understanding of nu-
clear absorption in cold, normal nuclear matter. The most recent phenomenological

185,186 indicate that the absorption cross section of J/v in nuclear matter

analysis
is either constant or decreasing with increasing energy. On the contrary, theoretical
models previous to RHIC data 87188 pointed to an increase of absorption with in-
creasing energy. Although some progress ¥ has been made in understanding such
unexpected feature, predictions for the LHC are still subject to large uncertainties.

On the other hand, the behavior of quarkonia in a QGP is not clear either.
Lattice data '?° support a suppression pattern in which 1’ and y. melt just above
the deconfinement temperature, while the J/v survives up to temperatures close to
2T, and the YT up to sizably larger T. Contrariwise, potential models, see °! for a
discussion, suggest that the J/v melts much closer to T, than indicated by lattice
results. The actual suppression pattern could be tested by the transverse momentum
dependence of the suppression of different quarkonium states, as illustrated by Vogt
in 3% see Fig. 29. There, clear differences can be seen between the suppression
sequence of the different states e.g. x. suppression disappears at smaller pr than

the J/4 one if the dissociation temperature of J/ is close to T, while the opposite
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Fig. 29. The survival probabilities as a function of pr for the charmonium (left-hand side) and
bottomonium (right-hand side) states for initial conditions at the LHC. The charmonium survival
probabilities are J/v¢ (solid), x. (dot-dashed) and v’ (dashed) respectively. The bottomonium
survival probabilities are given for T (solid), x1p (dot-dashed), Y’ (dashed), x2p (dot-dot-dash-
dashed) and Y” (dotted) respectively. The top plots are for Top = 700 MeV while the bottom are
for Top = 850 MeV. The left-hand sides of the plots for each state are for the lower dissociation
temperatures, 1.17. for the J/v¢ and 2.3T. for the T while the right-hand sides show the results

for the higher dissociation temperatures, 2.17¢ for the J/v¢ and 4.1T for the T. Figure taken from
35

happens if the J/1 dissociation temperature is much higher*.

Another signature of the existence of a deconfined state of quarks would be
an enhancement of the quarkonium yield due to a recombination process in which
quarks and anti-quarks from the plasma form bound states. Apart from having
being proposed as a justification for the baryon-to-meson anomaly and the scaling
of v9 normalized to the quark number versus the quark kinetic energy observed
at RHIC (see 2347), such mechanism has been suggested to explain the apparent

1937 an

larger suppression at forward than at central rapidities measured at RHIC
effect which goes in opposition to a density-driven suppression - the system is ex-
pected to be more dilute far from mid-rapidity. For the purpose of predictions, the
largest uncertainty in the recombination mechanism comes from both the charm
and the bulk multiplicities at LHC energies, see Fig. 30 left !4 for the predictions
for a fixed total multiplicity and different charm cross sections. The recombination
mechanism could be tested by the different dependence of the quarkonium average
transverse momentum on centrality with and without recombination, see Fig. 30
right 195, In this latter plot initial production correspond to the initial yield of .J/1)
coming from the hard collisions (in which J/¢ is formed from c¢¢ pairs from the

*While the naive expectation is that the suppression disappears with increasing pr due to the
smaller time that the bound state stays in the plasma, there are proposals 92 that the suppression
should reappear at larger pp due to the larger ’effective’ T' seen by the bound state when moving
fast with respect to the medium.
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Fig. 30. Left: Predictions for the centrality dependence of the J/1 yield versus the number of
participants, relative to the charm production yield for different values of the charm cross section
indicated on the curves, from Andronic et al. Right: (p%) of the J/v versus the number of binary
nucleon-nucleon-collisions for different nuclear smearing parameters, for initial and in-medium
production, from Thews et al. Figures taken from 35.

same nucleon-nucleon collision), while in-medium formation corresponds to recom-
bination. The parameter A\ accounts for the difference of the transverse momentum
of the J/v¢ in pp and in pA, assuming for the latter a proportionality with the
number of binary nucleon-nucleon collisions N¢.y,

<p2T>pA = <p2T>pp + /\2(Ncoll —1). (23)

The only prediction which could be - to my knowledge - directly compared to
data is that from 196, It illustrates the different effects that enter in the calculation:
no absorption, strong nuclear shadowing (see Fig. 31 left), J/vy suppression by
comoving particles (for a charged multiplicity at mid-pseudorapidity around 1800,
see Capella et al. in Subsection 3.1) and recombination with different values of
Cly) = (deg’/dy)Q/ngfw/dy. The different effects are illustrated in Fig. 31 right.
The magnitude of the effect of recombination in this plot is much smaller than the
one to be seen in Fig. 30 left, although the parameter fixing the recombination
varies in a similar range. This is due to the kinematic requirements imposed on the
cc for recombining, which are different in both models.

Finally, let me indicate that heavy-flavor and quarkonium production can dis-
criminate the different mechanisms of particle production. In fact, recombination
can be formulated in the framework of statistical hadronization models. In the
proposal by Rafelski et al. 3>'%7 a sudden hadronization of the QGP could lead
to strangeness over-saturation, which would imply an enhancement in the relative
production of charmed-strange mesons and baryons over non-strange ones, with the
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Fig. 31. Left: Nuclear modification factor of J/1 and Y versus the number of participant nucleons
for PbPb collisions at the LHC with only cold nuclear matter effects (shadowing) and at different
rapidities, from Bravina et al., with the bands reflecting different parametrizations for the gluon
densities and different kinematics. Figure taken from 3°. Right: Nuclear modification factor of .J /4
versus the number of participant nucleons for PbPb collisions at the LHC, with only the effects of
shadowing and with comover suppression for different recombination strengths ranging from none
to high (C' = 0+ 5), from Capella et al. Figure taken from 196.

corresponding diminution of the recombination probability for J/1 formation.

4.3. Photons and dileptons

Electromagnetic probes - photons and dileptons - lie at the core of the discussions
on QGP formation, see the recent reviews 98199 In principle, thermal real and
virtual photons are the golden signature of hot matter produced in the collisions.
But they have to compete with many other sources - thus reducing the signal to
background ratio - originating from both non-equilibrated partonic matter or the
hadronic phase.

Photons at large and intermediate py are the usual tool for calibration as they
are not affected by the presence of a QGP and are well described by pQCD 2% (see
also Rezaeian in 3° for production mechanisms alternative to collinear factorization
in pQCD). At low pr, an excess is claimed 2°! which is compatible with thermal
emission from an equilibrated source with 7" > 300 MeV at initial times < 0.6
fm, see e.g. 202. Correspondingly, predictions exist for the LHC, see Fig. 32 left in
which the results of a hydrodynamical model coupled to a NLO pQCD calculation
are shown, by Arleo et al. 3°. The parameters used correspond to a multiplicity
of 1300 charged particles at mid-rapidity. On the other hand, the description of
photons in pQCD is far from being simple. There are contributions from the nuclear
modification of parton densities, initial state energy loss, and final state energy loss
which deviates the nuclear modification factor for direct photons (i.e. not coming
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Fig. 32. Left: Photon yield versus transverse momentum at mid-rapidity from pQCD plus thermal
emission from a QGP, from Arleo et al. Right: Nuclear modification factor for photons in central
dPb and PbPb collisions at the LHC with cold nuclear matter effects and initial and final state
energy loss, from Vitev. Figures taken from 35.

from decays or conversions) from 1 - even in pA collisions, see Fig. 32 right, Vitev
35 apd 203,204

The elliptic flow coefficient vy for photons is a most delicate measurement (a
small signal affected by huge backgrounds) but offers great possibilities, as it is
sensitive to the details of the mechanism of photon production. For example, the
contributions from conversions (inverse Compton scattering, 20%)
Fig. 33 top 206. It is also very sensitive, within hydrodynamical calculations, to the
initial thermalization time 207:208:209 Tn Fig. 33 bottom the different contributions
to the photon vs in the framework of ideal hydrodynamics are shown, from Chat-
terjee et al. 3°. The contribution from the QGP phase with respect to the hadronic
phase is larger at the LHC than at RHIC, as expected.

To conclude with photons, in Fig. 34 the different contributions (hard, thermal-
jet with and without energy loss, thermal, and fragmentation) to the transverse
momentum spectrum of photons with pr > 8 GeV at the LHC, are shown 210 (see
also 2!1). The disentanglement of a thermal component on the background looks
defying and demands a very detailed understanding of the background sources.

Now I turn to dilepton production. Dileptons offer interesting information both
in the low mass region M < 1 GeV and in the intermediate mass region 1 GeV
< M < My, see e.g. 212213214 and references therein. In the former they are
expected to reflect the changes of resonances (masses, widths) in the medium. In
the latter a window of sizable thermal emission has been speculated.

In Fig. 35 215:35 the different contributions to the dilepton spectra at large (top)
and small (bottom) transverse momentum is shown. The contribution from heavy-
quark decays seems to dominate all masses but M < 0.5 GeV, where hadronic
contributions are very large. Therefore, the identification of thermal sources looks

is negative, see
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Fig. 33. Top: Photon vy versus transverse momentum from different sources, taking into account
conversions. Figure taken from 206, Bottom: Photon v versus transverse momentum within ideal
hydrodynamics in AuAu at RHIC and PbPb at the LHC for b = 7 fm, with separated contributions
from QGP, from hadron matter and total, from Chatterjee et al. Figure taken from 3°.

defying. A larger multiplicity should be linked with a larger temperature but also
with a larger hadronic background. It seems that only a larger light multiplicity -
if originating from a larger temperature - linked with a smaller heavy-quark cross
section - leading to a smaller background - would improve the situation for detection
of thermal dileptons in the intermediate mass region.

All calculations shown until now for photons or dileptons in the low-pr re-
gion assume a very small thermalization time, < 1 fm, at which the system is
isotropized /thermalized. The physical mechanisms which could make such fast
isotropization feasible, are not understood yet. Therefore some authors have stud-
ied the possibility of a later isotropization time and a previous evolution in an
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Fig. 34. Photon yield versus transverse momentum for 10% central PbPb collisions at the LHC,

for T; = 0.897 GeV and 7; = 0.073 fm, with different contributions separated. Figure taken from
210

anisotropic stage. For example, the authors in 216:217 consider a model in which the

system evolves from an early formation time ~ 0.1 fm in an anisotropic stage (a
collisionally-broadened expansion) to an isotropization reached at 2 fm. They find
a signal of such anisotropic behavior (depending on the kinematical cuts applied)
in the enhancement of dileptons with large transverse momentum at y = 0, and
a suppression of the pr-integrated yield (larger for forward rapidities), compared
to the early isotropization scenario, see Fig. 36. Similar considerations for photons
can be found in 218,

To conclude, much information can be obtained from real and virtual photons

at the LHC but an accurate understanding of backgrounds is required”.

5. pA collisions

While pA collisions will not take place until several successful data-taking heavy-ion
runs have occurred, they offer a vast amount of information (see ® and references
therein) which finally may turn out to be essential for the interpretation of the
PbPb data, as it was the case with dAu collisions at RHIC. They should establish
the benchmark for the cold nuclear matter effects on top of which the eventual
signals of a dense partonic stage are to be searched. I do not intend to give a full
overview of all the possibilities of the pA programme, but rather focus on some
selected aspects.

First, pA collisions offer the possibility of constraining the nuclear parton den-
sities in kinematical regions, see Fig. 2 right, which will not be explored in lepton-
35

YThe ratio of real to virtual photons has been argued, Alam et al. in and 219, to develop a

plateau at transverse momentum greater than ~ 2 GeV, quite insensitive to details of the model
and reflecting the initial temperature of the system.
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Fig. 35. Top: Dilepton yield versus pair mass at mid-rapidity in central PbPb collisions at the LHC,

for pgﬂaw > 8 GeV, with different sources indicated, for a scenario corresponding to dN¢p /dy|y=0 =

5625, from Fries et al. Bottom: Id. for pgfnr > 0.2 GeV, for the low (left) and intermediate (right)
mass regions, for a scenario corresponding to dN.p/dy|y—=0 = 1400, from van Hees et al. Figures
taken from 3°.

nucleus collisions unless future colliders 229221 become eventually available. This is
a key ingredient for hard probes, and the present situation of the parton densities
in the x region of interest for the LHC (10~* < 2 < 1072) derived from DGLAP
analysis (see e.g. the review 222 or the recent work 22 and references therein) is
far from being satisfactory, see Fig. 37 223. As evident from this figure, the nuclear
gluon densities at a low virtuality for £ < 0.05 are very badly constrained”. The
inclusion of pA data from the LHC in the fits can only improve this situation.

On the other hand, isolated photons offer the possibility of a direct access to
the gluon distribution (Fig. 38), see Arleo in > and 224, where it is shown that the

nuclear modification factor for isolated photons closely describes with the nuclear

“The situation is similar for NLO analysis, see 223. On the other hand, DGLAP evolution reduces
the uncertainties at larger scales.
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(valence, sea and gluons from left to right) per nucleon in Pb over that in p, at Q? =1.69 GeVZ2.

The band represents the uncertainty extracted from the error analysis in the EPS09 parametriza-

tions. Figure taken from 223.

modifications factors for the gluon distribution and structure function Fs.
Another aspect which has raised large interest is the possibility to check the
ideas of gluon saturation as proposed in the framework of the CGC, see the review
in 33. Generically, the saturation scale which characterizes the momentum below
which the gluon densities are expected to be maximal, is expected to increase with
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Fig. 38. Ry (y = 0) (solid) for isolated photons in pPb collisions at \/syn = 8.8 TeV, and (Rp, +
Rgy)/2 for Pb (dashed), versus «; = 2pr//snn- The lower (dashed-dotted) curve corresponds
to the difference between these two quantities divided by Rj4. Figure taken from 35,

increasing rapidity or energy, reaching values in the range from 1 to several GeV in
heavy-ion collisions at the LHC. Therefore saturation effects should become visible
in a region usually considered within the range of applicability of pQCD. Specif-
ically, the CGC predicts 105196 that the Cronin effect (the fact that the nuclear
modification factor is larger than 1) observed at mid-rapidity in dAu collisions at
RHIC disappears with increasing rapidity - as observed at RHIC, see % - and increas-
ing energy. While there is no consensus on this suppression at forward rapidities at
RHIC being a clear signal of saturation in the CGC, see e.g. 22°
in 3 for an alternative approach to shadowing, pA collisions at the LHC offer the
possibility of further tests. In Fig. 39 left I show the predictions by Kopeliovich et
al. 35226 in which the Cronin effect at mid-rapidity is still present in pPb collisions
at the LHC. On the other hand, in Fig. 39 right predictions are shown within the
CGC framework by Tuchin 35227, While these predictions are for light flavors (see
also De Boer et al. 35, or 228:229:230 for predictions for Drell-Yan and photons),
Tuchin also provides predictions for heavy-flavor production with similar features,

or Bravina et al.

namely a marked suppression of ratios both at mid- and forward rapidities in pPb
collisions at the LHC. Clearly different scenarios should be discriminated by LHC
data.

Finally, in the framework of the CGC, the nuclear modification factor in pPb
collisions at the LHC offers the possibility of establishing the relevance of different
effects. For example, considering a running coupling instead of a fixed coupling
in the CGC evolution equations at high energies or small momentum fractions x
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(the BK equation, see 33) leads 23! to a nuclear modification factor at very large
rapidities which goes from (Aln A1/3)_(1_7)/3 (v ~ 0.63, fixed coupling) to A~1/3
(running coupling, called total shadowing), with A the mass number of the nucleus.
The same total shadowing is achieved when fluctuations (or pomeron loops, see
232.233) are included 23*. Both effects are illustrated in Fig. 40.
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6. Summary and discussion

In this work I have reviewed the predictions for the heavy-ion programme at the
LHC, as available in early April 2009. After an introduction I have discussed some
qualitative expectations with the aim of illustrating how a single observable, namely

charged multiplicity at mid-rapidity, influences predictions for the energy density

and other thermodynamical quantities, the evolution of the system, predictions for
elliptic flow (v2) or the nuclear modification factor (R44) in models of energy loss.

Then I have turned to a compilation of results (additional information can be

found in 9:14:15,16,27,34,35.36) ‘Referring to PbPb collisions at the LHC and, otherwise

stated, to observables at mid-rapidity, a summary of what was presented is:

(1)

In Subsection 3.1 I have discussed the predictions for charged multiplicity at
mid-pseudorapidity. Most predictions (for Npgrt ~ 350, ~ 10 % more central
collisions) now lie below 2000 - a value sizably smaller than pre-RHIC pre-
dictions 27
through saturation, strong gluon shadowing, strong color fields,. .. On the other
hand, the expectations for net protons at n = 0 are systematically below 4.

In Subsection 3.2 I have analyzed the results for elliptic flow in several models.
pr-integrated vy increases in all models when going from RHIC to the LHC,
but this increase is usually smaller in hydrodynamical models than in naive
expectations, 3* and Section 2, and in some non-equilibrium, transport models.
For va(pr), hydrodynamical models indicate a value for pr < 2 GeV which is
very close for pions, while a decrease is expected for protons. A strong decrease
would be interpreted - once the initial conditions are settled - as an increase in
viscous effects. On the other hand, non-equilibrium models generically result
in an increase of va(pr).

In Subsection 3.3 predictions for hadrochemistry are reviewed. Different ver-
sions of the statistical models result in slightly different predictions, and non-
equilibrium scenarios show distinctive features for resonance production. Hy-
drodynamical and recombination models predict large baryon-to-meson ratios
at moderate py. Approaches with strong color fields or percolation show Cronin
effect for protons in central PbPb collisions at the LHC.

In Subsection 3.4 I have reviewed the predictions for correlations. HBT radii
are expected to increase from RHIC to the LHC. The predictive power of ideal
hydrodynamics is reduced by the limitations that appear in its description of
RHIC data. The role of viscosity in the hydrodynamical descriptions of HBT
radii is still to be clarified. On the other hand, correlations in rapidity are
expected to extend along large intervals and offer additional possibilities of
constraining the multiparticle production mechanism.

In Subsection 3.5 I have shown the existing predictions for multiplicity fluc-
tuations - few predictions are available as the evidence of a non-statistical or
non-trivial origin of fluctuations at SPS and RHIC is still under debate. Fluctu-
ations also hold discriminative power between different mechanisms of particle

, and they include a large degree of coherence in particle production
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production e.g. different statistical ensembles.

In Subsection 4.1 I have enumerated the predictions for the nuclear modification
factor for high-py charged particles or pions in central collisions. They generi-
cally lie, for radiative or collisional energy loss models, in the range 0.15 = 0.25
at pr = 20 GeV and increasing with increasing pr. Then I have commented
the possibilities of discriminating between the energy loss mechanism offered
by jets, by hadrochemistry at large pr where several mechanisms like energy
loss and parton conversions may be simultaneously at work, and by the study
of correlations.

In Subsection 4.2 results from different models with radiative or collisional en-
ergy loss for the nuclear modification factor of heavy flavors have been shown.
They offer the possibility to further test the energy loss mechanism, as the
energy diminution of a heavy quark traveling through the produced medium
is different from that of a massless parton. On the other hand, predictions for
quarkonium production are uncertain due to the lack of knowledge of both cold
nuclear matter (nuclear parton densities and nuclear absorption) and hot nu-
clear matter (pattern of dissociation, recombination mechanism at work,...)
effects. The identification of different quarkonium states and the large pr reach
at the LHC, may help to settle the dissociation pattern and the role of recombi-
nation. But predictions for the nuclear modification factor of J/¢ are plagued
with uncertainties due to e.g. nuclear shadowing or the c¢ cross section for
recombination.

In Subsection 4.3 I have reviewed the available predictions for photon and dilep-
ton production. While the large initial temperature or energy density implies a
large yield of thermal real and virtual photons, the huge backgrounds make the
disentanglement of a thermal component in the final spectrum challenging - a
very precise knowledge of the pp baseline will be required. Effects beyond the
usual equilibrium scenarios like anisotropies in the pre-equilibrium stage may
modify the yields with respect to the early thermalization expectations.

In Section 5 I have analyzed the usefulness of the pA programme at the LHC
for the purpose of reducing the uncertainties in the nuclear parton distributions
which weaken the capabilities of hard probes to characterize the medium pro-
duced in the collisions. I have also discussed the possibilities of studies of high
gluon density QCD through measurements of the nuclear modification factor
in pPb collisions in a large rapidity interval.

To put in context the predictions with respect to our current interpretation of

existing data, let me draw a set of rough predictions for the LHC with respect to
every ’standard’ claim based on the experimental findings at RHIC (see Section 1):
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Finding at RHIC

"Standard’ interpretation

Prediction for the LHC

multiplicities
smaller than
expectations

highly coherent
particle production
(expected e.g. in CGC)

ANEPP? /dn|,—o < 2000

v9 in agreement
with ideal hydro

quasi-ideal fluid
(strongly coupled QGP)

va(pr) for pr < 2 GeV similar
or smaller than at RHIC

strong
jet quenching

very opaque
medium

RUIM 0.2 at pr ~ 20 GeV
and increasing with pr

Obviously, neither the standard interpretations nor the predictions presented
in this Table are free from problems and uncertainties, even more when the pre-
dictions tend to disagree with naive, data-driven expectations which would suggest
multiplicities of order 1000, and sizably larger vo(pr < 2 GeV) and smaller R44

than at RHIC.

Finally, I find it tempting to speculate on possible scenarios based on the first-
day measurement of charged particle production at mid-pseudorapidity in central
PbPb collisions. Without any intention beyond showing how our understanding
may become affected by the very first data and having in mind the present experi-
mental situation and its ’standard’ interpretation, three rough possibilities can be

discussed:

e A low multiplicity scenario, dNE*P? /dn|,—¢ < 1000, which would be close to

the wounded nucleon model expectations and even smaller than most data-
driven expectations. It would imply a extremely coherent particle production,
difficult to describe even in saturation models. The conditions for collective flow
would be relatively close to those at RHIC, and differentiating between naive
extrapolations and hydrodynamical behaviors for vy more involved, as their
predictions would be not so different. On high transverse momentum particle
production, the fact that the densities are close to RHIC ones, would imply
that the difference e.g. in Ras from RHIC would be driven by the different
transverse momentum spectra - the trigger bias, so the expectation would be
an Ry4 larger than at RHIC for the same large transverse momentum (e.g.
of the order or greater than 20 GeV). The low multiplicity implies a small
background for jet and correlation studies. A small light multiplicity could also
be a good scenario for recombination models for quarkonia (for a fixed heavy
quark cross section).

An intermediate multiplicity scenario, 1000 < dNE*F? /dn|,—o < 2000 as pre-
dicted by most models with a large degree of coherence and by data-driven
extrapolations. The differences between naive predictions and results of hydro-
dynamical models for v, would be more noticeable. R4 4 should be more similar
than at RHIC, for the same large transverse momentum, than in the previous
scenario.

e A large multiplicity scenario, 2000 < dNEP® /dn|,,_o. This scenario would defy
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naive extrapolations based on logarithmic increases and limiting fragmentation,
and would be very problematic for saturation physics. Discriminating between
naive predictions and results of hydrodynamical models for vs should be rela-
tively easy. In this case, a strong decrease of vy at fixed small pr with respect
to RHIC, would strongly suggest viscous effects. Ra4 at large pr, of the order
or greater than 20 GeV, could be smaller than at RHIC for the same trans-
verse momentum. Jet and correlation studies might be more defying due to
the larger background. On the other hand, this scenario would imply larger
temperatures and energy densities which may be welcome, even in spite of the
larger background, for electromagnetic probes.

To conclude, the heavy-ion programme at the LHC will offer most valuable
information for improving our understanding of high-density QCD matter - and,
in a wider context, on the behavior of the strong interaction at high energies -
from the very first day of data taking. But it should be kept in mind that the
usefulness of some observables will be restricted by our lack of knowledge of the
pp and pA benchmarks, in particular to constrain the parton densities in nuclei.
It seems plausible that a pA run will be needed - as it was the case at RHIC -
in order to understand the effects of cold nuclear matter at LHC energies before
strong conclusions about the heavy-ion programme can be drawn.

A large amount of work has already been done to extrapolate existing models
to the LHC situation. Still much work is needed in order to deal with some observ-
ables e.g. viscous hydrodynamical calculations or transport models for collective
flow, or Monte Carlo tools for jet analysis, just to mention two obvious ongoing de-
velopments. The first LHC data will reduce much of the available freedom in model
parameters. The more restricted model predictions done after those very first data
will indicate, when confronted with subsequent data on other observables, whether
the physics at the LHC is qualitatively similar to that at the SPS and RHIC or, on
the contrary, new aspects appear which will require new ideas.
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